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Abstract

This paper proposes a form of MPC in which the control variables are moved
asynchronously. This contrasts with most MIMO control schemes, which as-
sume that all variables are updated simultaneously. MPC outperforms other
control strategies through its ability to deal with constraints. This requires on-
line optimization, hence computational complexity can become an issue when
applying MPC to complex systems with fast response times. The multiplexed
MPC scheme described in this paper solves the MPC problem for each sub-
system sequentially, and updates subsystem controls as soon as the solution is
available, thus distributing the control moves over a complete update cycle. The
resulting computational speed-up allows faster response to disturbances, which
may result in improved performance, despite finding sub-optimal solutions to
the original problem.
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1 Introduction

1.1 The basic idea

Model Predictive Control (MPC) has become an established control technology in
the petrochemical industry, and its use is currently being pioneered in an increasingly
wide range of process industries [23, 34]. It is also being proposed for a range
of higher bandwidth applications, such as ships [22], aerospace [21, 24], and road
vehicles [20]. This paper is concerned with facilitating applications of MPC in which
computational complexity, in particular computation time, is likely to be an issue.
One can foresee that applications to embedded systems, with the MPC algorithm
implemented in a chip or an FPGA [5, 13, 14, 17], are likely to run up against this
problem.

MPC operates by solving an optimization problem on-line, in real time, to determine
a plan for future operation. Only an initial portion of that plan is implemented, and
the process is repeated, re-planning when new information becomes available. Since
numerical optimization naturally handles hard constraints, MPC offers good per-
formance while operating close to constraint boundaries [18]. Solving a numerical
optimization can be a complex problem, and for situations in which computation is
limited, the time to find the solution can be the limiting factor in the choice of the
update interval. Most MPC theory to date, and as far as we know all implementa-
tions, assumes that all the control inputs are updated at the same instant. Suppose
that a given MPC control problem can be solved in not less than 7" seconds, so that
the smallest possible update interval is T'. The computational complexity of typical
MPC problems, including time requirements, tends to vary as O((m x N,)?), where
m is the number of control inputs and N, is the horizon length. We propose to
use MPC to update only one control variable at a time, but to exploit the reduced
complexity to update successive inputs at intervals smaller than T, typically T'/m.
After m updates a fresh cycle of updates begins, so that each whole cycle of updates
repeats with cycle time T. We call this scheme multiplexed MPC, or MMPC. We
assume that fresh measurements of the plant state are available at these reduced
update intervals 7//m. The main motivation for this scheme is the belief that in
many cases the approximation involved in updating only one input at a time will
be outweighed — as regards performance benefits — by the more rapid response
to disturbances, which this scheme makes possible. It is often the case that “do
something sooner” leads to better control than “do the optimal thing later”. Fig.
1 shows the pattern of input moves in the MMPC scheme with m = 3, compared
with the conventional scheme in which the three input moves are synchronized. We
will refer to conventional MPC as Synchronized MPC, or SMPC, in the rest of this
paper.

The scheme which we investigate here is close to common industrial practice in
complex plants, where it is often impossible to update all the control inputs simul-
taneously, because of their sheer number, and the limitations of the communications
channels between the controller and the actuators.

In addition to treating the ‘nominal’ MMPC case, in which the model is assumed to
represent the plant perfectly, we extend MMPC to guarantee robust constraint satis-
faction and feasibility of all optimizations despite the action of unknown but bounded
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Figure 1: Patterns of input moves for conventional ‘synchronized” MPC (left), and
for the Multiplexed MPC (right) introduced in this paper.

disturbances. These are key issues in MPC: performance benefits are achieved by
operating close to constraint boundaries, but when the state evolution no longer
matches the predictions, constraint violation and infeasibility can result. Many
methods have been developed to endow conventional synchronous MPC with ro-
bustness [19, 1]. For use with MMPC, we have adopted the constraint tightening
approach [11, 8, 27, 25|, in which the constraints of the optimization are modified to
retain a margin for future feedback action. Since only the constraint limits are mod-
ified, the computational complexity remains the same as for the equivalent nominal
MPC. Constraint tightening is therefore well-suited to MMPC, which is aimed at
computation-limited applications.

Various generalizations of our scheme are possible. For example, subsets of control
inputs might be updated simultaneously, perhaps all the inputs in each subset being
associated with one subunit. The assumption of equal intervals between the updates
of plant inputs is not essential to the MMPC idea. Any pattern of update intervals
can be supported, providing that it repeats in subsequent update cycles. A further
generalization, albeit involving a significantly harder problem, would be not to up-
date each control input in a fixed sequence, but to decide in real time which input
(if any) needs updating most urgently — one could call this just-in-time MPC.

1.2 Related Work

MMPC is related to distributed MPC (DMPC) [7], both dividing the optimisation
into smaller sub-problems. Several works have been published which propose ‘dis-
tributed MPC’ in the sense that subsets of control inputs are updated by means of
an MPC algorithm. But these usually assume that several sets of such computa-
tions are performed in parallel, on the basis of local measurements only, and that
all the control inputs are then updated simultaneously. In some applications, such
as formation flying of unmanned vehicles [10], it is assumed that the state vectors



of subunits (vehicles) are distinct, and that coupling between subunits occurs only
through constraints and performance measures. In [33] five different MPC-based
schemes are proposed, of which four are distributed or decentralized MPC schemes
of some kind. Their schemes 4 and 5 are the closest to our multiplexed scheme. In
these schemes an MPC solution is solved iteratively for each control input, but it is
assumed that no new sensor information arrives during the iteration, and that all the
control inputs are updated simultaneously when the iterations have been completed.

Various approaches to robust DMPC have been investigated, including worst-case
predictions [12], retention of “emergency” plans [31, 6], invariant “tube” predic-
tions [32] and constraint tightening [26]. Work on DMPC has typically focussed
on spatially distributed systems with some structure in the system, e.g. teams of
vehicles with decoupled dynamics. In contrast, our new robust MMPC makes no
assumptions on the overall system structure, and considers temporal distribution,
breaking the optimisation down into a sequence of smaller problems, potentially on
the same processor.

