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Abstract— In this paper, a novel MPC strategy is proposed,
and referred to as “ℓasso MPC”. The new paradigm features
an ℓ1-regularised least squares loss function, in which the
control error variance competes with the sum of input channels
magnitude (or slew rate) over the whole horizon length. This
cost choice is motivated by the successful development of
LASSO theory in signal processing and machine learning. In
the latter fields, “sum-of-norms regularisation” have shown
a strong capability to provide robust and sparse solutions
for system identification and feature selection. In this paper,
a discrete-time dual-modeℓasso MPC is formulated, and its
stability is proven by application of standard MPC arguments.
The controller is then tested for the problem of ship course
keeping and roll reduction with rudder and fins, in a directional
stochastic sea. Simulations show theℓasso MPC to inherit
positive features from its corresponding regressor: extreme
reduction of decision variables’ magnitude, namely, actuators’
magnitude (or variations), with a finite energy error, being
particularly promising for over-actuated systems.

I. INTRODUCTION

Nowadays, the most common MPC implementations are
based on a quadratic-input-quadratic-state cost, becauseof its
simplicity and due to the possibility of inheriting proprieties
from the Linear Quadratic Regulator (LQR). Recently,1 and
∞-norm costs have also been becoming popular [1].

The theory of ℓ1-regularised Least Squares (LS), or
LASSO, [2], [3], [4], [5], [6], [7], has been widely developed
in the fields of machine learning and signal processing.
The approach, used to overcome over fitting and to reduce
the effects of measurement noise and outliers, penalises the
input ℓ1-norm, providing a sparse solution.ℓ1-regularised
LS is a convex problem that forces most of the decision
variables to be equal to zero. This can also be obtained
by other ℓq-regularisations, withq ∈ [0, 1), resulting in
non-convex problems. On the other hand, the solution of
a convexℓq-regularisation withq ≥ 2 will generally feature
many small nonzero values. Because of this characteristic,
the use of LASSO appears to be promising for MPC, in
terms of reduction of actuator activity. LASSO has been used
for trajectory optimisation in [8], where its use in predictive
control was also suggested. The latter contribution motivates
the development of the theory of sum-of-norms regularisation
in MPC, in this paper.
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II. ℓasso MPC

Consider an observation vectorY , a design matrixΛ and
a vector of decision variablesX. The problem

X⋆ = argmin
X

‖ΛX− Y ‖22 + λ‖X‖1 (1)

is referred to as anℓ1-regularised least squares problem, [2],
[8], [9], [10], [3], or LASSO regression, in itsunconstrained
form. Equation (1) is a convex problems, non-differentiable
at the origin. Non-differentiability causes LASSO to feature,
differently from a standard least-squares problem, a piece-
wise affine solution (as a function ofY ) with ‖X⋆‖1 ≤ t,
for somet ≥ 0, [10].

The ℓ1-norm condition forces most of the solution’s el-
ements to be null. As discussed before, this feature marks
a substantial difference between LASSO and other convex
regularised least-squares approaches, for instance thesum-of-
squares or Tikhonov regularisation [4], in which most of the
decision variables will always be non-zero. Interestingly, the
cost of a Tikhonov regularisation has the same form as for a
finite-horizon LQR, which suggests using quadratic MPC as
a benchmark forℓasso MPC. This parallel allows the authors
to investigate whether results achieved in signal processing
can be expected in control. The focus of this paper will be on
over-actuated systems, where LASSO is expected to combine
a regulation task with control allocation.

