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on the states, control inputs and disturbances is treated. A problem formulation is provided for
the general case and, for the special case where the disturbance constraints are independent
of the states and inputs, it is discussed how the solution can be approached using standard
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piecewise affine systems with polyhedral constraints using computational geometry software.
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1. INTRODUCTION

The problems of reachability, invariance and controlled
invariance for discrete time systems have been exten-
sively studied in the literature for over three decades.
Most recently these problems have attracted renewed
attention, partly because improvements in computa-
tional capabilities have made it possible to implement
the algorithms for systems of practical interest. An-
other reason for the renewed interest in these problems
is the emergence of new classes of practically important
systems, such as hybrid systems. These are systems
whose states, inputs and outputs can take on values
from both a countable set (e.g. the set of integers) as
well as an uncountable set (e.g. the set of real numbers).
In recent years, invariance and reachability problems
for classes of hybrid systems have been studied by a
number of authors (Berardiet al., 1999; Koutsoukos
and Antsaklis, 1999; Torrisi and Bemporad, 2001; Ha-
bets and van Schuppen, 2001; Vidalet al., 2001).

One class of systems which, to the authors’ knowledge,
has received relatively little attention are systems with
mixed constraints on the inputs and states (or equiva-

lently, systems whose input constraints depend on the
state). Often, when this class of systems is treated, it
is with an insufficient amount of detail and overly-
conservative approximations (and mistakes) are made.
Systems with mixed state and input constraints may
arise in practice for a number of reasons:

(1) When modelling systems with physical con-
straints. Here the model must reflect the fact that
the constraints will be satisfied by all evolutions
of the system, whatever the inputs.

(2) When designing controllers to meet safety or
performance specifications, i.e. to ensure that
the state of the system remains in a certain
region of the state space. Safety and performance
specifications may be violated if the inputs are
not chosen properly.One can show (see e.g. Vidal
et al. (2001)) that the least restrictive controller
that satisfies such specifications involves state-
dependent input constraints.

A simple example illustrates the point. Consider the
following model for the longitudinal motion of a car
on a highway:
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wherex ∈ R represents the position of thecar,v ∈ R its
velocity,u ∈ [u,u] represents the control acceleration
applied by the engine or brakes, andw ∈ [w,w] a
disturbance acceleration due to wind. It is assumed
thatu < 0 < u andw < w. For simplicity all other
constants have been normalised to 1.

One would like to capture the situation where the
vehicle is prevented from going backwards. This is
a reasonable requirement in many cases (e.g. on a
highway) and is very easy to implement in practice
(assuming that the wind is incapable of pushing the
car backwards when the brakes are applied one could
simply disallow the reverse gear). This can be captured
by the hard state constraintv ≥ 0. To enforce this con-
straint, the model needs to incorporate the additional
state-dependent constraint

v + u+w ≥ 0 (1)

on the inputs (control and disturbance).

More generally, consider state variablesx, control
variablesu and disturbance variablesw, taking values
in the setsX, U andW respectively (not necessarily
vector spaces). Consider dynamic constraints on these
variables of the form

xk+1 = f (xk,uk, wk) and(xk,uk, wk) ∈ P , (2)

where P ⊆ X × U × W and f : P → X. Here
P is assumed to capture the physical, state-dependent
constraints on the control and disturbance inputs. The
goal is to develop methods for designing controllers
for this class of dynamical systems. Even though this
class has been considered by some authors (e.g. Torrisi
and Bemporad (2001)) to our knowledge none of the
control and analysis algorithms in the literature are
capable of explicitly dealing with it.

In this paper, a reachability controller synthesis prob-
lem is abstractly formulated for this class of systems. It
is then shown how standard geometric tools canaddress
the problem for the special case where the disturbance
constraints are independent of the state and control.
Finally, it is discussed how computational tools for
manipulating polyhedra can be used to implement the
solution for a class of piecewise affine systems with
polyhedral constraints.

