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Abstract— In this paper, a novel MPC strategy is proposed, Il. lyss0 MPC

and referred to as “¢qsso MPC”. The new paradigm features . . . .
an (1-regularised least squares loss function, in which the ~ CoOnsider an observation vectdi, a design matrix\ and

control error variance competes with the sum of input channés ~ a vector of decision variableX. The problem

magnitude (or slew rate) over the whole horizon length. This

cost choice is motivated by the successful development of X* = argmin [|AX — Y||2 4+ M| X||1 Q)
LASSO theory in signal processing and machine learning. In X

the latter fields, “sum-of-norms regularisation” have shown s referred to as af;-regularised least squares problem, [2],
a strong capability to provide robust and sparse solutions 18], [9], [10], [3], or LASSO regression, in itanconstrained

for system identification and feature selection. In this papr, f Equati i bl diff tiabl
a discrete-time dual-mode,.., MPC is formulated, and its 'O/ Equation (1) is a convex problems, non-differentiable

stability is proven by application of standard MPC arguments. ~ at the origin. Non-differentiability causes LASSO to featu
The controller is then tested for the problem of ship course differently from a standard least-squares problem, a piece
keeping and roll reduction with rudder and fins, in a directional  wise affine solution (as a function af) with | X*] <t
stochastic sea. Simulations show the..sc MPC to inherit  ¢5. comet > 0, [10].

positive features from its corresponding regressor: extrme - _—
reduction of decision variables’ magnitude, namely, actutors’ The /,-norm Condltlon. forces most of thg solution’s el-
magnitude (or variations), with a finite energy error, being ements to be null. As discussed before, this feature marks
particularly promising for over-actuated systems. a substantial difference between LASSO and other convex
regularised least-squares approaches, for instanceitiref-
squares or Tikhonov regularisation [4], in which most of the
I. INTRODUCTION decision variables will always be non-zero. Interestingig
cost of a Tikhonov regularisation has the same form as for a
finite-horizon LQR, which suggests using quadratic MPC as
Nowadays, the most common MPC implementations arg henchmark fot,,., MPC. This parallel allows the authors
based on a quadratic-input-quadratic-state cost, becditse tg jnvestigate whether results achieved in signal prongssi
simplicity and due to the possibility of inheriting propiies  can be expected in control. The focus of this paper will be on
from the Linear Quadratic Regulator (LQR). Recenthand  oyer-actuated systems, where LASSO is expected to combine
oo-norm costs have also been becoming popular [1]. a regulation task with control allocation.
The theory of ¢;-regularised Least Squares (LS), or
LASSO, [2], [3], [4], [5], [6], [7], has been widely develoge A Dual-mode (o550 MPC
in the fields of machine learning and signal processing. This paper addresses the control of discrete-time Linear
The approach, used to overcome over fitting and to reduq@me-Invariant (LTI) systents
the effects of measurement noise and outliers, penaliges th
input /;-norm, providing a sparse solutioid; -regularised a* = Azr + Bu. (2)
LS is a convex problem that forces most of the decisio
variables to be equal to zero. This can also be obtain
by other ¢,-regularisations, withgy € [0, 1), resulting in
non-convex problems. On the other hand, the solution of

a convex(,-regularisation withy > 2 will generally feature  cqnsider the following constrained optimal control prable
many small nonzero values. Because of this characteristic,

