4™ EUROPEAN CONFERENCE FOR AEROSPACE SCIENCES (EUCASS)

Model Predictive Control application to spacecraft
rendezvous in Mars Sample Return scenario

M. Saponara*, V. Barrena**, A. Bemporad***, E. N. Hartley****  J. Macigjowski**** A. Richards*****,
A. Tramutola*, P. Trodden*****

* Thales Alenia Space Italia, Srada Antica di Collegno, 253 - 10146 Torino (Italy),
email: massimiliano.saponara@thal esal eniaspace.com
antonio.tramutola@thal esal eniaspace.com
** GMV., Isaac Newton, 11. 28760 PTM Tres Cantos. Madrid. Spain,
email: vbarrena@gmv.com
*** Department of Mechanical and Structural Engineering University of Trento, Italy,
email: bemporad@ing.unitn.it
**** Department of Engineering, University of Cambridge,
email: enh20@eng.cam.ac.uk
jmm@eng.cam.ac.uk
***x* Department of Aerospace Engineering, University of Bristol
email: Arthur.Richards@bristol.ac.uk
paul.trodden@ed.ac.uk

Abstract

Model Predictive Control (MPC) is an optimizatioaded control strategy that is considered extremely
attractive in the autonomous space rendezvous sosnalThe ORCSAT study addresses its
applicability in Mars Sample Return mission, indhglthe implementation of the developed solution
in a space representative avionic architectureesysWith respect to a classical control solution
(HARVD), MPC allows a significant performance imgement both in trajectory and in propellant
save. Furthermore, thanks to the on-line optimizgtit allows to identify improvements in other ase
(i.e.at mission definition level) that could not k&own a-priori.

1. Introduction

Within AURORA programme, the Mars Sample Return B Snmission is the main planned objective in the
international effort on the Solar System explomtilis main goal is to bring back to the Earth mgle of Martian
soil. A number of new technologies will be requir@dcarry out this pioneering mission and one @hnthis the
rendezvous and capture system, which will be ableetect, approach and capture the sample of Masii,
previously put in a predefined orbit by the Marcéist Vehicle (MAV).

Although autonomous docking is now a well estalelisktechnology, autonomous capture (with a poorbpeoative
target) is more delicate. The development of a @uie, Navigation and Control system (GNC) for rendes and
capture has been addressed in the ESA study namgédintegrity Autonomous RendezVous and Dockingtaan
system (HARVD). This study has been separated into parallel activities, one of them lead by GMV in
collaboration with Thales Alenia Space (TAS) Fraacel Italia. The developed solution shows thathwiassical
control techniques, it is possible to have an aatech rendezvous and capture control system witkplarened
operations able to fulfill the MSR capture requisats.

Starting from HARVD experience, a further study bagen defined, named On-line Reconfiguration Cor8ystem
and Avionics Architecture (ORCSAT). The objectivetbe study is to improve the HARVD GNC by means of
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optimization-based control strategies such as Mdeedictive Control (MPC). The work on this studyasm
supported by the European Space Agency under coiNm 22421.

MPC (e.g. [11], [19], [26]) is an advanced conttethnique which uses a prediction model and numleric
optimisation methods to obtain a sequence of comiputs that minimises a function of the contropiits and
predicted plant state trajectory over a given tinogizon, subject to constraints. At each samplingtant, the
optimisation performed based on new measuremeat datl the first control input of the sequencepigliad. The
remainder of the sequence is discarded and theegsos repeated at the next sampling instant ineeetling
horizon” manner. Whilst MPC has its origins in ttfeemical process industries [22], there is incrapsiterest in its
application to vehicle manceuvre problems ([4], [288]), including spacecraft trajectory contradbl([[7], [8], [16])
and attitude control ([14], [20], [32]]). Essentiglthe application of MPC builds upon the ideadal and time-
optimal trajectory planning by bringing the optiation onboard, providing a natural framework focreased
autonomy and reconfigurability, whilst accountiray physical and operational constraints such ageficontrol
authority, passive safety and collision avoidance.

The ORCSAT study considers also the developing dfladel Predictive Control Framework software tool
(MPCTOOL) for supporting the design, analysis amdusation of MPC based control systems as well fees t
development of embedded Model Predictive contrdib@rautonomous rendezvous control systems. Furtbes,
another key point of the ORCSAT study is the impdamation of the developed MPC control system ingpace
representative avionic architecture system.

The paper will briefly present the HARVD study. éftvards, it will concentrate on the MPCTOOL dediwip, the
MPC design and the Avionic architecture systemalm simulation results will be shown in comparnswith
HARVD ones.

