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Abstract— Model predictive control allows systematic han-
dling of physical and operational constraints through the use of
constrained optimisation. It has also been shown to successfully
exploit plant redundancy to maintain a level of control in
scenarios when faults are present. Unfortunately, the computa-
tional complexity of each individual iteration of the algorithm
to solve the optimisation problem scales cubically with the
number of plant inputs, so the computational demands are
high for large MIMO plants. Multiplexed MPC only calculates
changes in a subset of the plant inputs at each sampling instant,
thus reducing the complexity of the optimisation. This paper
demonstrates the application of multiplexed model predictive
control to a large transport airliner in a nominal and a
contingency scenario. The performance is compared to that
obtained with a conventional synchronous model predictive
controller, designed using an equivalent cost function.

I. INTRODUCTION

Multiplexed model predictive control (MMPC) was pro-
posed in [1], [2] as a method for designing a constrained
controller with reduced computational complexity in compari-
son to a conventional synchronous model predictive controller
(SMPC) [3], [4], [5]. Instead of optimising over all inputs
at each time step, the controller optimises over channels,
each containing a subset of the inputs, in a periodic cycle.
The most recently calculated open-loop input trajectory is
assumed for each channel not manipulated at the current time
step.

By reducing the number of decision variables, the opti-
misation problem is simplified, and therefore, the control
update rate can be made higher. As highlighted in [1], [2],
[6], [7], doing “something sensible” sooner may very well be
preferable to doing the “optimal” thing later, and redundancy
between actuators and coupling between states in the plant
dynamics can be exploited.

Whilst it is well known that the structure of the MPC
optimisation problem [8], [9], [10] can be exploited so that
the computational complexity of each iteration of the QP
(quadratic programming) solver is linear in terms of the
prediction horizon, in the absence of exploitation of any
problem-specific structure, the complexity remains cubic
in terms of the number of control inputs. Even under the
(conservative) assumptions that the number of iterations
needed to solve each constrained QP remains constant, and
that the sampling time will be divided by the number of
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channels (so all channels may be “serviced” by the MMPC
in the same time allowed for a single evaluation of SMPC),
the cubic speed-up of each individual quadratic program (QP)
is traded for only a linear reduction in the time available for
computation.

In [11], [12], using a simulator [13] derived from data
obtained from the ill-fated El-Al Flight 1862 [14], [15], [12],
it was demonstrated that, under the assumption of availability
of the linearised model of the damaged aircraft, and a “fly-
by-wire” approach (in that each control surface was treated
as individually manipulable), a predictive controller would
be capable of stably carrying out commanded manœuvres.
However, computational requirements were not considered.

Neglecting the lateral x and y positions and the effects of
flaps and landing gear, which are very nonlinear, 14 states
and 27 control inputs are considered. Because input rate
constraints are specified [12], some notion of the control
surface position must also be included in the state vector,
increasing the effective number of states to 41. It is therefore
unsurprising that, even by present standards, solving the
relevant QP for a modest prediction horizon (e.g. N = 4), and
a sampling period of 0.11 s is not trivial.

This paper demonstrates that the conclusions of [11] hold
with application of MMPC, and moreover, that in doing so,
the computational load is substantially reduced with minimal
loss of closed-loop performance.

II. MODEL TRIM AND LINEARISATION

The simulation model used here is that of a modified
Boeing 747-200, with each control surface individually
movable, as used by GARTEUR AG-16 [12], [16]. In the
nominal scenario, it is assumed that all control surfaces are
fully functioning. The contingency scenario corresponds to the
static failure configuration of [16] in which severe damage has
occurred to the right-hand wing, including separation of two
engines. The mass and inertias of the plant are therefore rather
different to those in the nominal scenario, and a substantial
number of the control surfaces are inoperative or have reduced
effect.