ﬁtpe considered system (2) is subject to constraints of the
orm

ueUCR™, zeXCR" 3)

the use of LASSO appears to be promising for MPC, in N-1
terms of reduction of actuator activity. LASSO has been used Vy = mdn Vn(z,u) = F(ay) + Z Uy, uy) (4)
for trajectory optimisation in [8], where its use in prediet - j=0
control was also suggested. The latter contribution mtea
the development of the theory of sum-of-norms regulagsati st Tj41 = Ax; + Buy,
in MPC, in this paper. wj €U, z; €X, Vj>0,
zo =2, Ty € Xy, (5)
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jmmi}@am ac. uk 1Equation (2) expresses the system dynamigd; + 1) = Ax(k) +
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with stage cost 1) Unconstrained 4,55, MPC: Definer = AX — Y and
X = u. The Karush-Kuhn-Tucker (KKT) conditions for a

a7 Qj +ul Ruj + Nug|y  for = ¢ X¢ sum-of-norms-constrained least-squares problem are [10]
Ui, uj) = O +uT Rt o r e X {+X} if u;>0
g ‘) CAT(AU —Y)); e{ {=A} if u;<0 (12)
whereX; will be a positively invariant set and the terminal [=A, Al if u; =0,

costF'(x) a Control Lyapunov Function (CLF) iKy, to be that is [3]

defined later. Throughout the paper, it is assumed that A > 2[ATr | . (13)
Assumption 1. From (13), a null control solution is possible for a finite
« (HO) (4, B) stabilizable,(Q1/2, A) detectable. value of A, givenz
« H) Q@=0, R>0,A>0, AP () = 2 ATY | = 2107 QUz| . (14)
« (H2) X andU are closed, bounded and convex,
o (H3) 0 € int{X}, 0 € int{U}, Consider an unconstrained finite horizég,, MPC prob-
e« H4) 2y € Xy = {z € R" | Ju e U |z e lem. Substituting (7) and (11) into (13) gives
X, Vi (o, u) < oo} N (a,u*) =2|07Q(¥z + O U) + R Ul (15)
Define the following Theorem 11.2. Givenz = z(k), a null optimal solution for
T T the unconstrained,.,, MPC, U = 0, is obtained for
H=2R+06'Q0), G=20"QVz, (7)
A > A (x,0) = A" (2). (16)
with Proof. The KKT conditions (12) give the first inequality.
A B 0 e 0 Evaluate (15) at i= 0 to verify the second equality. W
A2 AB B 0

Furthermore, an implicit thresholding capability can be
: : : o deduced, from (12), for the unconstrainéd,, MPC.

AN AN-1B AN-2B ... B 2) Proposed approach: In this paper, stabilisation to zero

8) is achieved by means ofdual-mode approach [12]. Since in

— BIkDiae{T 9Q,P), R=1I QR (9 (6) itis assumed that = 0 for x € X, the terminal set and
Q fag{Inxn ® Q. P} NN © controller can be defined as for a “constrained LQR” [13].

where BlkDiag A, B} denotes a block-diagonal matrix, andP€fine the following, as respectivelyaximal admissible set,
® denotes the Kronecker product. input admissible set, terminal set, terminal cost andterminal

controller [14]
Theorem Il.1. Problem (4-5) is a;-regularized LS prob-

k _
lem, subject to convex constraints. Oco ={z | (A - BKx)'v € X, Vk =0} (17)
X ={reX |- KxzeU} (18)
X; = {z | 27 Pz < ¢} (19)
F(z) = 27 Pz (20)

Proof. Using a standard condensed QP form for the
qguadratic cost [11], problem (4) can be recast as

2
1 1 () —
min EHUQQ - (—EH”QG) +Auli. (10) Ky(r) = —Koox (21)
B 2 where
Substituting 0<c<en= ig {2 Py} (22)

X=u A= %Hl/z, Y = —%H*WG (11) Consequently, thetabilisable set is given by

Sy =Kn(X,0x) C S (23)

where I is the N-step controllable set and S, is the
In the proposed approach, the solutiort, wf (4) is maximal stabilisable set [15], [14]. The /,ssc MPC control
computed online and only the first command is appliethw will be referred to asiy (z).

to the plant. This is then repeated in a receding horizo‘?heorem 3. (Zero-regulation) Assume (17-22). The