2. The HARVD study

In the last years, the humber of studies considemmdezvous and docking/capture missions around taother
planets/asteroids has significantly increased. A®mrsequence, it is surely worth dedicating efforconsolidate
maturity of GNC technologies for such missionspiider to have on-board systems with a higher aglddmilevel of
autonomy, robustness and safety, with the finababje of decreasing costs and increasing the pitityaof
mission success. Following this tendency, a teaimbe GMV and including, among others, TAS, has tgwed
HARVD (High Integrity Autonomous Rendezvous & Doggi Control System), an ESA-funded activity
implementing a GNC/Autonomous Mission Managementi#Don-board software for rendezvous and
docking/capture scenarios around Mars, Earth aeriatly other planets ([1], [2] and [3]). HARVDabed on Radio
Frequency (RF), camera and LIDAR measurementsydiesl design, prototyping and verification at thdééerent
levels: algorithms design and verification in a kigidelity Functional Engineering Simulator, SW damstrator to
be verified in Real Time Avionics Test Benching abginamic Test Benching. Rendezvous and captureron a
elliptic orbit has been specially addressed, detnatisg the technical feasibility and the potenfiebpellant saving.
The HARVD step-wise development and verificatioprach is shown on Figure 1.
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Figure 1: HARVD “Step wise” development and vedfiion approach and GMV’s PLATFORM dynamic test benc

The Development, Verification and Validation (DV¥pproach in the HARVD activity relies on the useG®TS
software tools:
- Matlab/Simulink/Stateflow from Mathworks, includin@ssociated toolboxes, for design, analysis,
simulation and validation of system models and rtlgms
- TargetLink from dSPACE for automatic generationpobduction code (C code) straight from the above
graphical development environment
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- dSPACE simulator for real-time development/simalatenvironment
The development and integration of the High-Figekunctional Engineering Simulator have been sisfoég
completed, and an intensive test campaign has ¢seied out. Interesting results for different M&ample Return
scenarios have been obtained, demonstrating howstitise mission requirements on performances, aurton safety
and robustness have been fulfilled with high magiA special attention has been dedicated to ogericy
scenarios (including different on-board systemufa$ and collision risks detection and avoidant®)which the
results obtained are very encouraging for the dadeton of higher Technology Readiness Levels. MAV
circularization failures have been also taken atoount, resulting in a number of elliptic targebibrendezvous
scenarios for which HARVD has demonstrated to lig feady.
The development of RT test bench has been concladddhe acceptance RT test campaign has beensstidbe
completed. The RT test bench is based on a LEOKJHBR-PCI-XC2V @45MHz, and computational load masgi
of 32% have been achieved for the Worst Case Exectlitme (WCET).
Recently the tailoring of the GMV Dynamic Test Ben@®LATFORM, see Figure 1) has already started, thed
dynamic tests are foreseen to be executed in tkifeve months.

3. The MPCTOOL

MPCTOOL is a MATLAB/Simulink toolbox providing alihajor features for the design, analysis and sinauiadf
MPC controllers based on linear time-invariant (L@t linear time-varying (LTV) models, as well aw fautomatic
code-generation of embedded MPC controllers. MPCI@Otailored (although not limited) to the syntisesf
autonomous rendezvous control systems. The inclusfoLTV capability is a key enabler for rendezvpsmce
elliptical orbits and J2 effects introduce timeia#ion into the dynamics.

MPCTOOL extends the Model Predictive Control Toallimm The Mathworks, Inc. [34] to introduce nevafieres,
modifying existing MATLAB objects, adding new funats (MATLAB methods) based on them, introducingvne
objects and their methods, extending the C codé¢hefS-Function behind the basic LTI-MPC controlland
introducing new Simulink blocks coded in EmbeddeAT™AB (EML) for LTV-MPC. MPC controllers designed
for LTI systems can be converted to explicit for85] via the direct link between MPCTOOL and the Hgb
Toolbox for MATLAB [36]. Furthermore, a new Dualt8plex solver has been developed to manage optimizat
problems expressed as a Linear Programming (LR)lemo([37]). The new features introduced by MPCTO@L
top of the existing MPC Toolbox are the following:

The ability to set terminal weights and constraints TI-MPC (including infinite-horizon MPC);
Handle variable-horizon MPC problems in which tlegizon length is optimized on-line;
Handle quantized inputs in LTI-MPC problems;

Return the optimal sequence of MPC (both in MATLABripts and in Simulink), for example to check a
posteriori the enforcement of complex constraimtismodeled in the MPC optimization model;

Return the optimal cost of MPC, for comparing ahdasing the best action among a set of MPC coetgll
* Allow the specification of convex PWA stage cosisoh as absolute values) on inputs and outputs;
® Handle arbitrary linear constraints on combinatiohsputs and outputs;

®* Handle arbitrary linear time-varying models, weghtonstraints, and horizons, by providing two Sinku
blocks based on EML code, supporting both QP angroBlem formulations.

The latter feature, namely LTV-MPC based on LP, emaployed in the studies described in this papdrvaifi be
detailed next.