The trim-points used for this experiment are for straight-
and-level flight at a true airspeed of 133.8 ms−1, and a height
of 600 m, obtained using the trim algorithm from [16] for
both scenarios. Linearisation is performed by averaging the
results from Simulink’s linmodv5 command with positive
and negative deflections about the trim point. For the rest
of this paper, unless otherwise stated, for a given time t,
plant states x(t) and inputs, u(t) are expressed in terms of
deviations from the trim point.



III. CONTROL OBJECTIVES AND ASSUMPTIONS

The objective of the controller in this scenario is threefold.
Firstly, the controller must maintain nominal stability of the
aircraft at the desired operating point. Secondly, the controller
must be able to reject unmeasured disturbances caused by
wind gusts and turbulence. Thirdly, the controller must track
changes in operating point.

The linearisations of both the nominal and contingency
models for a straight-and-level flight trajectory both contain
unstable modes, so it is evident that the tracking error due
to unmeasured disturbances will grow with catastrophic
effects, unless actively corrected. A conventional output-
feedback controller might operate in continuous time (e.g.
[17], [16]), and thus the design will be limited primarily by
the bandwidth of the control actuators, and the quality of the
data from instrumentation. On the other hand, MPC operates
in discrete-time, and due to the relatively heavy computational
requirements introduces a delay between output measurement
and control realisation. Therefore, the rejection of unmodelled
disturbances (wind, turbulence and plant-model mismatch due
to nonlinearities) is also limited by the sampling rate, which
in turn is limited by the time in which the control action can
be calculated.

The complexity of a conventional MPC controller may
be reduced in many ways. For example, groups of similar
actuators can be “ganged” together to move in parallel as
would be the case in a classical design. Alternatively, some
constraints can be ignored, instead favouring a careful choice
of cost weightings to ensure that these are not likely to be
encountered, possibly at the expense of nominal performance.
But ultimately, by removing these degrees of freedom, and
reducing the granularity of the controller specification, the
flexibility afforded by MPC is gradually eroded.

The reason for examining multiplexed MPC (MMPC) for
this application is clear. There are many control inputs, and
performance can be improved by faster sampling. MMPC
allows the sampling rate to be increased, whilst retaining the
ability to optimise the trajectory of each control surface
individually, accounting for rate constraints, saturations
and (although not considered in this study) flight-envelope
requirements.

IV. OBSERVER, DISCRETISATION AND TARGET
CALCULATOR

The decision variable in the optimisation is parameterised
in terms of ∆u(k) = u(kTs)−u((k−1)Ts), allowing actuator
rate constraints to be specified. A penalty on ∆u(k) instead of
u(kTs) and a disturbance estimate [18] is often used to obtain
steady-state offset free control. The solution to the discrete-
time algebraic Riccati equation (DARE), corresponding to
infinite-horizon unconstrained LQR cost-to-go, is often used
as the terminal state weighting matrix for synchronous MPC
[19]. This choice of terminal cost is appropriate for the current
study, because it means that a change in the constrained
control horizon does not also require a complete re-tuning
of the controller. An equivalent terminal weighting matrix,
obtained by solving the discrete-time periodic Riccati equation

(DPRE) is used for MMPC [1]. In this scenario there is
redundancy between some of the inputs, and therefore, a
solution to the DARE or DPRE does not exist unless u(kTs)
also has a non-zero weighting in the cost function. The
inclusion of this cost means that a disturbance observer and
a target calculator are required for offset-free tracking in the
presence of persistent disturbances.

Unusually, height, heading angle and true airspeed are
considered directly here as the tracked outputs, to permit a
single controller design. The salient results presented here
would apply equally to a more conventional multi-layer design
with roll, pitch and yaw as the controlled variables of an
inner loop.