\f;‘l;? |c()irrl]. Igemraesz:ﬂ?(?e Crc;m;?:ﬁ;;tsiogeg;?l:f”rg/l.l:';; constrained dual-modg,,,, MPC solving problem (4-5) is
P 9 9 ' Y. e exponentially stabilisingy = € X . Hence, the state origin is

i .by Its one step tw_ne dlﬁerence}yj, problem (4) wil locally exponentially stable (LES) with domain of attracti
define al,ss, MPC with rate regularisation. In contrast tOX cs
N = Oco-

quadratic MPC, non-differentiability of th&-norm penalty
prevents the computation of a closed form solution for th€roof. The proof relies on the direct method in [16], [17].
unconstrained problem. The optimal cost functionl/J, is a positive definite function

(10) has the same form as (1). Constraints are in (5)H



of the state. Moreover, it is radially unbounded. Givenin eq.(31),I'y and g represent the state constraints, as well

at time k, the optimal sequence*u= {uo,...,un}, the asW andw provide input constraints. These variables are
sequencell = {u1,...,un, K}, is also admissible at time all in standard form, as in [11]. Finallyp provides thel-
k+ 1. Hence norm slack constraints. Because of this slack constréimts,

S . Y LTI models the/,s;, MPC is expected to be a piecewise

Vi (") < Vi(z,0) = Vy(2) - l(z, Kn(2)) (24)  affine state-feedback controller, even in the absence tf sta
—F(zy) +ls(zn, Kyp) + F(2h). or input constraints.

To impose an attainable terminal constraing, € X¢, the

Since P, solves a matrix Lyapunov equatiof{x) satisfies following steps are performed offline

li(z, Kf)+F(zt)—F(x) =0, Vo € X;. HenceVz € Xy,
it follows that Algorithm 1. Compute:
1) An admissible polyhedron¥,, C O, [15],

Vi(a") = Vii(z) < ~l(e, Kn(a). (25 2) The level set,, in (22) outsideX.., by solving a set
Therefore, the optimal value functiot3, is a Lyapunov of QPs [13]. Choose < ¢, to determineXy,
function for the closed-loop systerdz € Xy. Hence, the ~ 3) A (non-invariant) polyhedral approximatiofty C Xy,
origin is asymptotically stable. Finally, sinégay,as such using Algorithm 2,
thata:||z||2 < ¢(z,u), Vo € Xy andF(z) < az||z|3, Vz € 4) The domain of attractioXy C Sy, as in [14].
Xy, it follows [17] that the origin is locally exponentially Since the terminal set is an ellipsoid defined by
stable, with domain of attractioNy C S. [ ] xT(%POO)x < 1, its polyhedral approximation can be de-

) ) termined using elliptical geometry and intersection.
Corollary I.4. (Zone-regulation) If the terminal controller

is not applied, the system state is ultimately bounded by Algorithm 2:
1) Compute the eigenvalues and eigenvectors;, for

By,a- ={z | Vy(z) < d*}, (26) i=1,...,n of the matrix€ = cPZ'.
with 2) For each paif \;, A; } with ¢ # j, compute:
d* = mind a) The semi-axes length, the focus and semi-latus

StiBna 2 {Azx | z € Xy} @7) rectum,a = y/max{\;, \;}, b = /min{\;, \; },
. f=+a2—-0b21="0b%/a,
B. Implementation b) The n-dimensional cone,P;;, defined by
A 1-norm cost can be represented by introducing appropri- (+)vl'z < f, together with(+)v] = < 1.
ate slack constraints, and penalising the new slack vasabl 3) ComputeX; =, Pij.
or. Problem (4-5) can be now formulated as a setNof i

. Sl , In Algorithm 2, v, is the eigenvector associated with
constrained semi-definite QPs, for example in the condens

Eqdax{)\i, A, }, the direction of the major semi-axis. Similarly,

formulation vy IS for the minor semi-axis.
1 - - . . . .
X: = argmin = XPHX), + XIG (28) Or_1I|_ne, TN € Xy IS |mposeo!, for ease of computatlon,
X 2 providing xx € X;. The terminal controllerk; is then
where: applied iff F(zx) < ¢, ensuring positive invariance fo£ ;.