The LTV-MPC controller relies on the following rathgeneral linear time-varying prediction model

e +Ts) = AQG=(t)x(d) + B, x(t)u(d) + (4, 2())
y(i) = CU=(t)x(G) + DG =(8)ud) + 904, 2(t))
2(5) = E:G.2(0)(w() —r()) + H. (G 2(8)) (w(f) — ur(5)) + P, x(t)) Au(f)
(i) = Be(z(t)x(j) + He(, x(t))u(f) + Pe(j, x(t)) Au(j) (1)

whereTy is the sampling timek is the prediction stef,is the current timeg, =t + kT is the prediction timex is the
state vectory is the input vectory is the output vectorAu(j) = u(j) - u(j-Ty) is the input increment, is the output
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reference vectory, is the input reference, is the “performance vector” to be optimizedjs the “constrained
vector”, andA, B, f, C, D, g, E, H, P are (possibly time-varying and state-dependent}ioest

The MPC optimal control problem to be optimize@ath timet is

N(t)-1

min p1€1 + p2éa + Z lz(5)ll
k=0

st Aumin(j) < Au(j), k=0,..,N(t) -1
(’(]) < Cmax(j) + Vc/’l; k= 0, N(T) -1
Cn(t)x(t+ N(#)Ts) < dn(t) + Vpe ()

whereN(t) < Npu is the prediction horizon, ang, o are slack variables used to soft constraints. {Caings are
hardened by zeroing the corresponding entry inord¢tand inVy, whereV, > 0,Vy> 0.

The optimal control problem (2) is mapped into it

Nt)-1 ¢
min pP1€1 + p2ex + Z Z di(j)
k=0 i=1

+ MPC constraints 3)

which has ih + ¢) - N(t) + 1 optimization variables and, besides the negativity constraintau - Aug,> 0, €> 0,
di(j) = 0, Z - N(t) constraints to express the 1-norm in (3), plusnasy constraints as the ones that are optionally
defined in (2).

The user can exploit the maximum flexibility offdrby the EML language to define the prediction mddleand all
the parameters appearing in the MPC optimizatiablem (2) in an EML module, which is then used oy LTV-
MPC Simulink block to construct and solve probleh Accordingly, as depicted in Figure 2, the blechtains an
LP builder function and a Dual Simplex LP solveded in EML code, implementing the LTV-MPC formutati
described above. The block is flexible enough tfovalan arbitrary number of parameters entering EML
prediction model from the Simulink diagram as riéxale varying signals, to vary on-line predictiondacontrol
horizons, to limit a priori the maximum number d® iterations.
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Figure 2: Simulink diagram underlying the LP-Basdd/-MPC block
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4. The ORCSAT MPC design
4.1 Control system architecture and choice of praction model

There exist a large number of well-researched nsoftelthe prediction of the relative dynamics oe@pacecraft
with respect to another ([5], [6], [10], [13], [1dR1], [29], [31], [33]). Whilst a non-linear mobeould provide the
highest fidelity predictions, for the purpose abthktudy it was judged that the possible gains doalt be worth the
additional complexity in the optimiser. Similarlipteger decision variables have been avoided agdbelting
integer program would also have excessive compleXiiscrete decision making is instead handled dblyisg
multiple instances of continuous optimizations athecontrol step. We therefore restrict our consiii@n to linear
prediction models from which we can form the MPQimfsation problem as a convex quadratic or lin@agram.
However, out of the models considered, only thd-Elibhessy-Wiltshire equations [12] are linear timeariant,
and these only apply to circular, or very-near Wi orbits. The other models are linear parameseying with
respect to the true anomaly of the targgt. However, because the target is passixg, can be calculated as a

function of time using Kepler's equation [27], thaBowing a linear time-varying representation bé trelative
dynamics.

The objective of the MPC control system designednduthis study is to bring the chaser craft frame fpoint of
target detection at a range of approximately 300 \ea sequence of holding points in the samet abthe target,
to a “blinding point” approximately 3 m from therget, at which point it should be moving towards target at an
in-track velocity of 0.1 m& Target capture is then completed on a passifetdijectory. The MPC system provides
both guidance and control, and is not restrictetiacking pre-determined trajectories.

To achieve this objective using a single MPC cdlgravould require a prediction horizon sufficietat predict a
trajectory at least one orbital period into theufat a sufficiently complex prediction model to foem accurate
trajectory propagations over long periods of timed a sampling period short enough to allow tacgeture within
a 20 cm tolerance. Given finite computational reses, this is not a practical solution. The rendezvis therefore
divided into three phases similar to those usedARVD ([15], [17]), with an additional controlleotperform a
collision avoidance manceuvre (CAM) in case of dt fduring the final moments of the rendezvous (€ab).