A. Dual-mode ℓasso MPC

This paper addresses the control of discrete-time Linear
Time-Invariant (LTI) systems1

x+ = Ax+Bu. (2)

The considered system (2) is subject to constraints of the
form

u ∈ U ⊂ R
m, x ∈ X ⊂ R

n. (3)

Consider the following constrained optimal control problem

V o
N = min

u







VN (x, u) =̂ F (xN ) +

N−1
∑

j=0

ℓ(xj , uj)







(4)

s.t. : xj+1 = Axj +Buj,

uj ∈ U, xj ∈ X, ∀j ≥ 0,

x0 = x, xN ∈ Xf , (5)

1Equation (2) expresses the system dynamics,x(k + 1) = Ax(k) +
Bu(k), in a compact form. Predictions used by the MPC are, on the other
hand, denoted asxj+1 = Axj + Buj .



with stage cost

ℓ(xj , uj) =







xTj Qxj + uTj Ruj + λ‖uj‖1 for x 6∈ Xf

xTj Qxj + uTj Ruj for x ∈ Xf

(6)
whereXf will be a positively invariant set and the terminal
costF (x) a Control Lyapunov Function (CLF) inXf , to be
defined later. Throughout the paper, it is assumed that

Assumption 1.

• (H0) (A,B) stabilizable,(Q1/2, A) detectable.
• (H1) Q � 0, R ≻ 0, λ > 0,
• (H2) X andU are closed, bounded and convex,
• (H3) 0 ∈ int{X}, 0 ∈ int{U},
• (H4) xN ∈ XN = {x ∈ R

n | ∃ u ∈ U | x ∈
X, VN (x0, u) < ∞}.

Define the following

H = 2(R+ΘTQΘ), G = 2ΘTQΨx, (7)

with

Ψ =











A
A2

...
AN











, Θ =











B 0 · · · 0
AB B · · · 0

...
...

. ..
...

AN−1B AN−2B · · · B











,

(8)

Q = BlkDiag{IN×N ⊗Q,P}, R = IN×N ⊗R, (9)

where BlkDiag{A,B} denotes a block-diagonal matrix, and
⊗ denotes the Kronecker product.

Theorem II.1. Problem (4–5) is anℓ1-regularized LS prob-
lem, subject to convex constraints.

Proof. Using a standard condensed QP form for the
quadratic cost [11], problem (4) can be recast as

min
u

∥

∥

∥

∥

1√
2
H1/2u−

(

− 1√
2
H−1/2G

)
∥

∥

∥

∥

2

2

+ λ‖u‖1. (10)

Substituting

X = u, Λ = 1√
2
H1/2, Y = − 1√

2
H−1/2G (11)

(10) has the same form as (1). Constraints are in (5).�

In the proposed approach, the solution, u⋆, of (4) is
computed online and only the first command is applied
to the plant. This is then repeated in a receding horizon
fashion. The resulting controller is defined asℓasso MPC
with (input) magnitude regularisation. Similarly, replacing
uj by its one step time difference,∆uj, problem (4) will
define aℓasso MPC with rate regularisation. In contrast to
quadratic MPC, non-differentiability of the1-norm penalty
prevents the computation of a closed form solution for the
unconstrained problem.

1) Unconstrained ℓasso MPC: Define r = ΛX − Y and
X = u. The Karush-Kuhn-Tucker (KKT) conditions for a
sum-of-norms-constrained least-squares problem are [10]

(2ΛT (Λu⋆ − Y ))i ∈







{+λ} if ui > 0
{−λ} if ui < 0
[−λ, λ] if ui = 0,

(12)

that is [3]
λ ≥ 2‖ΛT r⋆‖∞. (13)

From (13), a null control solution is possible for a finite
value ofλ, givenx

λmax(x) = 2‖ΛTY ‖∞ ≡ 2‖ΘTQΨx‖∞. (14)

Consider an unconstrained finite horizonℓasso MPC prob-
lem. Substituting (7) and (11) into (13) gives

λ⋆(x, u⋆) = 2‖ΘTQ(Ψx+Θ u⋆) +R u⋆‖∞. (15)

Theorem II.2. Given x = x(k), a null optimal solution for
the unconstrainedℓasso MPC, u⋆ = 0, is obtained for

λ ≥ λ⋆(x, 0) =̂ λmax(x). (16)

Proof. The KKT conditions (12) give the first inequality.
Evaluate (15) at u⋆ = 0 to verify the second equality. �

Furthermore, an implicit thresholding capability can be
deduced, from (12), for the unconstrainedℓasso MPC.