As an example, the sets computed for a second order LTI
X = u H = 70 G = G system are shown in Figure 1.
ok |’ 0 0}’ A S(me&g

20
where S is a selection matrices, consisting of an identity

matrix and zero block, in order to distinguish which input 157
are regularised and which are not. The problem is subject to 10
the following constraints, similarly as in [11],

QX <b (30)

g o
r,0 o -5
Q= W 0 , (31) 100
11
_15,
—T'WX,—g 20
b= —w , (32) -20 -10 0 10 20
T
O@EmNx1)
Fig. 1. Sets for a2nd order LTI system, using Matlab Invariant set
TN —ImN toolbox and Multi-parametric toolboxX (yellow), X (red), X (green),
II = —ILoN  —Inan . (33) Xy (ellipse interior), X'y (black).

0 —ImN



I1l. SHIP ROLL DAMPING For comparison, the model and controller in [18] will be
onsidered as a benchmark. In particular, a quadratic MPC

Roll motion in ships is a major cause of problems td’ . , )
plemented, as in [18], with matrices of the form:

passengers and human operators. The issue concernes okt
marine activities, from luxury yachting to offshore opera- ) = diag{0, 0, qr, g4, ¢y}, R =diag{qr, qr, qr}-
tions. The reduction of vessel roll, or roll damping, has (34)
been widely addressed in the past, via several techniqu&spnstraints are clearly described in [18].
[18]. Recent results have shown the use of combined rudderQur ¢,,,,, MPC will have the same) matrix as for the
and fins control to provide several benefits, including lesgbove “constrained LQR”, while the regularisation paranet
interference with the vessel course keeping. In the laétsec will be tuned by trial and improvement. Figure 2 shows
the system to be controlled can be considered tdullg- the projection on the roll and yaw coordinates of several
actuated. approximations ot.,, computed with the Matlab Invariant-
Whenever fins come into play, constraints on the effeget toolbox and Multi-parametric toolbox.
tive angle of attack are vital, in order to avoid non-linear
fluid separation phenomena, a major cause of performan 3
degradation and instability. The necessity of handling-cor
straints motivated the recent development of MPC-base
fin stabilisers [19]. Unfortunately, quadratic MPC cause
all actuators to be in use for most of the time, wherea
it would be preferable for only fins to act to reduce roll 1
most of the time, with the rudder applying additional torque
only when the fins have reached the limit of their authority
Less roll-induced rudder action is recommendable, in ord
to have less yaw interference, the main motivation for th 1

Yaw Angle
o

0.

presence of fins, which are expensive devices. This mo$ivat o2
our consideration for the problem of roll damping, as ¢ B o;,
‘demonstrator’ for¢,,, MPC. (Of course the rudder should 2 [ 1050
also act unimpeded in its primary role of steering the ship [ [T
A. Vessel dynamics and MPC design B -0.2 0 0.2 0.4

Roll Angle
Vessel dynamics are formulated according to marine craft
maneuvring theory [20]. The equations of motion includeig. 2. Approximations 00, using Matlab Invariant set toolbox and
rigid-body dynamics and linear hydrodynamic effects, give Multi-parametric toolbox (roll-yaw projection).
by the so-called hydrodynamic derivatives, generally obg gmylations
tained by system identification [19]. Waves are treated as a . . . .
, . o Results are shown, first for an input-magnitude-penalised
Gaussian output disturbance whose distribution is based on

. : mulation, then for the case of input rate penalisatidme T
a power spectrum, the choice of which depends on several . . ) .
. . horizon length is chosen to be d§ steps, with a sampling
factors [20]. In this paper, a JONSWAP spectrum [20] is . ) ! N
e{lod of0.1 sec. The terminal controller is never applied, in

chosen, as an example. The vessel moves in 6 de rees’§ . : :
P g .a zone-regulation fashion. The chosen target for the system

freedom (DOF), and its motion is generally expressed I?) in Figure 2. Performances are evaluated by computing
H 100, .
standard SNAME coordinates and reference fraies), the mean and standard deviation (STD) of the roll angle, and