In [2] a similar scheme to ours is proposed, but it is assumed that a limitation occurs
on network bandwidth rather than on central computing resources. Hence optimal
trajectories are computed for all the plant inputs, but these are communicated to the
plant one input (or one group of inputs) at a time — with the optimization taking this
communication restriction into account. If the communication sequence is fixed and
periodic then the scheme proposed in [2] is essentially the same as a version of MMPC
to which we previously referred as ‘scheme 1’, except that we allowed constraints on
inputs and states [16]. [2] also considers the case that a feedback law is fixed for each
input (or group of inputs), that the inputs are updated according to some periodic
scheme, and that a heuristic is used to determine (online) the best point in the period
for a given state; this gives a heuristic version of ‘just-in-time control’ as defined
above, though not really MPC any longer, since the feedback law is assumed to
be predetermined. We emphasize that the driving factor behind the development of
MMPC is operation in a processor-limited environment, motivating decomposition of
the optimisation to reduce computational delays. Therefore we have not considered
the impact of communication limits: indeed, in many applications of MMPC, the
computation may take place serially on a single processor, and thus communication
is not a concern.

In [30] MPC is considered with opposite assumptions to ours on update rates. There
the plant inputs are considered to be updated relatively frequently, compared with
the rate at which output measurements become available. This is in contrast to
MMPC, in which the plant outputs are assumed to be measured relatively fre-
quently, compared with the rate at which inputs are updated. It is remarked in [30]
that the predictive control law which results (with the specific assumptions made
there) is periodic, the period being the ratio of the input update rate to the output
measurement rate (assuming this is an integer). A similar observation is central to
the development in our section 3.

An alternative strategy for speeding up the computations involved in MPC is ‘ex-
plicit MPC’, which involves off-line precomputation of the ‘pieces’ of the piecewise-
affine controller which is the optimal solution [20]. But that is not feasible if the
number of ‘pieces’ required is excessively large, or if the constraints or the plant
model change relatively frequently.



MMPC was introduced by us in [16]. Robust MMPC was first described in [28]. In
[29] our MMPC idea was applied (by others) to the control of an aircraft engine. In
[15] an experimental evaluation of MMPC is reported.

1.3 Structure of the paper

The rest of this paper is organized as follows. In Section 2 a formulation of MMPC
is presented in detail. Section 3 establishes the nominal stability of MMPC with this
formulation. Section 4 then derives a formula for the value of the cost function at-
tained by MMPC. Section 5 develops a more elaborate formulation of MMPC, with
the objective of guaranteeing robust feasibility, and establishes an appropriate the-
orem. Section 6 gives numerical simulation examples and compare the performance
of MMPC with SMPC for cases with significant plant uncertainty, represented by
unknown but bounded disturbances. Finally, concluding remarks are given in Sec-
tion 7.

2 Problem formulation

2.1 Preliminary

We consider the following discrete-time linear plant model in state-space form, with

state vector x; € R™ and m (scalar) inputs uj g, ..., Upm g
m
Tht1 = Axp + Z BjAuj,k (1)
i=1

where each Bj; is a column vector and Au;j = uj g — Uj p—1- (This could be general-
ized to the case where B; € R"*Pi and Au;; € RP/, with Zj p; inputs.) We assume
that (A, [Bi,..., Bny]) is stabilizable. For ease of notation, when we drop the index
j, we mean the complete B matrix and the input vector so that the system (1) may
be written as

Tht1 = Az, + BAuy,

We assume that at time step k the complete state vector xj is known exactly from
measurements. We will consider only the regulation problem in detail, but tracking
problems, especially those with non-zero constant references, can be easily trans-
formed into equivalent regulation problems [3, sec.3.3].

Multiplexed MPC, at discrete-time index k, changes only plant input Aug ) 1, where
o(k) is an indexing function which identifies the input channel to be moved at each
step, and is defined as:

o(k) = (kmod m) +1 (2)

(We assume, without loss of generality, that we update input 1 at time index 0.)
The asynchronous nature of the multiplexed control moves, as illustrated in Fig. 1,
is captured by the constraint

Aujp =0if j # o(k). (3)



It is then possible to rewrite the system dynamics (1) as a linear periodically time-
varying single-input system:

Trr1 = Axg + Bg(k)Aﬂk (4)

where Aty = Aug ) 1. From this point onwards, we use this periodic description of
the plant so that we can draw on known results for periodic time-varying systems.

Remark 1 Some of the generalizations to which we alluded in section 1.1 could be
treated by redefining the sequencing function o(-) appropriately. For example, for a
particular 3-input system, updating the inputs in the sequence (1,2,1,3,1,2,1,3,...),
thus updating one of the inputs twice as often as the others, could be represented in
this way.

The unique advantage of MPC, compared with other control strategies, is its capacity
to take account of constraints in a systematic manner. As usual in MPC, we will
suppose that constraints may exist on the input moves, Auy € Uy, and on states,
zy € X, where X and U, 1) are compact polyhedral sets containing the origin in their
interior. Note that the control move set depends on the time, since the channel to
be moved differs from step to step. If constraints on the actual control inputs u are
required, then u must appear in the augmented state x, and those constraints can
be incorporated in the state constraint set X.

Let N = (N, — 1)m + 1 where N, is the control horizon, a design parameter which
will later be used to denote the number of control moves to be optimized per input
channel of the original system (1). The N-step prediction model at time k for the
system described by (4) is

Xk+1\k = Qxy + Gcr(k)AﬁkUc (5)
where
Tt 1k Aty A2
Xk+1\k = xk-s'-2|k ; Aﬁkﬂc = Aukiﬂlk , D= A ,
Tht Nk Aty N1k AN
Bo 0 . 0
G = AB.,,(,?) By - 0 .

ANTIBogy oo ABogyn-2) Bogern-1)

Adig 143, denotes the prediction made at time k of a control move to be executed at
time k + 14, and xy ;) denotes the corresponding prediction of z;, made at time k.

2.2 The MMPC Algorithm

In the following, K, ) denotes a pre-specified stabilizing linear periodic state-
feedback controller of (4); (X I(Ka(k))) denotes a sequence of sets in which none



of the constraints is active, and which satisfies the ‘periodic invariance’ condition
for the linear periodic system (4) when the feedback controller

Aty = — Ky Th (7)
is applied, namely
T € X[(Kg(k)) = —Ko(k)a;k S [Ug(k) and (A — Bo(k)Ka(k))xk S X[(Kg(kJrl))

and of course X7(K,)) € X, for o(k) =1,...,m.