2) Proposed approach: In this paper, stabilisation to zero
is achieved by means of adual-mode approach [12]. Since in
(6) it is assumed thatλ = 0 for x ∈ Xf , the terminal set and
controller can be defined as for a “constrained LQR” [13].
Define the following, as respectively,maximal admissible set,
input admissible set, terminal set, terminal cost andterminal
controller [14]

O∞ = {x | (A−BK∞)kx ∈ X̄, ∀ k ≥ 0} (17)

X̄ = {x ∈ X | −K∞x ∈ U} (18)

Xf = {x | xTP∞x ≤ c} (19)

F (x) = xTP∞x (20)

Kf (x) = −K∞x (21)

where
0 < c < cm=̂ inf

x 6∈X̄
{xTP∞x} (22)

Consequently, thestabilisable set is given by

SN = KN (X, O∞) ⊆ S∞ (23)

where KN is the N -step controllable set and S∞ is the
maximal stabilisable set [15], [14]. The ℓasso MPC control
law will be referred to asKN(x).

Theorem II.3. (Zero-regulation) Assume (17–22). The
constrained dual-modeℓasso MPC solving problem (4–5) is
exponentially stabilising∀ x ∈ XN . Hence, the state origin is
locally exponentially stable (LES) with domain of attraction
XN ⊆ S∞.

Proof. The proof relies on the direct method in [16], [17].
The optimal cost function,V o

N , is a positive definite function



of the state. Moreover, it is radially unbounded. Given,
at time k, the optimal sequence, u⋆ = {u0, . . . , uN}, the
sequence,̃u = {u1, . . . , uN ,Kf}, is also admissible at time
k + 1. Hence

V o
N (x+) ≤ VN (x, ũ) = V o

N (x) − ℓ(x,KN (x)) (24)

−F (xN ) + ℓf (xN ,Kf) + F (x+
N ).

SinceP∞ solves a matrix Lyapunov equation,F (x) satisfies
ℓf (x,Kf )+F (x+)−F (x) = 0, ∀x ∈ Xf . Hence,∀x ∈ XN ,
it follows that

V o
N (x+)− V o

N (x) ≤ −ℓ(x,KN(x)). (25)

Therefore, the optimal value function,V o
N , is a Lyapunov

function for the closed-loop system,∀x ∈ XN . Hence, the
origin is asymptotically stable. Finally, since∃ a1, a2 such
thata1‖x‖22 ≤ ℓ(x, u), ∀x ∈ XN andF (x) ≤ a2‖x‖22, ∀x ∈
Xf , it follows [17] that the origin is locally exponentially
stable, with domain of attractionXN ⊆ S∞. �

Corollary II.4. (Zone-regulation) If the terminal controller
is not applied, the system state is ultimately bounded by

BN,d⋆ = {x | V o
N (x) ≤ d⋆}, (26)

with
d⋆ = min d

s.t.:BN,d ⊇ {Ax | x ∈ Xf}. (27)

B. Implementation

A 1-norm cost can be represented by introducing appropri-
ate slack constraints, and penalising the new slack variables,
σk. Problem (4–5) can be now formulated as a set ofN
constrained semi-definite QPs, for example in the condensed
formulation

X⋆
k = argmin

Xk

1

2
XT
k H̃Xk +XT

k G̃ (28)

where:

Xk =

[

u
σk

]

, H̃ =

[

H 0
0 0

]

, G̃ =

[

G
λ S(mN×1)

]

(29)
whereS is a selection matrices, consisting of an identity
matrix and zero block, in order to distinguish which input
are regularised and which are not. The problem is subject to
the following constraints, similarly as in [11],

ΩXk ≤ b (30)

Ω =





ΓgΘ 0
W 0
Π



 , (31)

b =





−ΓgΨXk − ḡ
−w̄

0(3mN×1)



 , (32)

Π =





ImN − ImN
−ImN −ImN

0 −ImN



 . (33)

In eq.(31),Γg and ḡ represent the state constraints, as well
asW and w̄ provide input constraints. These variables are
all in standard form, as in [11]. Finally,̟ provides the1-
norm slack constraints. Because of this slack constraints,for
LTI models theℓasso MPC is expected to be a piecewise
affine state-feedback controller, even in the absence of state
or input constraints.