2. THE REACHABILITY PROBLEM

A run of system (2) is defined as an infinite sequence
{(xk,uk, wk)}∞k=0 such that for allk ∈ N, xk+1 =
f (xk,uk, wk) and(xk,uk, wk) ∈ P. Let5X(·) denote
the projection of a set ontoX, i.e.

5X(P) := {x ∈ X |∃(u, w) : (x,u, w) ∈ P } .
In addition, it is assumed that for allx ∈ 5X(P)
there exists a pair(u, w) satisfying(x,u, w) ∈ P such
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Fig. 1. A discrete state reachability example.

that f (x,u, w) ∈ 5X(P). Under this assumption it
is easy to show that runs of the system exist for all
x0 ∈ 5X(P). A system which satisfies this assumption
is callednon-blocking.

Time-varying, set-valued state feedback controllers
will be considered in this section, i.e. maps of the form

µ : X × N→ 2U ,

where 2U denotes the set of subsets ofU . A run of
the closed-loop system obtained by connecting such a
controller to the system is again an infinite sequence
{(xk,uk, wk)}∞k=0 that for allk ∈ N satisfies

(1) xk+1 = f (xk,uk, wk) and(xk,uk, wk) ∈ P, i.e.
is a run of the open-loop system; and,

(2) uk ∈ µ(xk, k), i.e. satisfies the controller con-
straints.

Notice that the closed-loop system is another system of
the form (2) (possibly after appendingk to the state).

The reachability problem discussed here involves a
given constraint setD ⊆ X×U×W, an integerN ∈ N
and a target setTN ⊆ X. The goal is to determine the
set of statesT0 for which there exists a controllerµ
such that

• the closed-loop system is non-blocking; and
• for all runs,{(xk,uk, wk)}∞k=0, of the closed-loop

system withx0 ∈ T0, (xk,uk, wk) ∈ D for
k ∈ {0,1, . . . , N − 1} andxN ∈ TN .

Notice that this problem contains theN-step reacha-
bility and the N-step invariance problems as special
cases (Kerrigan, 2000). In principle,TN could be a
single point, though for systems with states, inputs
and disturbances taking values from an uncountable
set, it is unlikely that a controller exists that ensures
such a terminal constraint is reached for all disturbance
sequences.

It should be noted that a time-varying feedback con-
troller is in general necessary to provide a meaning-
ful solution to this problem. As usual in the pres-
ence of disturbances, restricting attention to open-
loop controllers would lead to extremely conservative
results (Maciejowski, 2001, Sect. 8.5.2). Moreover, a
time-invariant feedback controller may be incapable
of ensuring that states that can reachTN not only in
N steps but also in fewer thanN steps, are included
in T0. The example in Figure 1 illustrates this point.
The system has three discrete states,{A, B,C}, two
discrete inputs,{a,b}, and no disturbance. If we set



D = {A, B,C}× {a,b} andTN = B, then it is easy to
see that for allN ≥ 1, T0 = {A}. However, there
does not exist a time-invariant, set-valued feedback
controller capable of ensuring that starting fromA the
state will reachB in exactlyN ≥ 2 steps. This require-
ment is easy to meet with a time-varying controller of
the form considered here.

The setT0 can be computed by a backwards reachabil-
ity computation. This involves iterating the so-called
predecessor operator (Vidalet al., 2001)

Tk−1 = {x | ∃u : [∃w : (x,u, w) ∈ P]∧
[(x,u, w) ∈ P⇒
(x,u, w) ∈ D ∧ f (x,u, w) ∈ Tk]}

for k ∈ {1,2, . . . , N}, starting withTN . In this paper
∧ will be used to denote conjunction.

Notice that, by design,Tk ⊆ 5X(P) for k <

N (though not necessarily fork = N). In the
process, one can also establish a set-valued con-
troller which achieves the above objective. Fork ∈
{0,1, . . . , N − 1},
µ(x, k) := {u | [∃w : (x,u, w) ∈ P]∧

[(x,u, w) ∈ P⇒
(x,u, w) ∈ D ∧ f (x,u, w) ∈ Tk+1]}.

