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Abstract: We propose a method for finding the cost function and state estimator
to be used in MPC, in order to obtain the same controller as a given low-order
controller when constraints are inactive, and hence when the MPC controller is
operating within its baseline linear regime. This is a very useful starting point
for the development of an MPC controller when a successful existing controller is
known, but it is desired to add the constraint-handling capabilities of MPC, and
perhaps other functionality such as fault-tolerance. Copyright c© IFAC 2007.
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1. INTRODUCTION

Model Predictive Control (MPC) is often applied
to systems for which conventional feedback con-
trollers exist, with the objective of improving per-
formance. In such cases an existing controller is
given, and it is convenient to begin the design of
an MPC controller by replicating the performance
of this existing controller. This gives an initial
controller tuning. One can add constraint spec-
ifications, and observe whether the use of MPC
gives benefits as a result of its constraint-aware
functionality. One can also change the tuning of
the cost function in the initial design in order to
improve the performance benefits.

In this paper we assume that we are given a
linear plant and a linear (output-feedback) sta-
bilising controller, and we develop a procedure for
obtaining the parameters of an infinite-horizon,
quadratic-cost MPC controller which gives the
same behaviour as the given controller when all
constraints are inactive. This controller is the
same as an infinite-horizon LQG controller. We
assume that both the plant and the given con-
troller have proper rational transfer functions.

In many cases the existing controller will be given
in continuous-time form — for example as a set of
PI controllers for an industrial process. We discuss
alternative procedures for moving to the discrete-
time domain required by MPC. (The properness
assumption implies that the ‘D’ term of a 3-
term PID controller needs to be combined with
a low-pass filter — which is usually the case
in implementations — before the results of this
paper can be used.)

In earlier work (Rowe and Maciejowski, 2000b;
Rowe and Maciejowski, 2000a) we showed how
an MPC controller could be obtained which
replicated an H∞ controller obtained by the
loop-shaping procedure of McFarlane and Glover
(McFarlane and Glover, 1990), and hence was
likely to have desirable performance and robust-
ness properties. In this paper, however, there
is no restriction on the given controller, except
that it should stabilise the given plant model.
We make use of the works of Alazard et al on
finding observer-based realisations of stabilising
controllers (Alazard and Apkarian, 1999; Alazard
et al., 2004; Delmond et al., 2006).



2. MOTIVATION AND APPROACH

The unique feature of Model Predictive Con-
trol (MPC), among practical control strategies,
is that constraints are taken account of explic-
itly from the start of the problem formulation
(Maciejowski, 2002). The control problem is de-
fined as a finite-dimensional constrained optimi-
sation problem, with a multi-stage cost defined
over a finite horizon, and with constraints on in-
puts, states and outputs. Most commonly, the cost
function is quadratic and the constraints are lin-
ear, resulting in a convex quadratic programming
problem. Less commonly, 1-norm or ∞-norm cost
functions are used, but still with linear inequality
constraints, in which case a linear programming
problem results. It is known that when used with a
linear time-invariant internal model, the resulting
MPC controller is piecewise-linear; in particular,
in some neighbourhood of the set-point, in which
none of the constraints is active, the resulting
controller is a linear time-invariant system.

Whereas it is relatively straightforward to define
appropriate constraints, it is often difficult to find
a suitable cost function for the optimiser. How-
ever, in many cases a satisfactory controller al-
ready exists, or can be designed quite easily using
other design approaches. In such cases, it would be
very useful to find a cost function for which the
existing controller is optimal, and use this cost
function in the initial MPC problem formulation.
In some cases, MPC will give a significant im-
provement over the existing controller, even with
the same cost function, because of its constraint-
handling capabilities — that is, it will allow the
plant to operate nearer to some constraints in the
presence of disturbances, or it will deal with actu-
ator saturation without running into any ‘wind-
up’ problems. In other cases, the designer will
wish to obtain further benefits by changing the
cost function; but in this case, it will be beneficial
to proceed by making incremental changes to the
cost function corresponding to the pre-existing
controller, rather than by starting from nothing.