To impose an attainable terminal constraint,xN ∈ Xf , the
following steps are performed offline

Algorithm 1. Compute:
1) An admissible polyhedron,X∞ ⊆ O∞ [15],
2) The level setcm in (22) outsideX∞, by solving a set

of QPs [13]. Choosec < cm to determineXf ,
3) A (non-invariant) polyhedral approximation,Xf ⊆ Xf ,

usingAlgorithm 2,
4) The domain of attractionXN ⊆ SN , as in [14].

Since the terminal set is an ellipsoid defined by
xT (1cP∞)x ≤ 1, its polyhedral approximation can be de-
termined using elliptical geometry and intersection.

Algorithm 2:
1) Compute the eigenvaluesλi and eigenvectorsvi, for

i = 1, . . . , n of the matrixE = cP−1
∞ .

2) For each pair{λi, λj} with i 6= j, compute:
a) The semi-axes length, the focus and semi-latus

rectum,a =
√

max{λi, λj}, b =
√

min{λi, λj},
f =

√
a2 − b2, l = b2/a,

b) The n-dimensional cone, Pij , defined by
(±)vTa x ≤ f , together with(±)vTb x ≤ l.

3) ComputeXf =
⋂

i6=j Pij .
In Algorithm 2, va is the eigenvector associated with
max{λi, λj}, the direction of the major semi-axis. Similarly,
vb is for the minor semi-axis.

Online, xN ∈ Xf is imposed, for ease of computation,
providing xN ∈ Xf . The terminal controllerKf is then
applied iff F (xN ) ≤ c, ensuring positive invariance forXf .
As an example, the sets computed for a second order LTI
system are shown in Figure 1.
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Fig. 1. Sets for a2nd order LTI system, using Matlab Invariant set
toolbox and Multi-parametric toolbox:X (yellow), XN (red),X∞ (green),
Xf (ellipse interior),Xf (black).



III. SHIP ROLL DAMPING

Roll motion in ships is a major cause of problems to
passengers and human operators. The issue concernes most
marine activities, from luxury yachting to offshore opera-
tions. The reduction of vessel roll, or roll damping, has
been widely addressed in the past, via several techniques,
[18]. Recent results have shown the use of combined rudder
and fins control to provide several benefits, including less
interference with the vessel course keeping. In the latter case,
the system to be controlled can be considered to befully-
actuated.

Whenever fins come into play, constraints on the effec-
tive angle of attack are vital, in order to avoid non-linear
fluid separation phenomena, a major cause of performance
degradation and instability. The necessity of handling con-
straints motivated the recent development of MPC-based
fin stabilisers [19]. Unfortunately, quadratic MPC causes
all actuators to be in use for most of the time, whereas
it would be preferable for only fins to act to reduce roll
most of the time, with the rudder applying additional torque
only when the fins have reached the limit of their authority.
Less roll-induced rudder action is recommendable, in order
to have less yaw interference, the main motivation for the
presence of fins, which are expensive devices. This motivates
our consideration for the problem of roll damping, as a
‘demonstrator’ forℓasso MPC. (Of course the rudder should
also act unimpeded in its primary role of steering the ship.)

A. Vessel dynamics and MPC design

Vessel dynamics are formulated according to marine craft
maneuvring theory [20]. The equations of motion include
rigid-body dynamics and linear hydrodynamic effects, given
by the so-called hydrodynamic derivatives, generally ob-
tained by system identification [19]. Waves are treated as a
Gaussian output disturbance whose distribution is based on
a power spectrum, the choice of which depends on several
factors [20]. In this paper, a JONSWAP spectrum [20] is
chosen, as an example. The vessel moves in 6 degrees of
freedom (DOF), and its motion is generally expressed in
standard SNAME coordinates and reference frames2 [20],
[18], summarised in Table I. Full state measurement is
assumed.