The rest of this paper concentrates on methods for
characterising the setT0 and does not treat the problem
of designing the controllerµ. Conceptually, obtaining
a formula for the controller is straightforward once
the setT0 has been characterised. The computational
implementation of the controller for piecewise affine
and hybrid systems is a topic of ongoing work.

3. A GEOMETRIC APPROACH

The computation ofTk−1, given Tk, can be quite
involved in general. If the states and inputs can only
take on values from a finite set the computation of
Tk−1 can be performed by enumeration1 . This section
presents some geometric insights into reachability
computations for the subclass of systems with additive
disturbances and independent disturbance constraints.

With a slight abuse of notation, consider the class of
systems

xk+1 = f (xk,uk)+ g(wk), (xk,uk, wk) ∈ P ×W
(3)

with xk ∈ X ⊂ Rn, uk ∈ U ⊂ Rm andwk ∈ W ⊂ Rd.
Let P ⊆ X × U and f : P → Rn, g : W → Rn.
Assume that the system is non-blocking, i.e. for allx ∈
5X(P) there exists au ∈ U satisfying(x,u) ∈ P such
that f (x,u) ∈ 5X(P). Additional mixed constraints
D ⊆ X ×U and a target setTN ⊆ X are also given. It

1 The discussion in Vidalet al.(2001) suggests that the computation
is also possible using quantifier elimination if the states and inputs
are all real-valued and all the relevant sets (including the graph of
f ) can be encoded in a decidable theory of the reals.

is assumed thatP represents the physical constraints
of the system andD represents desired performance,
safety or other specifications imposed on the system.

For this class of systems the iteration discussed above
simplifies somewhat, because the disturbance dynam-
ics g(·) and the disturbance setW are not dependent
on the current state or input. It has been suggested
by Witsenhausen (1968, p. 13) thatT0 be computed
using dynamic programming. The solution to the asso-
ciated dynamic programming problem has a geometric
interpretation. The setT0 can be computed via the
geometric recursion

Tk−1 = {x | ∃u : [(x,u) ∈ P ∩ D]∧
[∀w ∈ W : f (x,u)+ g(w) ∈ Tk]} (4)

for k ∈ {1,2, . . . , N}, starting with TN . An argu-
ment similar to those made by Delfour and Mitter
(1969), Glover and Schweppe (1971) and Bertsekas
and Rhodes (1971) suggests thatT0 can equivalently
be computed via the two-step recursion

T∗k ={x |∀w ∈ W : x + g(w) ∈ Tk } ,
Tk−1 =

{
x
∣∣∃u : (x,u) ∈ P ∩ D ∧ f (x,u) ∈ T∗k

}
.

The next few sections will give further insight into how
each stage of this recursion can be implemented.

3.1 ComputingT∗k via the Pontryagin Difference

The setT∗k can be interpreted geometrically as the
Pontryagin (Minkowski) differencebetweenTk and
g(W) (Mayne and Schroeder, 1997; Kolmanovsky
and Gilbert, 1998; Kerrigan, 2000). The Pontryagin
difference of two subsets of the Euclidean spaceRn, A
andB, is defined as

A ∼ B := {a ∈ Rn |∀b ∈ B : a+ b ∈ A
}
.

It follows directly from the definition that

T∗k = Tk ∼ g(W).

Note thatT∗k is not dependent on the dynamicsf . If
Tk andg(W) are compact, convex polyhedra, thenT∗k
can be computed very efficiently by solving a finite
number of linear programming problems (Mayne and
Schroeder, 1997; Kolmanovsky and Gilbert, 1998). For
non-convex sets a different approach, described next,
is more appropriate for computingT∗k .

3.2 ComputingT∗k via Minkowski Summation

The Minkowski (vector) sumof two subsets of the
Euclidean space,A andB, is defined as

A⊕ B := {c ∈ Rn |∃a ∈ A,b ∈ B : a+ b = c
}
.