Some assumptions must be made about those inputs which have already been
planned but which have not yet been executed. We will assume that all such planned
decisions are known to the controller, and that it assumes that they will be executed
as planned, i.e.,

Aak—‘rﬂk = Aak—f—i\k—la 1 7£ 0, m, 2m, ce (8)

(In fact, new decisions will be made at time k +1 in the light of new measurements.)

MMPC solves the following finite-time constrained linear periodic control problem:

Poty (@) 1 Minimise  Ji, = Foon) (@) + Yoo (lonpisl? + | Aty 1)
wrt Atlyyie,  (2=0,m,2m,...,N —1)
s.t. Aﬁk—&-ﬂkz € Ua(k+i)7 (Z =0,...,N—1)
$k+i|k€X7 (iZI,...,N—l)
Try Nk € X1(Ko())
Thrit1)k = ATrijk + Bo(kri) Dlgrik
Aty = Algpjjp—1, (@ #0,m,...,N —1)

(9)

where F, () (Zp4 k) > 0 is a suitably chosen terminal cost.

We denote the resulting optimizing control sequence as Au®(xg). Only the first
control Auf in Au°(xy) is applied to the system at time k, so that we apply the
predictive control in the usual receding-horizon manner.

In MMPC, there are essentially m MPC controllers, operating in sequence, in a
cyclic manner. They share information, however, in the sense that the complete
plant state is available to each controller — although not at the same times — and
the currently planned future moves of each controller are also available to all the
others.

For clarity, we set out the following algorithm which defines ‘nominal’ MMPC (as
contrasted with ‘robust’” MMPC which will be introduced in section 5):

Algorithm 1 (Nominal MMPC)

1. Set k := ko. Initialise by solving problem (9), but optimising over all the
variables Aty y,1=0,1,..., N — 1.

2. Apply control move Aug () = Aty

3. Store planned moves Aty -



4. Pause for one time step, increment k, obtain new measurement xj.
5. Solve problem (9).

6. Go to step 2.

Note that Step 1 involves solving for inputs across all channels, not just channel o (k).
This type of initialisation requirement is common in distributed MPC. Subsequent
results do not depend on the optimality of this initial solution, only its feasibility.

3 Stability of MMPC

In this section we establish sufficient conditions under which the MMPC scheme gives
closed-loop stability. We then apply standard results on optimal control of periodic
systems to our plant written in the form of (4), assuming that all constraints are
inactive, to propose a terminal cost F'(-) which, when used in the MMPC algorithm
introduced in section 2.2, ensures stability of the closed loop even when constraints
are active.

Theorem 1 MMPC, obtained by implementing the nominal MMPC Algorithm 1,
gives closed-loop stability if the problems are well-posed, and if the set of terminal
costs {Fy(-)} satisfies

FU+([A_BU+KG'+] )+ HII,'H2+ ”Ko+x|’r < F ( ) for o= 17--'am' (10)

where o = (0 mod m) + 1, namely the cyclical successor value to o.

Proof:

The proof follows a standard argument for MPC stability proofs (see [19] for ex-
ample), adapted to our setting. It depends on the constrained optimization being
feasible at each step, and the feasibility at any particular time step depends on the
details of the constrained optimization problem that is being solved. For the nomi-
nal case with a perfect model and in the absence of disturbances, if feasible solutions
are obtained over an initial period, then feasibility is assured thereafter.

Let Aﬂzﬂ.m denote the optimal solution to (9) at time step k, fori = 0, m,2m, ..., N—
1, let azzﬂ.‘k denote the corresponding state sequence, for ¢ = 1,2,..., N, and let J};
be the corresponding value of the cost function Jj.

Then a candidate input sequence to be applied to the plant at the next time step,
k+1,is
(Auk+1\k+1 ms Auk+2|k+2 mo e A“k+m\kv
A“k+1+m\k+1 m’Auk+2+m\k+2 m e A“k+2m|ka R
A“k+1+(Nu—2)m\k+1 —ms Auk+2+(1vu—2)m\k+2 mot
Ay (N, —1)mlk —Ka(k+1)$Z+N|k> (11)
(recall that N — 1 = (N, — 1)m). The input sequence applied at time step k is the

same, except that the initial term Aﬂ;:,' i 18 pre-pended to it, and that the final term

8



Ko(kv1)®p Nk is omitted. Let the cost obtained with the candidate solution (11)
be Jip41. Then

Tt = T = 1Koy @i npl 7+ Forry <(A - Ba(k+1)KU(k+1>)xz+N\k>
— A7 = N1ekkll7 = Foy (@renie) + lzranelly  (12)

Hence Jy11 — J; < 0 if (10) holds. Now optimisation at time step & + 1 will result
in a value function

Jii < Jin (13)
and hence
i < (14)

if (10) holds.
But J; > 0 for all k, hence J;, | — J;; — 0. But, from (12)-(14) we have that
Tigr = Tk < =llaggpllg — 1 Aug, |7 (15)

Hence 27, — 0 (and A“Zm — 0). But zp, = g, so 7, — 0.
|

Remark 2 Note the implicit assumption that N is chosen sufficiently large to en-
sure feasibility of the constrained optimisation problem posed. Also note the assump-
tion in each planning optimisation that the linear state feedback law (7) is applied
at every step after the end of the optimisation horizon.

The following results on unconstrained infinite-time linear quadratic control of peri-
odic systems are known [4]. Consider the plant (4) and the quadratic cost function

o0
Te =Y (lzksill? + | Adigeys]|?) (16)
i=0
Then this cost is minimised by finding P;,i = 1, ..., m, the Symmetric, Periodic and

Positive Semidefinite (SPPS) solution of the following discrete-time periodic Riccati
equation (DPRE)

Py = ATPy1A = AT Ppii By (B 5y Pev1 Bory +7) ' By P A +¢ - (17)
and setting

Aty = — Ky Tk (18)

Koy = (Ba oy Poka) Bo) + 1) Bl 3y Po(esy A (19)

Furthermore, the resulting minimal value of Ji is given by J; = x;‘gpg(k):zk. Thus
one way of choosing a suitable set of terminal costs to satisfy (10) is to set

Fg(k) (x) = xTPU(]H_N):E (20)
which leads to
Tier = i = =Nz = 1 Aug, |17 (21)



Remark 3 The terminal cost (20) would be the optimal cost-to-go if at each step
k the optimisation was over future values of all input channels, rather than those
in input channel o(k) only. A wversion of MMPC' in which this is done was called
‘scheme 1 MMPC" in our earlier paper [16]. The version presented in this paper was
called ‘scheme 2’ in [16]. We no longer advocate ‘scheme 1°, as it does not give any
reduction of computational complexity, compared with conventional SMPC.