Table 1: Rendezvous Phases

Phase Requirement
Orbit Synchronisation Translational Guidariae bring chaser from a distance of approximatel§yy B into the
(OSTG) same orbit as the target, with an in-track sepamaif between 5 km

and 30 km on either side of the target
Impulsive Nominal Translational Guidanc&o perform passively safe impulsive transfers betwa sequence

(INTG) pre-defined holding points in the same orbit astéinget until an in-

track separation of 100 m is reached
Forced Terminal Translational GuidanceTo track a straight-line trajectory from 100 m sgpian to 3 m

(FTTG) separation from the target such that a subseqesdfift trajectory

captures the target with a 20 cm tolerance
Collision Avoidance Mancesuvre To bring the chaser to a safe distance, further them from the
(CAM) target within 3 orbits, avoiding collision in theogess

4.1.1 Orbit Synchronization Translational Guidance(OSTG)

The first phase, Orbit Synchronisation Translatigbaidance (OSTG), has the objective of bringing thaser from
a distance of approximately 300 km into the sanimt @s the target using thrusters, with an in-traegaration of
between 5 km and 30 km on either side of the targeilst minimising propellant consumption and mamee time.
At these ranges, short term control accuracy isritital, so a relatively long prediction time che used. However,
long-term prediction accuracy is important in orderperform optimal manceuvres. For these reasdms,),t
modified GVE prediction model of [6] is chosen. Flpredicts the relative trajectory between the ehasd target in
terms of the relative Keplerian orbital elementthea than relative positions and velocities in ataBgular or
cylindrical co-ordinate frame, whilst using the Ghtfriend [13] approach of incorporating the effeadf J, to
account for variations in gravity due to the obhetes of the central body of the orbit. Becauser¢kaive orbital
elements are small, despite large Euclidean sépasathe effects of linearisation error are srraikomparison to
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prediction models such as those of [12], [33], Wwhise rectangular or cylindrical relative coordasatThe system
input is assumed to be an impulsive change in #gloAV ) in a local orbital reference frame centred ondhaser.

4.1.2 Impulsive Nominal Translational Guidance (IN'G)

The second phase, Impulsive Nominal Translationsid@nce (INTG) must perform a sequence of passisafg

impulsive transfers between a sequence of pre-elkfimlding points until an in-track separation @01m is

reached. Greater control accuracy is required duhiis phase, necessitating a shorter samplinggel addition,

collision avoidance constraints must be more fir@rged. However, as the OSTG phase will have redinogch of

the radial and out-of-plane separation betweenerhasd target, the effect of linearisation errortlom Yamanaka-
Ankersen [33] equations is no longer a problenipag as a cylindrical relative coordinate systeraded [21]. This
model is less complex than tigmodified GVESs, and allows objectives and constsaio be directly specified in
the cylindrical frame without requiring a linearisgeometric transformation (with inevitable lossasturacy) from
the relative orbital elements. The prediction mddplt is assumed to be an impulsid® in the cylindrical target
orbital frame.

4.1.3 Forced Terminal Translational Guidance (FTTG

The third phase, Forced Terminal Translational @oi (FTTG) is tasked with bringing the chaser fiitarfinal
holding point at 100 m from the target to a positiom from the target from where it can capturetéinget on a free
drift trajectory. Radial, in-track and out-of-plaseparation are small during this phase. Controli@cy is critical
due to the tight capture tolerances, and a muchehigampling rate is required than for other pha&ssfor the
INTG phase, the Yamanaka-Ankersen [33] equatioasised for the trajectory prediction model.

In addition, to maintain target pointing, the MP@ntroller must also handle attitude regulation toexternally
provided setpoint, using thrusters. A lineariseétqtnion-based prediction model [14], extended dosier the
elliptical orbital dynamics is used for the relatiattitude control. The attitude reference framedufer control is
chosen depending on the direction of approach tlamdttitude setpoint in the inertial frame to alvtiie predicted
trajectory crossing the discontinuity at £180° lire tquaternion representation [9]. Because the gifedi matrices
are re-built at each time step due to the LTV préai model, the opportunity is taken to re-linearthe attitude
dynamics about the current measured attitude &t thae step.

4.1.3 Collision Avoidance Manceuvre (CAM)

The Collision Avoidance Manceuvre (CAM) must safelpve the chaser away from the target, to a distafice
500m within three orbits without collision with ti@rget. Essentially this objective is similar bat of INTG, except

travelling away from the target instead of towaitdgnd with a less specific terminal objectivetHerefore makes
sense to use the Yamanaka-Ankersen prediction nfioddis phase also.

4.2 MPC subsystem design

Each of the MPC controllers is designed indepengdmtit with a common interface, and a common outpaction

to convert theAV into finite-duration thrust pulses in the inertfehme. The core MPC function of each control
subsystem is implemented using the blocks fromMIRCTOOL, with the linear time-varying prediction dels
implemented as Embedded MATLAB functions calledtfay MPCTOOL blocks. Any additional logic or refecen
frame changes are implemented using Simulink blocks

4.2.1 OSTG MPC controller

The OSTG MPC controller must bring the chaser itte same orbit as the target in a timely manneristwh
minimising propellant consumption. Rather than gstme more commonly used quadratic cost functiomotrectly
encode the minimisation of total propellant constiorp the MPC controller must minimise the absolsten of
AV applied over the prediction horizon ([30]). Furiinere, to balance this with time to completion,eartinal
constraint enforcing the completion criteria is ospd at the end of the prediction horizon, and piegliction
horizon itself is included as a decision variabiettie cost function ([23][24][25]). Letting\ be the prediction
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horizon,u = [u(t +T, |t)T,...,u(t + (N —1)I'S |t)T]T anda be a parameter determining constraints that wiltbscribed
later, the cost function is:

JosrelaruN) = N+ Y fwyult + KT, 1), @
k=1

Note that the summation is frdkn=1 not k = 0, implying that the input calculated at the currimte step is applied
at the next time step to allow sufficient time diga for computation to occur. The terminal conisti;awhich will

be described later, ensures that the predicteectaay ends in the correct orbit, with an accegatdparation from
the target.