It can also be shown that

A ∼ B = [Ac⊕ (−B)
]c
,

where the superscript c denotes the complement of a
set. This is because

A ∼ B = {a ∣∣@b ∈ B : a+ b ∈ Ac}



⇔ (A ∼ B)c = {a ∣∣∃b ∈ B : a+ b ∈ Ac}
= {a ∣∣∃c ∈ Ac,b ∈ B : a+ b = c

}
= {c ∣∣∃a ∈ Ac,b ∈ B : c+ b = a

}
= {c ∣∣∃a ∈ Ac,b ∈ (−B) : a+ b = c

}
=Ac⊕ (−B).

This result implies that the setT∗k can be computed via
Minkowski summation:

T∗k =
{
Tc

k ⊕ [−g (W)]
}c
.

3.3 ComputingTk−1 via Projection

As noted in Keerthi and Gilbert (1987) and Blanchini
(1994), onceT∗k has been computed,Tk−1 is given by
the projection of the set{

(x,u) ∈ P ∩ D
∣∣ f (x,u) ∈ T∗k

}
onto the state spaceX.

As such, it follows directly from the definition of the
projection operator5X(·) that

Tk−1 = 5X
{
(x,u) ∈ P ∩ D

∣∣ f (x,u) ∈ T∗k
}
.

3.4 ComputingTk−1 via Minkowski Summation

As a special case of (3), let

xk+1 = fx(xk)+ fu(uk)+ g(wk) (5)

where the physical constraintsP are not mixed, i.e.
P := Px × Pu, fx : Px → Rn and fu : Pu → Rn.
Assume also that the constraint setD := Dx×Du does
not define mixed constraints on the states and inputs.
In order to simplify notation, it is assumed thatD is
chosen such thatD ⊆ P, henceP ∩ D = D.

This additional structure can be exploited (Bertsekas
and Rhodes, 1971; Glover and Schweppe, 1971; Gut-
man and Cwikel, 1987; Mayne and Schroeder, 1997).
OnceT∗k has been computedTk−1 can be computed via
Minkowski summation, rather than via projection.

Note that one can now write

Tk−1 =
{
x ∈ Dx

∣∣∃u ∈ Du : fx(x)+ fu(u) ∈ T∗k
}
.

By rearranging terms, as done in Section 3.2, it can be
shown that

Tk−1 =
{
x ∈ Dx

∣∣ fx(x) ∈ T∗k ⊕ [− fu (Du)]
}
.

Alternatively, one can also write

Tk−1 = Dx ∩ f −1
x

{
T∗k ⊕ [− fu (Du)]

}
.

3.5 Summary

Summarising, the sets required to computeTk−1, given
Tk, are:

(1) Complement ofTk;

(2) Set−g(W);
(3) Minkowski sumTc

k ⊕ [−g(W)];
(4) Intermediate setT∗k =

{
Tc

k ⊕ [−g(W)]
}c;

(5) Projection of
{
(x,u) ∈ P ∩ D

∣∣ f (x,u) ∈ T∗k
}

onto the state space.

In the special case of Section 3.4, the fifth step can be
replaced by a Minkowski summation.

3.6 A Word of Caution

It is worth pointing out that the algorithms commonly
used in the literature for the computation of reach-
able and invariant sets for linear and piecewise affine
systems rely (at least in part) on the fact that there
are no state-dependent input constraints (Berardiet
al., 1999; Koutsoukos and Antsaklis, 1999; Torrisi and
Bemporad, 2001; Vidalet al., 2001). If these algo-
rithms were directly used with mixed state and input
constraints they could produce incorrect results. In
some cases it is easy to make the modification, but care
has to be taken. For example, for the class of piecewise
affine systems discussed in Section 4, Minkowski sum-
mation could produce incorrect results since, strictly
speaking, within each region the dynamics are a special
case of (3) and not of (5). Projection should be used
instead. A special case where Minkowski summation
can indeed be used for piecewise affine systems of
the form (3), which are not of the form (5), will be
discussed in Section 4.3.