4 Cost of MMPC when constraints are inactive

Each solution of the optimisation problem (9) depends on the plans made in previous
optimisations. Hence the optimal cost obtained with MMPC, even in the case that
all constraints are inactive, is not given by (20). In this section we will introduce
an augmented state which includes those existing plans that are not going to be
modified by the current optimisation. This will allow us to obtain, in Theorem
2, an expression for the optimal cost of the same form as (20). This will provide
an analysis tool for predicting and comparing the performance of various MMPC
designs. In the process we will see that MMPC can be rewritten in a more familiar
MPC form, but with a periodically time-varying (augmented state) model.

Note that a similar development could be used to compute the optimal MMPC
cost if the set of active constraints was constant and known. The nature of the
MMPC control law in such circumstances is also linear periodic. Consequently the
MMPC control law in the presence of constraints is piecewise-linear-periodic; as in
the standard ‘explicit’” MPC case, the ‘pieces’ correspond to regions of the state
space in which the set of active constraints remains constant.

The development of this section, in particular Theorem 2, facilitates performance
evaluation of MMPC in certain circumstances. For example, it is useful for evaluat-
ing the trade-off between the restricted optimisation performed by MMPC and the
reduced update rate available with conventional SMPC.

4.1 Unconstrained MMPC as periodic state feedback

We introduce the following definitions, which gather together those variables which
are optimised at each step by the MMPC algorithm:

%ﬂk+z’|k
Aty — AukJr.m+i|k (22)
Aty (N, —2)m+ilk
fori=1,2,...,m.
A~ﬂk|k
Al = Au}# "= [ AAﬁZiInkk } (23)

Aty (N, —1)mlk

10



Recall that N = (N, —1)m + 1 where N, is the control horizon, a design parameter
which denotes the number of control moves to be optimized per input channel of the
original system (1). By grouping the predicted control signals into m vectors, the
prediction model (5) can be re-written as

- o(k N o(k N -
X1k = Qg + 91( )Au0|k + 92( )Auk,uk +...+ gfn(k)Auk,m—Hk (24)

where Ay, ;i and A, are as defined in (22) and (23), respectively, and gf(k), (i =
1,...,m) are matrices whose columns are columns of the G o (1) matrix (6), namely,

o (k)

g1 is the matrix whose columns are columns 1,1+ m,...,1+ (N, — 1)m of the

(k)

matrix G, (y), while g;", (i =2,...,m) contains columns 4,5 +m,...,i+ (N, —2)m

columns of G, (x).

In MMPC only Aty is taken as the decision variable at time k, and appropriate
assumptions are made about Aty i, i = 1,...,m—1. Note that the length of A,
is N,, while the length of Ay for i =1,...,m —1is N, —1. When N, = 1,
Adiy i, © = 1,...,m — 1, become zero-length vectors. In MMPC we assume that
the Aty ;1,7 = 1,...,m — 1 are those inputs which have already been planned in
previous steps but have not yet been executed, namely

Aty i = Aty 1111 (i=1,...,m—1). (25)

We define the vector Aﬁ% x_1 Which holds the previously planned but not yet exe-
cuted control moves as

Auk—1,2|k—1

Auk—1,3|k—1

AT

klk—1 (26)

Auk—l,m|k—1

Thus, it can be deduced from (24) that, if no constraints are active, then the MMPC
control law is a linear periodic state feedback:

Adigy, = Koy (27)

where we have introduced the augmented state vector

4.2 A formula for the MMPC Cost

Using the augmented state vector introduced in (28), the dynamics of the plant
operating under MMPC can be expressed as

o1 = A&k + By Aty o1 (29)

where

i A 0 ~ . Bg(k) 0
A_{o Au] B"(’@_{ 0 Bu]



[0 I 0 0] [0 ]

00 I 0 0
Au: Bu:

|0 cee e 0] | T ]

The value of the quadratic cost (see also Remark 4)
o0
Te =Y (lkrirll} + 1 Adio?) (30)
=0

when control law of the form (27) is applied, is given by the following theorem:

Theorem 2 The value of the cost (30) for the system (29), when any stabilising
linear periodic state feedback of the form (27) is applied, is given by

T = Je g+ Jug = & Peruo(obn (31)

where Je = & Pe oi)&k and Jug = & Py o)Cks and Pe o), Puo(e) and Peyy ok
are, respectively, solutions of the following Lyapunov equations:

Peotry = YionPeot) Vo) + 0 Q%0 (32)
Puok)y = Yy Puot Vo) + Kl REo) (33)
Pevuo) = Yo Peruom) Yo + P Qo)
where
Totry = Pobim-1)  Potern)Por)
S,y = A+ BouyKowm)
[ 5 (i)o'(k)
- Q5 (kt1)Po(k)
(I)a(k) = .
L i)U(k—‘r'm—l) o éa(k)
[ B Ka(k)
_ Ko(k41)Po i)
K,y = .
L f(a'(kerfl)éo’(kerfQ) t i)(r(k)
Q = dl&g((j, 67 e 7&) and
R = diag(t, 7,---,7)
Proof:

The closed-loop dynamics of the system (29), when stabilising linear periodic state
feedback of the form (27) is applied, is given by

S = A+ By Aligr, = (A + By Ko

12



or in general

§k+i+1 = (i)a(k+i)§k+i7 1=0,1,...

where

Doriy = A+ BooriyKoers)
Then

§k+jm+1 (?O'(k)
et jm+2 P

I
‘Al
o
+
<.
3

§k+jm+m i>g(k—|—m—1) t (I)a(lc)

and

Aty jm Ko (1) Eot-jm
Aty jme1 o (k1) Ektjm+1

>

N

Ao |t jmtm—1 | Ko(krm—1)8k+im+m—1

a(k)
o(k+1)Po (k)