A. Observer

A discrete-time Kalman filter-based observer is specified in
continuous-time and implemented in discrete time using the
MATLAB kalmd command. For all scenarios, the observer
runs with sampling period Tobs = 0.005 s, chosen to be faster
than the sampling period Ts of any of the predictive controller
designs presented subsequently. It is assumed that the 14
plant states can be measured, but an additional 10 integrating
disturbance states are specified, acting as state disturbances
on roll, pitch and yaw and their first derivatives, and the true
airspeed, angle of attack, sideslip angle and height. Thus,
the Kalman filter estimates the state

[
x(t)T ξ (t)T ]T of the

augmented model

Gaug(s) =

 A Bξ B
010×14 010×10 010×27

C 014×10 014×27

 (1)

where 0n×m denotes a matrix of zeros of size n by m, x(t) is
the plant state and ξ (t) is the disturbance state. A further open-
loop propagation is made at the sampling rate of the MPC
controller, Ts by one time step, based on the previous control
input. This allows a full time step at the MPC controller’s
sampling rate in which to perform calculation in real-time.

B. Discretisation

For a given controller sampling time Ts, using the usual
zero-order-hold discretisation (e.g. [20]), let:

Φ = eATs , Γ=
∫ Ts

0
eA(Ts−τ)Bdτ, and Γξ =

∫ Ts

0
eA(Ts−τ)Bξ dτ.

C. Target calculator

The reference signal is assumed to be piecewise constant,

yr(t) = yr(k), t ∈ [kTs, (k+1)Ts), k ∈ Z+ (2)

where yr(k) =
[
VTAS,r(k) ψr(k) hr(k)

]T consists of a col-
umn vector comprising the target true airspeed, yaw angle
and altitude. The target calculator can then be specified in
the usual manner (e.g. [21], [22], [23]).

Algorithm 1 (Target calculator):

min
x∞(k),u∞(k)

[
x∞(k)T u∞(k)T ]Qd

[
x∞(k)
u∞(k)

]
(3a)



subject to [
Φ− I Γ

Hr 0

][
x∞(k)
u∞(k)

]
=

[
−Γξ ξ̂ (k)

yr(k)

]
(3b)

and
umin ≤ u∞ ≤ umax. (3c)

The matrix Hr is given by

Hr =

− êT
VTAS

−
− êT

ψ −
− êT

h −

 (3d)

where êΩ is the ith column of the 14× 14 identity matrix,
where i is the numerical index of the state Ω ∈ {VTAS,ψ,h}.
Matrix Qd > 0 is the weighting matrix used in the MPC
controller design presented in the following section. Within
the scope of this study, it is assumed that there is always
a feasible solution satisfying (3b) and (3c) however these
constraints can be “softened” to allow a best-effort solution
when no feasible solution exists.

V. BASELINE SYNCHRONOUS MPC (SMPC) DESIGN

A synchronous MPC design is implemented as a baseline
for comparison. In order to compare the performance of
MPC controllers operating at different sampling rates, the
cost function is specified in continuous time. This is slightly
complicated by the desire to include ∆u in the discrete-time
cost function, as this is discontinuous. Define

x̃(t) =
[

x(t)
u(t−Ts)

]
(4)

and
ẽ(t) =

[
x(t)

u(t−Ts)

]
−
[

x∞(t)
u∞(t)

]
. (5)

It should be noted that u(t) is piecewise constant. The cost
function can be specified in two parts. In continuous time, for
Q > 0 the cost of being at state x(t) and applying constant
input u(k) for period Ts

`c(k) =
∫ (k+1)Ts

kTs

ẽ(τ)T Qẽ(τ)dτ (6)

subject to

˙̃x(τ) =

Ã︷ ︸︸ ︷[
A B
0 0

]
x̃(τ)+

[
B

δ (τ− (k+1)Ts)I

]
∆u(k) (7)

where δ ( ·) denotes the Dirac delta function. The discrete-time
equivalent cost of the continuous part of the cost function can
be found by calculating a matrix exponential [24] to provide
discrete-time weighting matrices for the stage cost function,
assuming zero-order hold on the inputs:

`d(k) =
[

ẽ(kTs)
∆u(k)