4. A CLASS OF PIECEWISE AFFINE SYSTEMS

Consider the class of piecewise affine systems of the
form

xk+1 = Aqxk + Bquk + cq + Ewk if (xk,uk) ∈ Pq,

whereq ∈ Q ⊂ N and Q is a finite set,E ∈ Rn×d

and(Aq, Bq, cq) ∈ Rn×n×Rn×m×Rn for all q ∈ Q.
The setsD ⊆ X × U andW ⊂ Rd are assumed to
be compact polyhedra. To keep the notation simple,
it is assumed that these sets are convex (it is possible
to extend the results in this section if this is not the
case). Assume further that the regionsPq in which the
dynamics(Aq, Bq, cq, E) are valid is a closed, convex
polyhedron described by a set ofrq linear inequalities:

Pq :=
{
(x,u) ∈ Rn ×Rm

∣∣∣∣Sq

[
x
u

]
≤ sq

}
,

whereSq ∈ Rrq×(n+m) andsq ∈ Rrq . Finally, assume
that the setsPq have pairwise-disjoint interiors. i.e.
p 6= q ⇒ P◦p ∩ P◦q = ∅, where the superscript◦
denotes the interior of a set.

Clearly this class of systems has the same structure
as (3) with

f (x,u) := Aqx + Bqu+ cq, if (x,u) ∈ Pq,q ∈ Q.



The union
P :=

⋃
q∈Q

Pq

defines the domain off .

This modelling framework can be used to describe
a piecewise affine system which is continuous over
its domain. However, it cannot accurately be used to
describe a piecewise affine system which is discon-
tinuous over its domain, but only to approximate its
behaviour. As discussed by Sontag (1981), in order
to accurately describe discontinuous piecewise affine
systems, a mixture of non-strict and strict inequalities
are needed to describe each of the regionsPq. However,
because of finite precision arithmetic it is not possible
to represent strict inequalities in standard computers.
For the purposes of this paper, the above class of
models will be deemed acceptable for approximating
discontinuous piecewise affine systems – it is assumed
that it is acceptable that strict inequalities of the form
a′x < b can be replaced bya′x <= b − ε, where
ε is a small, positive number related to the machine
precision. If a discontinuous piecewise affine system
is modelled, then care has to be taken to ensure that the
model is still a single-valued map.

4.1 Computing the Intermediate SetT∗k

The setg(W) can easily be computed using linear
algebra and linear programming techniques (Kerrigan,
2000, Sect 3.4.2) to give the compact, convex polyhe-
dron−g(W) = −EW.

In general, even ifTk is a compact, convex polyhedron,
Tk−1 is not necessarily convex or connected. However,
Tk−1 can be described by the union of a set of compact,
convex polyhedra ifTk is given by the union of a set of
compact, convex polyhedra (Kerrigan, 2000, Chap. 4).
As such, it is assumed thatTk is given by the union of
a set of compact, convex polyhedra.

Furthermore, ifTk is given by the union of compact,
convex polyhedra, thenTc

k is given by the union of

open, convex polyhedra. GivenTk := ⋃Jk
i=16i |k,

where each6i |k is a compact, convex polyhedron, the
complement

Tc
k :=

Lk⋃
i=1

8i |k,

where each8i |k is an open, convex polyhedron, can
be computed as in Kerrigan (2000, App. D). Note that
it is not possible to computeTc

k exactly using finite
precision arithmetic. However, the closure of each8i |k
can be computed and used in subsequent calculations
without introducing a significant error2 .

2 Most computational geometry software only work with compact
polyhedra. If the polyhedron8i |k is unbounded, it can be intersected
with a sufficiently large compact, convex polyhedron for computa-
tional purposes.

It follows from the definition of the Minkowski sum
that

Tc
k ⊕ (−EW) =

Lk⋃
i=1

[
8i |k ⊕ (−EW)

]
.