In order that the predicted trajectories do notlidel with the target, constraints are placed on phedicted
trajectories to ensure that they do not enter atgaphere of radiusRS(t), surrounding the target. In addition, as

proposed by [7], unforced drift trajectories emamgafrom each point in the prediction horizon algaconstrained
to ensure passive safety. Collision avoidancensaifestly non-convex constraint, but it is approated by a half-
space constraint with angle relative to the inkrdaection parameterised hy (Figure 3). The value of then
determines on which side of the target the ternmgoaktraint places the end of the predicted trajgct

a
__________ Target
< |
Xerf 4 Xerf I AN I | .
—Rs 30 km N 10 km —10 kmy —30 km
J sina ~ \

(a) Safety constraint (b) Terminal constraint

Figure 3: OSTG safety constraint and terminal qaunst

The optimisation is implemented using the “LP-bak&¥-MPC Controller” block from MPCTOOL, which alles

prediction horizonN and user-defined parameters to be passed in aalsigsiven an angle, calculated as the
current angle between the chaser andzfh@xis, rounded to the nearest 45°, by solvihgc®nvex optimisations,
varying N between 1 andNy. for each aD{a0—45°,a'0,a0+45°} using two nested Simulink “For-iterator”

subsystems, the control sequence can be foundnihahises the overall cost function. A samplingipdiTs = 600s
was chosen, along with a maximum prediction horixgg, = 25.

4.2.2 INTG MPC controller

The INTG MPC controller must transfer the chaséwnieen a sequence of invariant holding pointsvor(i.e. the in-
track axis in the cylindrical orbital frame) urgilseparation of 100 m is achieved. Because refemsethese holding
points must be governed by an external signaletlimo point predicting further ahead than the ehd single
transfer. It is sufficient to design a controllergerform a transfer, parameterised by the disténaece the target of
the next holding point.

The design is similar to that of the OSTG MPC coligr in that a 1-norm cost function is used injcoction with a
variable horizon implemented by solving multiplengex optimisations. However, the cost function unlds
distance instead of time to reflect that fuel conption is proportional to distance travelled rattiean time when
carrying out passively safe hopping trajectoriese holding points are scheduled by an externalrilgo, and
parameterised by distangg. The cost function is

z

-1
‘]INTG (U, N) = " EC (Xcrf (t + kTS It) - r(t + kTS))"1 + "Wuu(t + kTS It]L (5)

1

=~
i



EXPLORATION AND SPACE TRANSPORTATION GNC

where r(t+kTS)=[t xhp(1+e cosvlg‘(t+kTS)) ,0,0,0,0,0]T dependent on the direction of approazly is the state

tgt
vector in the cylindrical reference framey is the eccentricity of the target orbit,, is the true anomaly of the
target and

1 0000O00O
Ec = (6)
01 00O00O0

As for the OSTG MPC controller, passive safety t@ists are imposed over a period of one orbit freath
prediction in the control horizon. In addition,gnsure passive safety over a longer period, ariiadal passive drift
constraint is imposed to make sure that long-teegular drift is away from the target (thus avoidialision in
subsequent orbits). Lettingbm(v‘gl) be the propagation matrix for a whole orbit:

[-sor{x.,(t)) 0 0 0 0 OfA.W.lt+KT )X, (KT 1t)<0 )

The terminal set for the INTG MPC controller isidefl as a box with side- Iengﬂ(e +0.), centred on a poing,

away from the target ol , with an additional constraint that the chaseutthde on a periodic trajectory, and also
be inside the box after ¥, ¥ and % orbits of fra#t.dA sampling periodTs = 300s and a maximum prediction
horizon ofNa.x = 20 was chosen.

4.2.3 FTTG MPC controller

During the FTTG phase, trajectory and attitude Kiragz accuracy becomes more important than long-tareh
minimisation. The navigation uncertainty is of angar order of magnitude to the expected trackingrs, so a
conventional quadratic cost function is appropridtee controller is implemented using the “QP-bak&¥-MPC
Controller” block from MPCTOOL, with a sampling ped of Ts = 3s, and a prediction horizdwh = 15. Letting
x(j |t) be the combined position, velocity, attitude quaiten and angular velocity states(j) the corresponding

reference setpoint, ana(j |t) the vector of thruster inputs, the cost functien i

Nﬁ t+ KT, [t)-r(t + KT, ) Q(x(t + KT, |t) - r(t + KT,))+ Au(t + KT, [t) RAu(t + KT, |t) (8)

k=1

FTTG

Changes in input4u) are penalised instead of the absolute input viduenable offset-free tracking of forced-
equilibrium setpoints ([18]). Positivity and sattioa constraints are applied to inputs. The refeedmajectoryr(j)

and cost function weighting® =0 and R= 0 are chosen so that the controller tracks an d#igetpoint, a position
in the radial and out-of-plane directions, and ppraach velocity in the in-track direction.