]T [Qd Nd
NT

d Rd

][
ẽ(kTs)
∆u(k)

]
. (8)

This stage cost does not sufficiently capture the desire to
penalise moves in the control input between time steps. The
purpose of the penalty on ∆u in the discrete-time cost function

is to limit the rate of change of the control surface. To capture
this, let R∆ = Rd +R∆0/T 2

s , where the matrix R∆0 > 0 is a
design parameter. The synchronous MPC problem is shown in
Algorithm 2, using the conditional notation x̃((i+k)Ts|iTs) to
denote a prediction of the augmented state x̃ at time (i+k)Ts
given the measurements at time iTs. The “Q” norm ‖x‖2

Q is
used as a short-hand notation for xT Qx with a compatibly
sized matrix Q and column vector x.

Algorithm 2 (Synchronous MPC): Minimise:

Jd(i) = ‖ẽ((i+N)Ts|iTs)‖2
Pd

+
N−1

∑
k=0

(
‖ẽ((i+ k)Ts|iTs)‖2

Qd

+ ‖∆u(k|i)‖2
R∆

+2ẽ((i+ k)Ts|iTs)
T Nd∆u(k|i)

)
subject to

x̃(iTs|iTs) = x̃(iTs) (from observer)

ξ̂ (i|i) = ξ̂ (i) (from observer)

ξ̂ (i+ k+1|i) = ξ̂ (i+ k|i)

x̃((i+ k+1)Ts|iTs) =

[
Φ Γ

0 I

]
x̃((i+ k)Ts|iTs)

+

[
Γξ

0

]
ξ̂ ((i+ k)|i)+

[
Γ

I

]
∆u(i+ k|i)

and
∆umin ≤ ∆u((i+ k)|i)≤ ∆umax

umin ≤ u((i+ k)Ts|iTs)≤ umax.

The matrix Pd is the solution to the discrete-time algebraic
Riccati equation (DARE) with cross-terms, associated with
the above stage costs and prediction models (e.g. [25]).

VI. MULTIPLEXED MPC (MMPC) IMPLEMENTATION

The same target calculator and observer designs as used
for the synchronous MPC (SMPC) case are used for the
multiplexed MPC implementation. However, a different
optimisation problem is posed [1], [2], [6], [7]. The inputs
are grouped into channels. At each time step, the optimisation
may only manipulate the inputs in the active channel, and
the channels become active in a repeating sequence (see e.g.
[7] for a graphical explanation). For this application, the 27
inputs are grouped into 7 channels, 6 of which have 4 inputs
and 1 of which has 3 inputs (Table I). The channels are
defined so that symmetric pairs of similar control surfaces
are grouped together. Letting M be the number of channels,
and defining σ(i) = mod (i− 1,M) + 1, the optimisation
problem is summarised in Algorithm 3.

Algorithm 3 (Multiplexed MPC with cross-terms):
Minimise

Jd(i) = ‖ẽ((i+M(N−1)+1)Ts|iTs)‖2
Pσ(i+M(N−1)+1)

+
M(N−1)

∑
k=0

(
‖ẽ((i+ k)Ts|iTs)‖2

Qd
+‖∆u((i+ k)|i)‖2

R∆,σ(i+k)

+ẽ((i+ k)Ts|iTs)
T Nd,σ(i+k)∆u((i+ k)|i)

)



TABLE I
MMPC CHANNEL ALLOCATION

Channel Inputsa

1 Stabiliser Null Up. Rudder Lo. Rudder
2 Engine 1 Engine 2 Engine 3 Engine 4
3 R. I/B Ail. L. I/B Ail. R. O/B Ail. L. I/B Ail.
4 Sp. 1 Sp. 12 Sp. 2 Sp. 11
5 Sp. 3 Sp. 10 Sp. 4 Sp. 9
6 Sp. 5 Sp. 8 Sp. 6 Sp. 7
7 R. I/B Elev. L. I/B Elev. R. O/B Elev. L. O/B Elev.