P

L Ka(k’-{—m—l)(i)a(k—i-m—Q) .

kﬂ(k})

o0
Jer = Y ekl
i=0

o0 m
= ZZ 1€k+jm+illF

j=0 i=1

= D &hmPom Q%o Erim
j=0

oo

= 5?[2(‘I’i(k))T[‘i’Z(k)Q‘i’a(k)]‘I’i(k)]gk
§=0

= &G Pe ol

where

Q = dzag(cj, (ja >Q)
Yoty = Poherm-1)" Po+1)Po(r)

Ektjm



and

Peotry = D (W 00) 19700 Q%o ()] 2
7=0

is a convergent series since the controller Ka(k) is stabilizing. Thus Pt ;) can be
computed by solving the following Lyapunov equation

T F1 ¥
Pe o) = Yo Pe.ott)Yok) + Por @Po (k)

Similarly, the sum of the control increments can be computed as

00 co m—1 co m—1
Juk = D MAGprilF =D 0D [ AdGopksgmilli = D D 1Ko htirErtimill?
prd =0 i=0 J=0 i=0
= kaﬂng(k Ko (k)Ektim
= & (W ) IR 4y RE ) W2, G
7=0
= Ty Pu,a(k)
where
R = diag( ,T)
and
Puoty = O (W) KL RE 1| W
=0

which can be computed by solving the Lyapunov equation
T
Puotty = Yoy Pt Vo) + Koy RE )

Finally, let

Peruok)y = Peo) T Puok)

= Z(\I’(Jy(k)) [ k)Q(I)cf(k k) +Z ‘I’Z k;) RK o(k )] Z‘a(k:)

J=0

and it is clear that Pei, s4) can be computed as the solution of the Lyapunov
equation

T T P
Peyuo(k) = You Peruott) Vo) + Pogr Q@Po(k) + Ky gy RE (1)
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The cost (16), when the MMPC control law of the form (27) is applied, is given by
(30) with

(28] [0 0]

and the corresponding initial conditions hold on &; for example, at the beginning
of an MMPC run it may be appropriate to set

§k = [ rp (AUZ\k—l)T }T =[z} 0 ]T

Remark 4 Note that the cost defined in (30) differs in the first term from that
defined in (9). That is, in (30) we do not include any contribution from xy, since
that is fized and cannot be influenced by the optimisation at time step k.

Remark 5 [t is seen that the system (29) is linear and periodic, while the cost (30)
s quadratic with constant coefficients. Thus the optimal control law can be obtained
from the theory given in [4], and is of the form (27). This suggests yet another
method to compute the terminal cost Fy ) (mk+N|k) to ensure nominal stability of
MMPC in addition to that presented in Theorem 1. A family of MMPC designs
may be obtained by optimising the cost function (30) subject to the system (29) by
choosing appropriate ¢ and ¥ matrices.

Remark 6 If the second part of &, namely Aﬁz‘k_l, were included in the optimi-

sation, so that the optimal cost became a function of xy only, then the optimal cost,
and the optimal solution, would be the same as that obtained with ‘scheme 1’ in our
earlier papers, namely it would correspond to the cost resulting from allowing each
‘agent’ to optimise all future inputs rather than just ‘its own’ input.

5 Robust MMPC

This section develops a robust version of MMPC. Uncertainty is introduced into the
plant model as a bounded disturbance. The constraints which appear in the MMPC
algorithm are then modified so that robust feasibility can be guaranteed, providing
that it is achieved initially.

The plant dynamics (1) are now extended to include an unmeasured but bounded
disturbance wyg:

Tpe1 = Az + Y BjAuyy, + Euwy. (36)
j=1

where w;, satisifies
wi € W VEk (37)

and W is a known, bounded set containing the origin.
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As explained in Section 2, the system dynamics (36) can be re-written as a periodic
linear system

Trr1 = Axg + Bg(k)Aﬂk + Fwg (38)

For robust MMPC we solve the following finite-time constrained linear periodic
control problem, which we denote Py ) (Tyx, Aﬁ%k_l, Wk—1):

Minimize J, = Fog) (s ni) + Sivo (||xk+z\k||q+||uk+z|k\\ )

wrt Aty (1=0,m,2m,...,N
s.t. Aﬁk+i|k euz,a(k)v (’L = 0,1,...,N— 1)
.TkJrZ"k c Xi,a(k)7 (Z = 1, 2, . 7ZV — 1) (39)

ey Nk € To(r)
Thripik = ATppik + Bo(eriy Alggar, (1=0,1,...)
Aty yi)p = Alpyijp—1 + M; oy Bwg—1, Vi # jm

Note some differences from (9). The predicted inputs and states are constrained to
lie in sets U; ,(r) and & ;(x) which depend on how far into the prediction horizon they
are, as well as on k. The target set at the end of the horizon has been modified from
X7(Ky(ky) to T,y Finally, the inputs which are not being optimised are assumed to
be modified from their previously planned values by the feedback term M; ;1) Ewg—1;
note that the value of Ewy_; can be inferred from data {u;_1,z; : j < k}.

The constraint sets U; (1), X o(k) and T, () are constructed to ensure robust feasi-
bility, such that if some solution

R _ ~ ~ ~ T
AT = (At AT Mg o Ay 1) (40)
is feasible at some time k then a candidate solution
Aaz+1|k+Mo7a(k+1)Ewk

AUpis = : (41)
Auk+N 1|k+MN72,o‘(k+1)Ewk

Ko(kr1) T Nt MN 1,0 (k1) Ewr
is feasible at time k 4 1 for all wy € W. The designer chooses the feedback parame-
ters M; 5(x) and K, offline (as in [27], on which this development is based).