4.2.4 CAM MPC controller

The CAM MPC controller is based on a modified vensof the INTG MPC controller. However, in order fapid
response, a delay @f is not assumed in the model. Instead it is assuh@dhe calculation of the control move will
complete as fast as possible. To facilitate thé dasnputation, a variable horizon is not used f&M; and the
trajectory is constrained so that only one imp@si/ may be applied at the beginning of the predictionizon.
This is applied open-loop on the assumption thatgagion error may increase outside nominal openrati levels
following the fault triggering the CAM, especialifyattitude pointing is lost. The terminal consitais chosen so
that under the specified worst-case navigationreth@ chaser will be further than 500 m away fribm target in
three orbits. The INTG MPC controller can then hibld chaser in a periodic fly-around orbit, or agsapproach via
its sequence of holding points once the CAM is cletep
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5. The ORCSAT Avionic Architecture

The avionic architecture considered in HARVD isdzhen the “Aurora Avionics Architecture” ESA studyhich is
the avionics reference for future exploration vedsc From this starting point, the ORCSAT studyludes the
design of an Avionic Architecture System allowiihg implementation of embedded MPC based contro¢sys
The MPC concept is based on the optimization afsd function under some constraints, which usualbarried out
using quite complex iterative algorithms, requirimgh computational capability. Therefore, the melirallenge of
the avionic architecture design is to define a Gdribata Management Unit (CDMU) able to cope wike MPC
needs. In particular, the selection of the CenRabcessing Unit (CPU) is the key for the MPC emigedd
implementation.

Since the beginning of the design it was evideat thCPU composed of a processor and a co-prockasdo be
considered as baseline (distributed architectuaRing into account available space qualified preces
computational performances. This solution allowslistribution of the complete on-board software be two
processors leaving to the co-processor the exetuifo GNC algorithms requiring significant compudaal
throughput (MPC) and to the processor the handifrthe system units, the other parts of the GNE, et
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Figure 4: CDMU with distributed architecture

The next step was the selection of the proces€ansently space-qualified processors are basedsdN2 FT, with
performance of 86 MIPS, 23 MFLOPS @ 100 MHz: takimigp account also the HARVD experience, it hasnbee
considered adequate for the central processoedCiBMU.

Regarding the co-processor, the MPC computatidmalighput is the driver for the selection. To supplas task,
profiling of the MPC algorithm was performed usiignulink features, to evaluate the time neededherexecution
of the MPC algorithms. Afterwards, these timingued have been scaled to the selected processaitexplhe
Whetstone benchmark. The processors selected dotrdlde-off are the LEON2 FT and PowerPC750FX, able
perform 1650MIPS @ 733MHz which has been used sigdespace-qualified boards like the Maxwell SCS750

Table 2: MPC profiling

. Scaling to Scaling to
Workstation LEON2FT  PowerPC 750FX
Mode Max time[g] Time[g Time[g
OSTG 7.8575 410.9473 23.7401
INTG 1.9028 99.5164 5.7490
FTTG 0.0885 4.6286 0.2674
CAM 0.1249 6.5323 0.3774

The profiling results are summarized in Table 2cdh be seen that the LEON2 FT cannot be selectetba
processor, since the FTTG would take more thancérets for the computation of the control actioniagfaa
theoretical control step of 3 seconds. InsteadPiimerPC 750FX shows timings which are widely cotibjea with



EXPLORATION AND SPACE TRANSPORTATION GNC

the MPC design and expected computational capabilénd therefore it has been selected as badefitke CPU
CO-processor.

6. Simulation results and comparisons

Figure 5 shows the comparison between the simulaésults obtained with the HARVD GNC solution dahd ones
obtained with the MPC, in the case of rendezvousuktdr orbit. Differences are visible since the inaing of the
rendezvous, where the MPC trajectory remains clsére target with respect to HARVD, but the msighificant
results is the propellant save, which in this dasébout 35 kg.
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Figure 5: HARVD vs MPC performance comparisons

The main differences can be found analysing thjedtary during the OSTG. In this phase, the MPdgfess such
that the chaser is left at a relative distance wapect to the target between 5 and 30 km: watfittal MPC tuning
it has been noted that the chaser is left at tliea#nOSTG usually at 15 km from the target. Theelkafinding
suggested a different definition of the holdingmisj which in the HARVD initial solution startedofn 50 km:
therefore, the HARVD simulation has been repeat@tl the first holding point at 20 km. Figure 6 showhat
HARVD performance improved a lot, in particular tire propellant consumption: in this case, the diffiee is
reduced to about 10 kg.
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Figure 6: HARVD vs MPC performance comparisons wigtw holding points definition
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Figure 7: CAM simulation results

This aspect is quite important: the on-line optitian performed by MPC has permitted the deteatioa possible
improvement in the nominal mission scenario (i&firdtion of the holding points) that would be dfilt to clearly
identify a-priori.