[18], summarised in Table I. Full state measurement '5f the low-frequency yaw, obtained by a low-pass filter with

assumed. .
a cut-off frequency ofl.5 wy, wherewy is the mean wave
Variable name Description frequency. Thel;-norm of the overall input signal is also
n, e d North, east, down positions;-frame computed. Simulations are performed for an irregular sea,
¢, 0, ¥ Roll, pitch, yaw (Euler) angles; — b namely, a Sea State 5 (SS5) [18], and results are averaged
u, v, W Surge, sway, heave velocitiesframe . .
D, q, T Roll, pitch, yaw ratep-frame over 40 S|m_ulat|0ns.
v Vector of gen. velocities and ratesframe For the first casegs = 20, ¢, = 10, g4 = 100, gr = 20,
n Vector of positions and attitude;-frame gr = 10, for the quadratic MPC while, for thé,,,, MPC,
TABLE | q¢ = 20, ¢, = 10, ¢y = 100, gr = 2, gr = 1, for A = 0.9
SNAME COORDINATES and )\ = 1.8.

The controller is required to maintain a desired average Table Il shows that, for the dual modg,,, MPC, the
yaw angle, while reducing the roll variance, despite th&radeoff between control error statistics and mput amght
action of sea waves. For control design, a discrete-tinfédn be regulated by choosing an appropriat&his param-

LTI model is obtained from the original nonlinear systemeter, together with the quadratic input cost, can be tuned in
order to provide results which are close to the ones given

2SNAME stands for “Society of Naval Architects and Marine Ewgrs”. by quadratic MPC. To challenge the new approach, fthe



TABLE I Rudder rate [T, = 0.1 sec]
OSSO0 ST OO0 OOt
COMPARISON IN SEA STATES, FOR VARIOUSA

A | Roll std | Yaw std | Roll mean | Yaw mean| E(]Jull1) -2 Starboard fin rate [T, = 0.1 seq]
- 0.2396 | 0.6367 -0.0117 0.0167 6999.7
0.9 | 0.1625 | 0.4587 -0.0023 0.1513 7231.8
1.8 | 0.2108 | 0.6621 0.0045 0.1306 4386.7

matrix for quadratic MPC (indicated by\"= —" in Table Il) -
is chosen to b&0 times the one used if),;s, MPC. Despite )
this, the results obtained with,.,, MPC are better than the
ones achieved with quadratic MPC, in terms of the tradeoiz
between error standard deviation and input magnitude. No,
that benefits on thé;-norm of the input signals, expected ,
in the nominal LTI case, are still achieved for the nonlineay. . i ‘ . i ‘ |
Stochastlc SyStem 110 120 130 140Tium [5(1(4150 160 170 180
Figures 3, 4 show the performances and control signals N ] .
obtained with quadratic MPC (dashed blue) and byilg,  quadratic vine (aashecy - e o Ao MPC (SoldA = 1.5,
MPC (continous black). As expected, in contrast to quadrati
MPC, the/,ss, MPC is capable of holding the rudder angle
exactly at zero for most of the time. Similarly for the fins - . ;
— namely, the solution is ‘sparse in time’ as well as ‘sparse - %?222t7 \E)é\zllvoztl R_%.O'gzei‘” Y%v,vog]sezan Ez(%egllcl)%
in actuators’. On the other hand, quadratic MPC seems t675 T 02576 T 0.4512 T -0.0074 0.0783 19603
generate rather unrealistic commands, with magnitudesrlow [ 25 | 0.2552 | 0.4437 | -0.0261 0.1222 1.54e+03
than1 degree. These are not likely to be achievable by ether

the rudder or the fin machinery. ___Inthis case, it is interesting to see how performances ahang
Wave filters are generally used to reduce control signalgy, gifferent As: in particular, a smaller value will provide

sensitivity to high frequency yaw motion, and to reducgng requction of the mean values, while a bigger one reduces

rudder’s activity [18]. From Figure 4, it can be noticed howhe error variances. Figures 5, 6 show the performances and

lasso MPC implements arinput thresholding, without the  ¢,niro) signals obtained with quadratic MPC (dashed blue)
use of such wave filters. The thresholding resembles what,4 by the/..., MPC (continuous black).

obtained in LASSO-based feature detection [21], [22].