To achieve this robust feasibility property, the state constraints x; € X are tightened
using a recursion

Xo,ok) = X (42a)

Xiv1.o0t) = Xiolkt1) ~ Lior1) EW (42b)
where

Loy =1 (43a)

Livi0k) = ALj o) + Bo (ki) Mi o () (43b)
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for the chosen feedback policy M; (k) and the “~” operator denotes the Pontryagin
difference between two sets:

A~B={a|la+be AVbe B} (44)

Similarly, the input move constraint sets Auy € Uy are tightened using the following
recursion

Uo.o(k) = Ug (k) (45a)

Ui o(ky = Ui—1,0(k+1) ~ Mi_1 o(k+1) EW (45D)

The terminal sets 7,y have the robust invariance properties that, if z € 7;(;) and
w € W then

(A = Bo(ke 8y Ko (k1)) 4 [ALN_1 0(h11) + Bo(er ) MN—1,0(6+1)] Ew € To(es1)

(46a)
— Koy € Uno(k) (46b)

and
Toky S XN o (k)- (46¢)

The parameters M; ;) and K, x) are chosen by the designer. The parameters L; 5 (),
which relate the control perturbations in (41) to the corresponding changes in the
state predictions, are then fixed by (43). These settings determine the amount of
constraint tightening applied in (42). Typically, to achieve a large feasible region,
the control policy chosen should minimise the quantities limited by the constraints.

A restrictive but convenient choice of candidate policy is to select M; 51y, @ =
0,...,N — 2 such that Ly %) = 0 Vk and then set My_y ) =0, K,) = 0 and
Ty = {0} V.
The following algorithm defines robust MMPC. It uses notations defined in (1), (4)
and (23). It is the same as Algorithm 1 except that problem (39) is solved instead
of problem (9).

Algorithm 2 (Robust MMPC)

1. Set k := ko. Initialise by solving problem (39), but optimising over all the
variables Aty 4,1 =0,1,..., N — 1.

2. Apply control move Aug () = Al

3. Store planned moves Aty -

4. Pause for one time step, increment k, obtain new measurement xy.
5. Solve problem (39).

6. Go to step 2.

We will need the following result concerning the use of the L; ;) matrices.
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Lemma 1 Suppose that xx41 = Tpq1, + Bwy and

Al jirt1 = Ak + M1 omynyBwg,  (G=1,2,...,1) (47)
Then

Thtilkt1 = Thpilk T Lic1,oee)Bwr,  (=1,2,...) (48)

Proof: We prove the lemma by induction on i. Suppose the result is true for some
i. Then

Thgitik+1 =  ATppiks1 + Boigs) Algpijp+1 (49)
= AlTiqipe + Lic1,0(e+1) Ewk] + B (i) Algpifi41 (50)

But
Thrit1)k = ATkrijk + Bo(kri) Dlg ik (51)

and, by assumption,

Al g1 = Algpip + M1 o (k1) Ewy (52)

so that
Thpitilirl = Thriti)e T [ALic10(41) T Bo(ri) Mi—1,0(k+1)| Ewk (53)
= Tpyiv1k T Liok+1)Bwr  because of (43b) (54)

and hence the claimed result is true for ¢ + 1.

Now consider i = 1 ZTp k41 = Tp1 = Tpq1p + Ewg, so the claimed result holds
for i =1, since Lo o(x+1) = I, by definition (43a).

Thus the result holds for 7 > 1. |

Theorem 3 If the system (36) is controlled using Algorithm 2 and the initial opti-
misation at time k = ko (ie step 1 of the algorithm) can be solved, and x, € X, then
(1) the optimisation remains feasible and (ii) the constraints xj € X and Aty € Uy
are satisfied for k > ko and for all disturbances satisfying (37).

Proof: (i) We will begin by showing that, by construction of the constraints in (42),
feasibility at any time k implies feasibility at time k£ + 1. In particular, we will
demonstrate feasibility by establishing that the candidate solution (41) satisfies all
the constraints of the optimisation. Therefore, feasibility at time k = kg implies
feasibility at all future times k > kq.

Assume that we have a feasible solution (40) at time k, and that A&Z‘ & is applied
as input to the plant (38). This results in the next plant state being

Tpy1 = Az + Ba(k)Aa;:,‘k + Fw, = Th+t1|k + Fwy, (55)

Thus from (41) and Lemma 1 we have

Thyitlk+l = Tryitile T Liogr1) Ewk (56a)
Algyipierr = Algpipap + MiogryBwg (i =0,1,...,N —1) (56b)
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and since (40) was assumed feasible, we know i 1)x € Xjp1 o) and Aty €
Ui 1,0(k)- Combining this with (56), the definition of the Pontryagin difference (44)
and the recursions (42b) and (45b), we know i 11k+1 € X o(k+1) a0d Alg i 1jkt1 €
Ui,a(k+1) for all wg € W.

We also need to show that x4 yiijkt1 € Zo(rs1) if the candidate solution (41) is
applied. We have zj njx € T5(x) by the assumption of feasibility at time k.

Thy N1)b+1 = ATpy Nji1 T Bo(er M)Al N1 (57)

But, from (41),

Aty Njp1 = — Kot 1) Thae Nk T My —1.0(k+1)Ew (58)
and, from Lemma 1 (since Aty njx = —Ko(k1)Tht-Nk)s
TpyNlk+1 = ThaNk T LN _10kt1) EWk (59)

Hence, substituting (58) and (59) into (57) gives

TriNi1et1 =  |A = Bo(ern) Ko (er1)] T nie +
+ [ALN_1 o(kt1) + Boes NyMN_1,0(k+1)] Bwp, (60)
€ Ty(+1) because of (46a). (61)

Having established zpyiy1x € Xit10k), Alprivip € Uis1,0k) and Tpini1jps1 €
T5(k+1) for all wx € W, the feasibility of the candidate solution has been proven,
and thus the feasibility of the optimisation is proven.

(74) It remains to show that the state and input constraints are satisfied. Feasibility
at all steps demands that z = zy, € Xy k) which from (42a) implies 73 € X.
Similarly, Aty = Aty € Uy o) Which from (45a) implies Ay, € Uy.

6 Examples

This section demonstrates the potential benefits of MMPC by employing it in sim-
ulation for the control of three different example systems. In the first example we
consider nominal MMPC; we show how the cost formula can be used to evaluate
some of the design choices. In the second and third examples comparisons are made
between the robust MMPC scheme and standard — but also robustified — “syn-
chronous” MPC (SMPC). In these examples all simulations were performed on the
same PC with a 3.2GHz Intel Pentium 4 processor and 1GB RAM. Matlab ver-
sion 7.1 (R14, Service Pack 3) was employed, using Simulink to simulate the system
dynamics and the “quadprog” optimisation function to solve the necessary quadratic
programming (QP) problems. Computation times were measured using the Matlab
profiler.
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6.1 Nominal MMPC: Effects of N, and updating sequence

In this section, numerical examples will be given to illustrate how the cost formula
for MMPC can be used for evaluating the effect of various values of NV,, and of the
updating sequence, on the closed-loop performance, when constraints are not active.