Figure 7 shows the trajectories obtained in thrieeulsittions where the CAM is triggered at differaetative
distances from the target and the following flyward. Performances are very good, since MPC allowsang the
collision also at very short distance (10m) witkirggle manoeuvre.

The MPC solution has been also validated and eerifiy means of a Monte-Carlo simulation campaignpmsed
by 800 test cases, in order to test the performahtee control in different scenarios (circuladaglliptic orbit) and
starting from different initial relative positiorsd dynamics with respect to the target. The obthiesults are very
good, since the capture has been always achiewbdmrgins. Figure 8 shows a typical result of #asnpaign,
summarizing 50 test cases trajectories during O@N& INTG. Instead, Figure 9 shows the aggregat@duca
accuracy results of 400 cases.
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Figure 8: Overall trajectories during OSTG and IN®f®0 cases of the Monte-Carlo campaign
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MSR Capture performance: position misalignment on +X face
0.25 T T T

20 cm requirement

0.2k > Target center

0.15

0.1

0.05-

Chaser spacecraft Z axis [m]

i i i i i
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Chaser spacecraft Y axis [m]

Figure 9: Capture performance of 400 test casésedflonte-Carlo campaign

7. Conclusions

Optimization-based control techniques like Modekdictive Control are considered extremely attractior
applications which require high level of autononpptimal path planning and dynamic safety marginke T
ORCSAT study is addressing the usage of the MPkhtgaes on the rendezvous and capture scenaribe dflars
Sample Return mission. The results obtained dfierdiesign phase are encouraging, since with respetassical
control techniques (HARVD) it is possible to havesignificant improvement in particular in the prdpst
consumption. As side effect, but not less importantline optimization could drive the definitiori bigher level
mission aspects that could not be easy to addnahks iearlier phase of GNC design.

The MPC design has been verified and validatedutiitout a wide Monte Carlo simulation campaign which
considers plant mismatch, sensors and actuatdweefsj and different initial dynamic conditions. t@ined results
confirm the robustness of the design and the veogdgerformance.

The next step of the ORCSAT study will be the impémtation of the MPC algorithms in the selectedofid
architecture, with the objective to test the rémlet performance of the developed solution on anfligpresentative
avionic. In the end, the GMV Dynamic Test Benchl wé enhanced with the MPC based control and thextes
avionics for the final dynamic test campaign.

References

[1] P. Colmenarejo et al., “"HARVD Development, Verificm and Validation Approach (from Traditional GNC
Design/V&V Framework Simulator to Real-Time Dynaniiesting)”, 7th International ESA Conference on
Guidance, Navigation & Control Systems, 2-5 Jun@0ralee, County Kerry, Ireland

[2] V. Barrena et al., “Integrated Development, Vesdfion and Validation Approach for Space Systemasi
Autocoding Techniques”, Data System in Aerospacaf€@ence (DASIA 2008), 27-30 May 2008, Palma
Majorca, Spain

[3] Strippoli, L et al., “High Integrity Control Systerfror Generic Autonomous RVD”, 61st International
Astronautical Congress, September 19-25, 2010 uerdgyZ

[4] Almeida, F.A., 2008. Waypoint navigation using doasied infinite horizon model predictive controh:
Proceedings of the AIAA Guidance, Navigation anahttal Conference and Exhibit. Honolulu, Hawaii.

[5] Battin, R.H., 1999. An Introduction to the Matheioatand Methods of Astrodynamics, Revised EditiSiiAA
Education Series. American Institute of Aeronaugind Astronautics.

[6] Breger, L. and How, J.P., 2007. Gauss’s variati@uglation-based dynamics and control for formatiging
spacecraft. Journal of Guidance, Control, and Dyosn30(2):437-448.

[7] Breger, L. and How, J.P., 2008. Safe trajectomesfitonomous rendezvous of spacecraft. Journauafance
Control and Dynamics, 31(5):1478-1489.

[8] Bodin, P., Noteborn, R., Larsson, R., and Chas3ef2011. System test results from the GNC experisen
the PRISMA in-orbit test bed. Acta Astronautica(%68):862—872.

[9] Bach, R. and Paielli, R., 1993. Linearization ofitatle-control error dynamics. IEEE Transactions on
Automatic Control, 38(10):1521-1525.

12



M. Saponara, Model Predictive Control applicatiorspacecraft rendezvous in Mars Sample Return soenar

[10]Carter, T.E., 1998. State transition matrices &minal rendezvous studies: brief survey and neamge.
Journal of Guidance Control and Dynamics, 21(1-14%.

[11]Camacho, E.F. and Bordons, C., 2004. Model prediatontrol. Springer-Verlag, London.

[12]Clohessy, W.H. and Wiltshire, R.S., 1960. Termigaidance system for satellite rendezvous. Jourh#he
Aerospace Sciences, 27(9):653—658.