Variable name Description
n, e, d North, east, down positions,n-frame
φ, θ, ψ Roll, pitch, yaw (Euler) angles,n→ b

u, v, w Surge, sway, heave velocities,b-frame
p, q, r Roll, pitch, yaw rate,b-frame
ν Vector of gen. velocities and rates,b-frame
η Vector of positions and attitude,n-frame

TABLE I

SNAME COORDINATES

The controller is required to maintain a desired average
yaw angle, while reducing the roll variance, despite the
action of sea waves. For control design, a discrete-time
LTI model is obtained from the original nonlinear system.

2SNAME stands for “Society of Naval Architects and Marine Engineers”.

For comparison, the model and controller in [18] will be
considered as a benchmark. In particular, a quadratic MPC
is implemented, as in [18], with matrices of the form:

Q = diag{0, 0, qr, qφ, qψ}, R = diag{qR, qF , qF }.
(34)

Constraints are clearly described in [18].
Our ℓasso MPC will have the sameQ matrix as for the

above “constrained LQR”, while the regularisation parameter
will be tuned by trial and improvement. Figure 2 shows
the projection on the roll and yaw coordinates of several
approximations ofO∞, computed with the Matlab Invariant-
set toolbox and Multi-parametric toolbox.
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Fig. 2. Approximations ofO∞, using Matlab Invariant set toolbox and
Multi-parametric toolbox (roll–yaw projection).

B. Simulations

Results are shown, first for an input-magnitude-penalised
formulation, then for the case of input rate penalisation. The
horizon length is chosen to be of15 steps, with a sampling
period of0.1 sec. The terminal controller is never applied, in
a zone-regulation fashion. The chosen target for the systemis
O100, in Figure 2. Performances are evaluated by computing
the mean and standard deviation (STD) of the roll angle, and
of the low-frequency yaw, obtained by a low-pass filter with
a cut-off frequency of1.5 ω0, whereω0 is the mean wave
frequency. Theℓ1-norm of the overall input signal is also
computed. Simulations are performed for an irregular sea,
namely, a Sea State 5 (SS5) [18], and results are averaged
over 40 simulations.

For the first case,qφ = 20, qr = 10, qψ = 100, qR = 20,
qF = 10, for the quadratic MPC while, for theℓasso MPC,
qφ = 20, qr = 10, qψ = 100, qR = 2, qF = 1, for λ = 0.9
andλ = 1.8.

Table II shows that, for the dual modeℓasso MPC, the
tradeoff between control error statistics and input amplitude
can be regulated by choosing an appropriateλ. This param-
eter, together with the quadratic input cost, can be tuned in
order to provide results which are close to the ones given
by quadratic MPC. To challenge the new approach, theR



TABLE II

COMPARISON IN SEA STATE5, FOR VARIOUSλ

λ Roll std Yaw std Roll mean Yaw mean E(‖u‖1)
- 0.2396 0.6367 -0.0117 0.0167 6999.7

0.9 0.1625 0.4587 -0.0023 0.1513 7231.8
1.8 0.2108 0.6621 0.0045 0.1306 4386.7

matrix for quadratic MPC (indicated by “λ = −” in Table II)
is chosen to be10 times the one used inℓasso MPC. Despite
this, the results obtained withℓasso MPC are better than the
ones achieved with quadratic MPC, in terms of the tradeoff
between error standard deviation and input magnitude. Note
that benefits on theℓ1-norm of the input signals, expected
in the nominal LTI case, are still achieved for the nonlinear
stochastic system.

Figures 3, 4 show the performances and control signals
obtained with quadratic MPC (dashed blue) and by theℓasso
MPC (continous black). As expected, in contrast to quadratic
MPC, theℓasso MPC is capable of holding the rudder angle
exactly at zero for most of the time. Similarly for the fins
— namely, the solution is ‘sparse in time’ as well as ‘sparse
in actuators’. On the other hand, quadratic MPC seems to
generate rather unrealistic commands, with magnitudes lower
than1 degree. These are not likely to be achievable by ether
the rudder or the fin machinery.