The cost formula for MMPC is calculated as (30) with (35) and initial condition

of & = [ xf 0 ]T. Hence, only the upper-left n x n (n is the dimension of xy)
sub-matrices are relevant in the cost computation. To be specific, the sub-matrices

N

are Pa(k,), P, o) and 15%(,(@ as shown below

P, * ]5:6 o *
Petuo(k) = [ *(k) ] v Peow = [ o (k) } :

* * *

where Peyy o(k)s Pe o) and Py, s are defined in (34), (32) and (33), respectively,
and * denotes a sub-matrix of compatible dimensions, which can be omitted from
the cost computation.

Therefore, the quadratic cost of MMPC can be computed as
Tok) = Jook) + Juo(k) = Tt Po(e) Tk

where J:):,a(k) = x%?x,a(k)xk and Ju,a(k:) = xfpuya(k)xk.
Now we have a way to compare different MMPC schemes, including differences in

horizon lengths and update sequences. In other words, given two MMPC schemes,
whose costs are J; = fomk and J; = fojxk, then

Ji = Jj = 2 (P = Py)ay,

Hence analysis of the properties of the difference j - f’] gives information on the
relative merits of the two MMPC designs. For example, P; — P; > 0 indicates that
design j is better than design ¢ for all initial conditions xg.

Consider the following two-input-two-output continuous-time plant
1 1
[ yi(s) ] _ [ TsfT st } [ u1(s) ]
ya(s) 8s+1  ds+1 uz(s)
We chose the sampling time to be T = 1s. For MMPC, the states were measured
at T'/m = 0.5s with u; and wug alternatively applied at 0.5s intervals, but each held
constant over a period of T' = 1s, that is, u; is updated at times (0, 1s, 2s, . ..) and ug

is updated at times (0.5s, 1.5s, . ..) (for the updating sequence of uy, ug, u1, ug,---,).
For all the results listed below, the tuning parameters for MMPC are: ¢ = I and

r=1.

The horizon length N, is an important tuning parameter for MPC in general, and
remains so for MMPC. With the MMPC cost formula, we can compute the cost and
predict the performance difference with different N,. To illustrate, we generate a
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simulation scenario by adding a step input disturbance to the plant and see how the
performance and cost vary with different N,. This is done by replacing Awu in (1)
by (Au+ Ad), namely modelling a change of input disturbance, so that an impulse
on Ad corresponds to a step disturbance. This then allows such a disturbance to
be represented by the initial condition x(0) = BAd, which in turn allows the use
of formula (31). (The results were checked against numerical estimation of the cost
accumulated during simulation.)

MMPC is a periodic control scheme; thus its performance depends on the time at
which a disturbance occurs. More specifically, for the two-input plant considered
here, depending on the time at which disturbances occur, u;; may react first (ie
control updating sequence (uj k, U2 j, U1 k41 --.)), OF Uz may react first (ie control
updating sequence (ugk, U1k, U2 k+1,---)). This depends on whether o(k) = 1 or
o(k) = 2. This section uses the cost formula (31) to compare the cost of MMPC for
these two different updating sequences in a specific scenario.

Table 1 shows the eigenvalues of ]51 — ]52 as N, varies, where ]51 represents the cost
matrix when o(k) = 1 (updating sequence (u; ,ua, - -.)) while P, represents the
cost matrix when o(k) = 2 (updating sequence (ugy,u1,...)). From the table,
it can be seen that P, — P, is indefinite, which means that one updating sequence
is not definitely better than the other, but depends on the specific scenario — as
expected. Fig. 2 compares the closed-loop performance between the two updating
sequences when N, = 5. The solid lines show the response to a step disturbance on
each input when u; is the first input to react to it (disturbance occurs at step k and
o(k) = 1), while the dashed lines show the response when wuy is the first input to
react to the disturbance. The input trajectories approximately interchange in the
two cases, as do the output trajectories, so there is little to choose between the two
as regards performance. The cost difference mf(ﬁl — Pg)mk in this case is 0.3599,
which means that the second updating sequence is slightly better than the first for
this particular disturbance, as judged by the cost function.

Table 1: MMPC: Eigenvalues of (Pl — Pg) with different N,

Eigenvalues of (P, — P»)
-9.4274  -0.0069 0.0000 0.0000 0.0042  4.9050
-11.3972  -0.0008 -0.0002 0.0001 0.0014 6.2401
-15.9939 -0.0190 -0.0001 0.0001 0.0289 9.7714
-21.9017 -0.0438 -0.0002 0.0001 0.0603 14.0665
-28.3386  -0.0710 -0.0001 0.0000 0.0905 18.2002

Cﬂ)-lkwl\DHg

6.2 Robust MMPC: Spring-Mass Example

This section considers the control of the simple mechanical system shown in Fig. 3.
The system comprises four point masses moving in one dimension. Each has mass of
five units and is connected to the adjacent masses by a spring of stiffness one unit.

Each controller minimizes control energy subject to a constraint on the the position
of mass 1, shown as output y in Fig. 3. Control energy is taken as [ u(t)Tu(t)dt
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Figure 3: Spring-Mass Example System

over a 400s simulation. The inputs are the control moves Awy applied to forces wu;
acting on each mass, and therefore the control force levels u(t) are elements in an
augmented state vector. All controllers were made robust to a disturbance force of
up to 0.01 unit acting on mass 4. In the simulations, a disturbance pulse was applied
to that mass of magnitude 0.01 from 50s to 200s.

In the MMPC simulations, control moves were applied at intervals of one second,
i.e. channel 1 moved at t = t; seconds, then channel 2 at ¢ = ¢; + 1 seconds, and
so on. In the comparison SMPC simulations, moves were made on all channels
every four seconds, but to ensure fair comparison, the constraints were enforced at
intervals of one second as in MMPC. Computation time is taken as the time spent
in the “quadprog” function, totalled over all calls during the simulation.