aKey: R. Right, L. Left, Up. Upper, Lo. Lower, I/B inboard, O/B outboard,
Ail. aileron, Elev. elevator, Sp. spoiler panel

subject to

x̃(iTs|iTs) = x̃(iTs) (from observer)

ξ̂ (i|i) = ξ̂ (i) (from observer)

ξ̂ (i+ k+1|i) = ξ̂ (i+ k|i)
x̃((i+ k+1)Ts|iTs) =

[
Φ Γ

0 I

]
x̃((i+ k)Ts|iTs)

+

[
Φξ

0

]
ξ̂ ((i+ k)|i)+Γσ(i+k)∆u(i+ k|i)

with

∆u(i+ k|i) = ∆u(i+ k|i−1) if σ(i+ k) 6= σ(i)

or, when σ(i+ k) = σ(i):

∆umin,σ(i+k) ≤ ∆u((i+ k)|i)≤ ∆umax,σ(i+k)

umin,σ(i+k) ≤ Hσ(i+k)u((i+ k)Ts|iTs)≤ umax,σ(i+k).

The matrices Γσ(i+k) contain the N columns of
[
ΓT I

]T
corresponding to the inputs in channel σ(i + k), and the
matrix Hσ(i+k) contains the rows of the nu×nu identity matrix
corresponding to the inputs in channel σ(i+ k), where nu is
the total number of plant inputs.

A. Discrete-time periodic Riccati equation (DPRE) with cross-
terms

Since the discrete-equivalent cost of the continuous-time
cost function is being used to allow direct comparison with the
synchronous case, the solution to the discrete-time periodic
Riccati equation with cross terms should be used as the
terminal cost, or “cost-to-go”:

Pσ(i) = Qd + Φ̃
T Pσ(i+1)Φ̃

−
(
Φ̃

T Pσ(i+1)Γ̃σ(i)+Nσ(i)
)(

Γ̃
T
σ(i)Pσ(i+1)Γ̃σ(i)+Rσ(i)

)−1

×
(

Γ̃
T
σ(i)Pσ(i+1)Φ̃+NT

σ(i)

)
. (9)

The solution can be found by performing a loop-shifting
transformation [26] to obtain matrices

Φσ(i) = Φ̃− Γ̃σ(i)R
−1
σ(i)N

T
σ(i) (10a)

Γσ(i) = Γ̃σ(i) (10b)

Qσ(i) = Qd−Nσ(i)R
−1
σ(i)N

T
σ(i) (10c)

Rσ(i) = Rσ(i) (10d)

Nσ(i) = 0 (10e)

and then solving the standard DPRE for the periodic set of
matrices (Φσ(i),Γσ(i),Qσ(i),Rσ(i)) using the method proposed
in [27].

B. QP formulation

Since the state vector is large in comparison to the
prediction horizon, a dense QP formulation (e.g. [3]) is used.
This is solved using an implementation of the dual active-set
algorithm of [28] in Embedded MATLAB, so as to integrate
easily with the plant model in Simulink.

VII. PERFORMANCE COMPARISONS

A. Trajectory Tracking (Qualitative Comparison)

Figure 1 shows the tracking of a trajectory that is piecewise
continuous in its first derivatives, consisting of a 90◦ change
in yaw angle, a 200 m descent and a 10 ms−1 reduction in
true air speed. For this test, N = 4 for the MMPC and the
SMPC (in real terms, this means that the MMPC covers
M(N−1)+1 = 22 time steps). For the MMPC a sampling
time of Ts = 0.02 s is chosen, and for the SMPC, Ts = 0.11 s
is chosen so that the controllers have equal durations of
prediction horizons.
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Fig. 1. Comparison of trajectories using SMPC and MMPC for nominal
and contingency scenarios (actual state values)