[13]Gim, D. and Alfriend, K.T., 2003. State transitiomatrix of relative motion for the perturbed nonaiar
reference orbit. Journal of Guidance, Control, Bydamics, 26(6):956-971.

[14]Hegrenaes, O., Gravdahl, J.T., and Tondel, P., 2Bp&cecraft attitude control using explicit modeddictive
control. Automatica, 41(12):2107-2114.

[15]Kerambrun, S., Despré, N., Frapard, B., HyounetPBlle, B., Ganet, M., Silva, N., Cropp, A., ankilppe,
C., 2008. Autonomous rendezvous system: The HARMDti®N. In: Proceedings of the 7th Internation&lAe
Conference on Guidance, Navigation & Control Systefmalee, Ireland.

[16]Larsson, R., Berge, S., Bodin, P., and Jonsson2QD6. Fuel efficient relative orbit control strgites for
formation flying and rendezvous within PRISMA. IRroceedings of the 29th Annual AAS Guidance and
Control Conference.

[17]Le Peuvédic, C., Colmenarejo, P., and Guiotto, 2008. Integrated multi-range RDV control system —
autonomous RDV GNC test facility — HARVD control stsgm trade-off analysis and baseline solution.
Technical Report GMV-HARVD-TNO06, GMV.

[18]Maciejowski, J.M., 1998. The implicit daisy-chaigirproperty of constrained predictive control. Aggli
Mathematics and Computer Science, 8(4):101-117.

[19]Maciejowski, J.M., 2002. Predictive Control with i@&raints. Pearson Education.

[20]Manikonda, V., Arambel, P.O., Gopinathan, M., MeHRaK., and Hadaegh, F. Y., 1999. A model predetiv
control-based approach for spacecraft formatiorpikeeand attitude control. In: Proceedings of thraekican
Control Conference, volume 6, 4258-4262. San Di€do,

[21]Melton, R.G., 2000. Time-explicit representation refative motion between elliptical orbits. Jourraf
Guidance, Control, and Dynamics, 23(4):604-610.

[22]Qin, S.J. and Badgwell, T.A., 2003. A survey of usttial model predictive control technology. Cohtro
Engineering Practice, 11(7):733-764.

[23]Richards, A. and How, J., 2003. Performance eviaoabf rendezvous using model predictive contrat. |
AIAA Guidance, Navigation and Control Conferencel &xhibit. Austin, Texas.

[24]Richards, A.G. and How, J.P., 2003. Model preditentrol of vehicle maneuvers with guaranteed detigm
time and robust feasibility. In: Proceedings of 283 American Control Conference, volume 5, 408484
Denver, Colorado.

[25]Richards, A. and How, J.P., 2006. Robust varialolézbn model predictive control for vehicle maneting.
International Journal of Robust and Nonlinear Caintt6(7):333—351.

[26]Rawlings, J. B. and Mayne, D.Q., 2009. Model preddéccontrol: Theory and design. Nob Hill Publistin

[27]Sidi, M. J., 1997. Spacecraft dynamics and conthopractical engineering approach. Cambridge Umsiver
Press.

[28] Shim, D.H., Kim, H.J., and Sastry, S., 2003. Deadizied nonlinear model predictive control of mpié flying
robots. In: Proceedings of the 42nd IEEE Conferemtdecision and Control, volume 4, 3621-3626. Maui
Hawaii USA.

[29] Schaub, H., Vadali, S. R., Junkins, J.L., and AHd, K.T., 2000. Spacecraft formation flying cohtusing
mean orbital elements. Journal of the Astronaucaénces, 48:69-87.

[30]Tillerson, M., Inalhan, G., and How, J. P., 2002-@&dination and control of distributed spacecefstems
using convex optimization techniques. Internatialmirnal of Robust and Nonlinear Control, 12(2-3§:242.

[31] Tschauner, J., 1967. Elliptical orbit rendezvousAAJournal, 5(6):1110-1113.

[32]Wood, M. and Chen, W.H., 2008. Model predictive tcoihnof low Earth orbiting satellites using magioeti
actuation. Proceedings of the Institution of MedbahnEngineers, Part I: Journal of Systems and @bnt
Engineering, 222(6):619—-631.

[33]Yamanaka, K. and Ankersen, F., 2002. New statesitian matrix for relative motion on an arbitrarjigical
orbit. Journal of Guidance Control and Dynamicg12%0-66.

[34]A. Bemporad, M. Morari, and N. L. Ricker, “Model dglictive Control ToolboxTM 3 — User’'s Guide”, The
Mathworks, Inc., 2009, http://www.mathworks.com/@ss/helpdesk/help/ toolbox/mpc/.

[35]A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopmj “The explicit linear quadratic regulator for
constrained systemsfutomatica, vol. 38, no. 1, pp. 3—20, 2002

[36]A. Bemporad, “Hybrid Toolbox v1.2.2 — User's GuideDec, 2009, http://www.ing.unitn.it/~bemporad/
hybrid/toolbox.

[37]Bertsimas, D. and Tsitsiklis, J. N. IntroductiorLioear Optimization. Athena Scientific, 1997.

13