Figure 4 shows the control input signals and the output signals for each of the two
controllers considered, using a horizon of 120s in both cases. The asynchronous
control moves can be seen in the control signal plots from the MMPC simulation.
In both cases, the output signal runs tightly against the constraint (shown dashed)
for the duration of the disturbance pulse. This is as expected, since the objective
is to minimize control energy and therefore the controller makes use of all available
flexibility in the output constraint. The output under MMPC is slightly further
from the limit than under SMPC, possibly because that controller effectively solves
a more constrained problem due to the reduced decision variable set. However, the
effect is not significant.

To further illustrate the ability of the new robust MMPC to satisfy hard constraints
despite disturbances, the simulation using MMPC was repeated using different con-
straint levels. The resulting output signals are shown in Figure 5. In every case,
the signal goes right to its limit, but never beyond, and the optimisations remain
feasible. These results illustrate that the constraints are active in these simulations
and that the robust MMPC method does not introduce undue conservatism.

Table 2 compares detailed statistics from the results in Fig. 4. Observe that the
performance, in terms of the control energy, is roughly the same for both controllers.
However, MMPC is slightly faster than SMPC, since its sub-problems have only a
quarter as many decision variables as SMPC. This illustrates the underlying premise
of MMPC: it is faster to solve a sequence of four problems of 31 variables than one
problem of 124.

To further explore the issue of scalability, the simulations from Fig. 4 using SMPC
and MMPC were repeated with various horizon lengths. Figure 6 shows the variation
of total computation time with horizon length for both controllers. With a very short
horizon, SMPC is faster than MMPC. We hypothesize that this is due to overheads
in the QP solver, such as set-up time, which dominate the solution time for small
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Figure 4: Spring-Mass Example: Responses to Disturbance Pulse

problems and therefore penalise the more frequent optimisation calls of MMPC.
However, as the horizon length increases, the computation time becomes dominated
by the actual solution process and MMPC scales more favorably than SMPC.

6.3 Robust MMPC: Flight Dynamics Example

This section considers longitudinal control of an A-7TA Corsair II aircraft. The
dynamics model was taken from Example 6.1 in Ref. [9] and augmented to in-
clude a thrust input as well as the elevator input. Both inputs are constrained
to [—0.04,0.04] and the constraints are made robust to input disturbances in the
range [—0.01,0.01] on each channel. The simulation runs for 200s and a disturbance
of 0.01 is applied to both channels from 20s to 120s. The planning horizon is 80s in
all cases and the objective is to minimize 23 where the state element o corresponds
to the velocity normal to the aircraft axis in the body frame.

Figure 7 shows the control and output signals from simulations using the two differ-
ent controllers. SMPC executes moves on both channels at intervals of one second.
MMPC performs a single move on alternating channels every half a second. Thus
the total number of moves on each channel in each simulation is the same. Table 3
compares the results using the same metrics as in the previous section, except for
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Figure 5: Spring-Mass Example: Outputs from MMPC for Constraint Settings 0.2,
0.4, 0.6, 0.8, and 1.0

Table 2: Spring-Mass Example: Results for Each Controller Rejecting Disturbance
Pulse.

H Controller H SMPC ‘ MMPC ‘
[u()Tu(t)dt x 1000 4.312 | 4.320
Computation Time (s) 6.6 5.6
N° of QP Solutions 100 400
N©- of Decision Vars. per QP 124 31

the performance which is here taken as the peak value of the normal velocity ||22||oc-

Unlike in the spring-mass example, there is significant variation in performance
between the two controllers. The MMPC controller, with its faster response time,
is able to mitigate the short period response more effectively than SMPC, which
leaves a significant spike at the onset of the disturbance, indicating that in this case,
it is better to respond to a disturbance quickly with one channel than slowly with
both. MMPC also requires significantly less computational effort than SMPC for this
example. Note that the computation times are approximately in accordance with
the expected O(1%) behaviour, where v is the number of decision variables: in this
example SMPC has 80 decision variables, and 200 QP problems are solved during
the simulation, whereas MMPC has 41 variables, and 400 QP problems are solved.
(200 x 80%) : (400 x 413) = 3.7, which is quite close to the ratio of computation times
42.25:9.15 = 4.6.
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Figure 6: Spring-Mass Example: Variation of Computation Time with Horizon
Length for SMPC and MMPC

Table 3: Aircraft Example: Results for Each Controller Rejecting Disturbance Pulse.

H Controller H SMPC ‘ MMPC ‘
lz2(t) oo 8.53 6.49
Computation Time 42.25 9.15
N°- of QP Solutions 200 400
N©- of Decision Vars. per QP 80 41

7 Conclusion

In this work a novel control scheme known as Multiplexed MPC was proposed, which
is expected to be of practical benefit because it offers reduced computational com-
plexity. Multiplexed model predictive control (MMPC) updates one input at a time,
of a multi-input controlled plant. The motivation is to reduce the computational
complexity of MPC, in order to allow reduced control update intervals. For some
plants this leads to improved control, as a result of the controller being able to react
to disturbances more quickly. MMPC scales well with increasing numbers of inputs,
since the computational complexity depends only weakly on the number of inputs.
The proposed MMPC scheme has been proved to be nominally stable. The nominal
stability of a large class of other multiplexed MPC schemes follows by the same
argument as we used in this paper.

Some performance benefit over conventional MPC can be obtained as a result of
faster reactions to disturbances, despite suboptimal solutions being obtained. This
has been demonstrated by an example. However, the closed loop disturbance rejec-
tion performance under MMPC is time varying because of the periodic nature of
the control scheme.
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Figure 7: Aircraft Example: Responses to Disturbance Pulse

In this paper we have extended the basic MMPC idea to obtain robust feasibility and
robust constraint satisfaction in the presence of unknown but bounded disturbances.

Simulation examples have demonstrated that our scheme succeeds in maintaining
constraint satisfaction and feasibility despite the presence of disturbances. Further-
more, they have shown that performance improvements can indeed be obtained in
some circumstances, compared with conventional MPC, they have indicated the kind
of computational speed-up that can result from adoption of the MMPC scheme, and
they have illustrated that these benefits are retained in circumstances where the
constraints are active.
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