For both the nominal and contingency scenarios, the
MMPC is equally as capable as the SMPC of performing the
manœuvres stably, despite presence of wind and turbulence.
Whilst the behaviours of the pitch angle are different in the
nominal and contingency cases, there is almost no difference
between SMPC and MMPC in the two cases. The timing data
obtained on a 2.8 GHz Mac Pro running MATLAB R2011a
under Scientific Linux 6.0 in VirtualBox 4.0.12 using a single
processor core is shown in Table II. The mean running time



for the QP solver is taken from the Simulink profiler tool.
This time is then scaled by the ratio of the maximum number
of QP solver iterations per problem to the mean number
of iterations to obtain an estimate for the maximum time
needed, and then this is presented as a percentage of the
sampling time. It should be noted that although the SMPC
implementation comfortably fits within the defined sampling
period on the desktop workstation, an embedded application
would not be afforded so powerful a processor.

TABLE II
TIMING DATA COMPARISON OF SMPC AND MMPC (PER QP)

MPC Type SMPC MMPC SMPC MMPC
Scenario Nominal Nominal Contingency Contingency
Ts 0.11 s 0.02 s 0.11 s 0.02 s
Mean #iter/QP 16.02 2.71 18.48 3.26
Max #iter/QP 38 17 45 13
Mean Tsol (ms) 4.15 0.06 7.13 0.03
Max Tsol (ms) 9.84 0.36 17.36 0.13

(As % of Ts) 8.94% 1.81% 15.78% 0.66%

B. Straight and Level Flight Regulation (Quantitative Com-
parison)

To compare the rejection of disturbances quantitatively,
the continuous-time integral of the tracking error, weighted
by the continuous-time LQR cost weighting matrix Q used
in equation (6) is considered for a Tend = 60 s period of
straight-and-level flight in presence of wind and turbulence∫ Tend

0
x(t)T Qx(t)dt. (11)

The results using this performance metric are presented in
Table III and Table IV for the nominal scenario and the
contingency scenario respectively (letting Thor be the length
of the prediction horizon in seconds).

In the nominal scenario, it is clear that for SMPC, reducing
the sampling period is the best way to improve disturbance
rejection, and that the effects of an increased prediction
horizon are negligible. In comparison, for this example,
MMPC operating at Ts = 0.01 s gives a performance metric
equivalent to SMPC at Ts = 0.02 s. This is despite, for this
configuration, seven sampling instants being required for all
channels to be serviced. A similar equivalence can be seen
between SMPC with Ts = 0.08 s and MMPC with Ts = 0.04 s.
This suggests that MMPC is exploiting the plant redundancy.

For the contingency scenario, it appears that lengthening
the prediction horizon is the most effective way of reducing
the tracking error. However, as the prediction horizon becomes
longer, the computation time becomes prohibitive (for N = 29
and Ts = 0.01 s the simulation did not finish within 8 hours,
although it can be argued that using a sparse MPC formulation
[8], [10] might be considered more appropriate for this length
of prediction horizon).

C. Straight and Level Flight Regulation (Numerical Perfor-
mance)

Tables V and VI show the maximum number of QP
iterations of the active set QP solver over the 60 s. In addition

TABLE III
NOMINAL SCENARIO REGULATION PERFORMANCE OVER 60 s

(a) SMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.04 0.08 0.07 0.14 0.28
8 8Ts 0.350 0.370 0.411 0.496 0.475 0.621 0.881

15 15Ts 0.349 0.369 0.410 0.497 0.475 0.622 0.880
22 22Ts 0.348 0.368 0.410 0.496 0.475 0.622 0.880
29 29Ts – – 0.409 0.496 0.475 0.622 0.880

(b) MMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.03 0.04 0.05
2 8Ts 0.368 0.405 0.444 0.481 0.525
3 15Ts 0.370 0.410 0.454 0.496 0.545
4 22Ts 0.369 0.409 0.453 0.493 0.541
5 29Ts 0.369 0.408 0.451 0.491 0.540
6 36Ts 0.368 0.408 0.450 0.490 0.539
7 43Ts 0.368 0.407 0.449 0.489 0.539