Since−EW and the closure of8i |k are closed, convex
polyhedra, the set8i |k⊕ (−EW) can be computed ef-
ficiently using standard computational geometry soft-
ware packages (Veres and Mayne, 2001). Finally, since
each of the8i |k ⊕ (−EW) is an open, convex polyhe-
dron andTk is compact, it follows that

T∗k =
[
Tc

k ⊕ (−EW)
]c := Mk⋃

i=1

�i |k,

where each�i |k is a compact, convex polyhedron, can
be computed as in Kerrigan (2000, App. D).

4.2 ComputingTk−1 via Projection

The fact thatP andD have been treated as representing
two different aspects of the reachability problem allows
one to note that{

(x,u) ∈ P ∩ D
∣∣ f (x,u) ∈ T∗k

}
=
⋃
q∈Q

{
(x,u) ∈ Pq ∩ D

∣∣ f (x,u) ∈ T∗k
}

=
⋃
q∈Q

Mk⋃
i=1

{
(x,u) ∈ Pq ∩ D

∣∣ f (x,u) ∈ �i |k
}

=
⋃
q∈Q

Mk⋃
i=1

{(x,u) ∈ Pq ∩ D |

Aqx + Bqu+ cq ∈ �i |k}.
Since�i |k is a compact, convex polyhedron, the set{

(x,u) ∈ Pq ∩ D
∣∣Aqx + Bqu+ cq ∈ �i |k

}
is also a compact, convex polyhedron. Moreover, the
projection of a convex polyhedron is a convex polyhe-
dron and the projection of a union of sets is equal to
the union of the projections of these sets. Following on
from Section 3.3 this implies that

Tk−1 =
⋃
q∈Q

Mk⋃
i=1

5X{(x,u) ∈ Pq ∩ D |

Aqx + Bqu+ cq ∈ �i |k},
where the projection

5X
{
(x,u) ∈ Pq ∩ D

∣∣Aqx + Bqu+ cq ∈ �i |k
}

is a compact, convex polyhedron which can be com-
puted efficiently using standard computational geom-
etry software (Veres and Mayne, 2001).

4.3 ComputingTk−1 via Minkowski Summation

Let D := Dx × Du ⊆ P and each of the regions
Pq := Px,q × Pu. If the Pq and D are compact,



convex polyhedra then projection can be avoided and
Minkowski summation can be used to computeTk−1.
Similar to the discussion in Section 3.4, it can be shown
that

Tk−1 =
⋃
q∈Q

Mk⋃
i=1

{x ∈ Px,q ∩ Dx |

Aqx + cq ∈ �i |k ⊕ (−BqDu)}
despite the fact that the dynamics are of the form (3)
and not (5). The reason why Minkowski summation can
be used, is that within eachPq the input constraints
are not state-dependent and hence the same ideas as
in Section 3.4 are applicable. However, care still has
to be taken to includePx,q in the computation. A
computational example of this special case is presented
in Kerrigan (2000, Sect. 4.6).

5. CONCLUDING REMARKS

A small step towards addressing systems with mixed
constraints on the states and inputs has been presented.
The approach developed in this paper is capable of
dealing with systems with mixed constraints on the
state and controls, but relies on the fact that disturbance
constraints are independent. Current research is aimed
at alleviating this restriction; it is likely that geometrical
concepts and tools will also prove useful in this respect.

The geometric approach discussed here is also cur-
rently being applied to a class of hybrid systems where
the continuous dynamics are piecewise affine. It is
expected that, for the class of piecewise affine hybrid
systems, the geometric approach will be orders of
magnitude faster than the quantifier elimination ap-
proach used by Koutsoukos and Antsaklis (1999) and
Vidal et al.(2001). The worst-case time complexity of
quantifier elimination methods is doubly exponential.
Quantifier elimination also does not exploit the struc-
ture of the problem. A geometric approach exploits
the structure of the problem as well as making use of
efficient computational geometry software.
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