5

TABLE Il
COMPARISON IN SEA STATES, FOR VARIOUSA (Au FORMULATION)

Roll angle

I I
180 200
Yaw rate

I I I I I |
140 160 180 200 220 240 260 300

Fig. 5. Comparison4u) in sea state 5: Roll and yaw angles and rates,

Fig. 3. Comparison in sea state 5: Roll and yaw angles and,rates, lasso MPC (solid) A = 1.5, quadratic MPC (dashed).

MPC (solid) A = 1.8, quadratic MPC (dashed). . . . . . .
(solid) a ( ) Simulations seem to confirm what is experienced in com-

Results are now shown for an input rate penalty, with= pressed sensing, where LASSO can outperform quadratic
20, ¢, = 10, gy = 100, g = 20, qr = 10, for the quadratic regularisation, in terms of accuracy of reconstructiord an
MPC and,gs = 20, ¢, = 10, gy = 100, gg = 2, gr = 1, OF robustness to noise [10].
the 04550 MPC with A = 2.5 and \ = 5.

From Table Ill, it can be seen that, for= 1.5, perfor- IV. CONCLUSIONS
mances can be similar to the ones obtained with a quadraticin this paper, a novel stabilising dual-mode MPC has been
MPC (this time with the same quadratic cost), in addictiofiormulated, and referred to dsss, MPC. The approach is
to a significant reduction (approx0%) of the ¢;-norm of based on sum-of-norms regularisation, and is inspired by
the input variations, that is, with more constant input algn the successful development of LASSO regression in signal



Rudder rate [T, = 0.1 sec]

[

(31

(4
(5]

(6]

(7]
(8]

El

2]?{0 130 13L0 11‘10 [ 1ZI.EL:O lgO 1‘70 léO
Time [sec
[10]
Fig. 6. Comparison in sea state A4): Actuators.f,sso MPC (solid)
A = 1.5, quadratic MPC (dashed). [11]

processing. Nominal stability has been proven using st:mdaPZ]
MPC arguments, and an algorithm has been proposed to
implement the dual-mode controller. The problem of vessél3]
course keeping and roll reduction with rudder and fins has
been addressed, to demonstrate the capabilities of the npwj
controller. A quadratic MPC has been chosen for comparison.
Simulations have shown that,ss, MPC can provide
similar control performance to that achieved by quadratiid5]
MPC, while providing a very different input behaviour.
In particular, penalising the input magnitude causes theg)
actuators to be set at zero for most of the time, and used only
when necessary. Small magnitudes seem not to be aIIOWﬁg]
for the input commands. Similarly, penalising the inputdim
differences causes the actuators to have a more constan{18t
piecewise-smooth behaviour. [19]
lysso MPC seems to be particularly suitable for fully
or over-actuated systems, where it is desirable to use the
least number of actuators per task, namely to have a sm
control allocation policy. Reduced actuators usage could
provide several benefits, such as fuel efficiency and ineckas(21]
life-time. Potentially, it could be possible to reduce som 2]
feedback-induced negative effects, such as excitatiomef u
modelled dynamics, or sensitivity to noise, in a way which
differs from existing MPC approaches. Finally, the pos#ibi
of thresholding the input signals, although still conjeatu
is of significant interest. Further investigation is needed
to understand the potential and the limits of sum-of-norms
regularisation in the field of feedback control systems.
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