TABLE IV
CONTINGENCY SCENARIO REGULATION PERFORMANCE OVER 60 s

(a) SMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.04 0.08 0.07 0.14 0.28
8 8Ts 57.72 55.37 51.63 46.83 47.72 45.35 57.97

15 15Ts 53.72 48.56 41.38 36.02 36.57 40.02 57.42
22 22Ts 50.38 43.23 35.33 33.58 32.92 40.07 58.03
29 29Ts – 38.95 31.93 33.67 32.62 39.99 57.70

(b) MMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.03 0.04 0.05
2 8Ts 56.32 52.50 49.26 46.83 45.05
3 15Ts 52.72 46.62 42.16 39.47 38.21
4 22Ts 49.45 41.84 37.29 35.26 34.21
5 29Ts 46.51 38.08 34.02 32.74 32.48
6 36Ts 43.87 35.21 31.79 31.49 31.63
7 43Ts 41.50 33.06 30.19 30.76 31.38

to each QP iteration being simpler for the MMPC, it can
be seen that in this example, fewer iterations are required.
This is primarily because this particular MPC problem is
dominated by the input constraints, and therefore, each QP
in the MMPC problem has significantly fewer constraints
associated with it than the corresponding SMPC problem.

VIII. CONCLUSIONS

This paper has demonstrated the use of MMPC for a
large airliner. The MMPC formulation is extended to allow
cross-terms between inputs and states in the cost function,
thus allowing the discrete equivalent integral cost functions
of [24] to be used directly. The fault-tolerant properties of
MPC demonstrated in [11] are retained by the multiplexed
formulation, whilst computational complexity is significantly
reduced. For this example, not only are the QP iterations
simpler due to fewer decision variables at each sampling
instant, the reduced number of constraints (only the constraints
on input magnitudes and increments for the current channel
must be posed) means that the maximum number of iterations
seen over the course of a simulation is also greatly reduced.
It is further noted, that due to the redundancy in the plant,



TABLE V
NOMINAL SCENARIO MAXIMUM NUMBER OF QP ITERATIONS PER STEP

(a) SMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.04 0.08 0.07 0.14 0.28
8 8Ts 69 72 72 72 72 67 71

15 15Ts 137 136 130 127 133 147 119
22 22Ts 205 195 193 213 216 214 162
29 29Ts – – 270 286 299 250 211

(b) MMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.03 0.04 0.05
2 8Ts 9 9 9 9 9
3 15Ts 13 13 13 13 13
4 22Ts 17 17 17 17 17
5 29Ts 21 21 21 21 21
6 36Ts 25 25 25 25 25
7 43Ts 29 29 29 29 29

TABLE VI
CONTINGENCY SCENARIO MAXIMUM NUMBER OF QP ITERATIONS PER

STEP

(a) SMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.04 0.08 0.07 0.14 0.28
8 8Ts 103 99 96 93 96 87 83
15 15Ts 182 178 175 167 166 155 136
22 22Ts 264 255 253 237 240 218 207
29 29Ts – 336 349 291 305 296 268

(b) MMPC

N Thor
Sampling period Ts (s)

0.01 0.02 0.03 0.04 0.05
2 8Ts 5 5 5 5 5
3 15Ts 8 9 9 8 9
4 22Ts 11 13 13 12 13
5 29Ts 15 17 16 16 15
6 36Ts 19 21 20 20 18
7 43Ts 23 25 24 23 22

the sampling period when using MMPC need not be faster
by a factor of the number of channels M to obtain the same
tracking performance as with SMPC for a given integral cost
function.

A possibility for future work would be a multiplexed
approach to the target calculation problem, to match the
multiplexed control problem, and to compare the performance
of MMPC with SMPC with sparse QP formulations.
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