Wave filters are generally used to reduce control signals’
sensitivity to high frequency yaw motion, and to reduce
rudder’s activity [18]. From Figure 4, it can be noticed how
ℓasso MPC implements aninput thresholding, without the
use of such wave filters. The thresholding resembles what
obtained in LASSO-based feature detection [21], [22].
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Fig. 3. Comparison in sea state 5: Roll and yaw angles and rates, ℓasso
MPC (solid)λ = 1.8, quadratic MPC (dashed).

Results are now shown for an input rate penalty, withqφ =
20, qr = 10, qψ = 100, qR = 20, qF = 10, for the quadratic
MPC and,qφ = 20, qr = 10, qψ = 100, qR = 2, qF = 1, or
the ℓasso MPC with λ = 2.5 andλ = 5.

From Table III, it can be seen that, forλ = 1.5, perfor-
mances can be similar to the ones obtained with a quadratic
MPC (this time with the same quadratic cost), in addiction
to a significant reduction (approx.40%) of the ℓ1-norm of
the input variations, that is, with more constant input signals.
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Fig. 4. Comparison in sea state 5: Actuators.ℓasso MPC (solid)λ = 1.8,
quadratic MPC (dashed).

TABLE III

COMPARISON IN SEA STATE5, FOR VARIOUSλ (∆u FORMULATION)

λ Roll std Yaw std Roll mean Yaw mean E(‖∆u‖1)
- 0.2267 0.4061 -0.0021 0.0552 2.76e+03

1.5 0.2576 0.4512 -0.0074 0.0283 1.9e+03
2.5 0.2552 0.4437 -0.0261 0.1222 1.54e+03

In this case, it is interesting to see how performances change
for different λs: in particular, a smaller value will provide
the reduction of the mean values, while a bigger one reduces
the error variances. Figures 5, 6 show the performances and
control signals obtained with quadratic MPC (dashed blue)
and by theℓasso MPC (continuous black).
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Fig. 5. Comparison (∆u) in sea state 5: Roll and yaw angles and rates,
ℓasso MPC (solid)λ = 1.5, quadratic MPC (dashed).

Simulations seem to confirm what is experienced in com-
pressed sensing, where LASSO can outperform quadratic
regularisation, in terms of accuracy of reconstruction, and
robustness to noise [10].

IV. CONCLUSIONS

In this paper, a novel stabilising dual-mode MPC has been
formulated, and referred to asℓasso MPC. The approach is
based on sum-of-norms regularisation, and is inspired by
the successful development of LASSO regression in signal
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processing. Nominal stability has been proven using standard
MPC arguments, and an algorithm has been proposed to
implement the dual-mode controller. The problem of vessel
course keeping and roll reduction with rudder and fins has
been addressed, to demonstrate the capabilities of the new
controller. A quadratic MPC has been chosen for comparison.

Simulations have shown thatℓasso MPC can provide
similar control performance to that achieved by quadratic
MPC, while providing a very different input behaviour.
In particular, penalising the input magnitude causes the
actuators to be set at zero for most of the time, and used only
when necessary. Small magnitudes seem not to be allowed
for the input commands. Similarly, penalising the input time-
differences causes the actuators to have a more constant or
piecewise-smooth behaviour.
ℓasso MPC seems to be particularly suitable for fully

or over-actuated systems, where it is desirable to use the
least number of actuators per task, namely to have a smart
control allocation policy. Reduced actuators usage could
provide several benefits, such as fuel efficiency and increased
life-time. Potentially, it could be possible to reduce some
feedback-induced negative effects, such as excitation of un-
modelled dynamics, or sensitivity to noise, in a way which
differs from existing MPC approaches. Finally, the possibility
of thresholding the input signals, although still conjectural,
is of significant interest. Further investigation is needed,
to understand the potential and the limits of sum-of-norms
regularisation in the field of feedback control systems.
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