Note that the existing controller is usually an
output feedback controller, so that it may corre-
spond to some augmentation of the plant dynam-
ics (which models disturbances), an observer, and
some state feedback gain. So in order to find the
cost function optimised by the controller, one also
has to determine any model augmentation, and an
observer gain.

A procedure for constructing an observer-based
realisation of an existing stabilising controller has
been developed in (Alazard and Apkarian, 1999),
and refined further in (Delmond et al., 2006),
particularly for the case that the controller order
is lower than the plant order. The output of this

procedure is an augmented model, an observer
gain, and a state feedback gain. We require a
further step, namely the determination of the cost
function optimised by the state feedback gain
— which is the classical inverse optimal control
problem. The motivation for the development by
Alazard et al was similar to ours — to take an
existing controller, and to improve it incremen-
tally, either to enhance its robustness properties
(Alazard et al., 2004), or to meet some further
design objectives (Alazard et al., 2006).

An existing controller is usually specified in con-
tinuous time. This is particularly likely if it is a
low-order controller with a simple structure, such
as a PI or PID controller. MPC controllers, on the
other hand, operate in discrete time. The question
arises, therefore, of whether one should obtain a
discrete-time approximation of the existing con-
troller, and then proceed entirely in discrete time,
or whether one should work with the continuous-
time controller, but find a discrete-time equivalent
cost at the end of the procedure. In this paper we
outline the second method.

3. THE CROSS STANDARD FORM

It was remarked in (Kreindler and Jameson, 1972)
that the linear state feedback law u = Kcx is
optimal for the cost function

∫ ∞

0

(u − Kcx)T R(u − Kcx)dt =

∫ ∞

0

[xT , uT ]

[

KT
c RKc −KT

c R

−RKc R

] [

x

u

]

dt (1)

for any R = RT > 0, and thus that the inverse
optimal regulator problem (Kalman, 1964; Moli-
nari, 1973) is trivial if quadratic costs with cross-
terms between x and u are allowed.

In a kind of generalisation of this observation, in
(Delmond et al., 2006) a generalised plant (in the
sense of (Zhou et al., 1996)) is constructed for
which a given stabilising controller is the optimal
H2 and H∞ controller, because it yields cost 0
in each case. To be specific, given a linear plant
G(s) and a stabilising feedback controller K0(s),
(Delmond et al., 2006) define a cross standard

form to be the state-space realisation of a gen-
eralised plant P = Fℓ(W, G), for some W (where
Fℓ(., .) denotes the lower fractional transforma-
tion), such that Fℓ(P, K0) = 0, K0 stabilises P ,
and Pyu = G (see Fig.1). By construction, such a
cross standard form yields P such that

K0 = arg min
K

‖Fℓ(P, K)‖2 (2)

and thus in a sense solves the inverse H2 problem
for the pair (G, K0) (and similarly for ‖.‖∞, but
that does not concern us in this paper).
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Fig. 1. Structure of generalised plant P .

Suppose that G has a minimal realisation
[

ẋ

y

]

=

[

A B

C 0

] [

x

u

]

(3)

(we assume D = 0 for simplicity, but (Delmond
et al., 2006) give the general case), and that the
controller has minimal realisation

[

ẋK

u

]

=

[

AK BK

CK DK

] [

xK

y

]

(4)

Let n = dimx and nK = dimxK . It is shown in
(Delmond et al., 2006) that, in the case of a low-

order controller — specifically, if nK ≤ n — then
the cross standard form has the realisation:
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(5)
where T † denotes a right-inverse of T , and T is a
full-row-rank solution of

[−T, I]Acl

[

I

T

]

= 0 (6)

where

Acl =

[

A + BDKC BCK

BKC AK

]

(7)

is the closed-loop dynamic matrix of Fℓ(G, K0)
(which is stable, by assumption). Note that (6)
is a generalised Riccati equation, which can be
solved by a numerically stabilised version of the
MacFarlane-Potter algorithm (Laub, 1979; van
Dooren, 1981). Its solution is not unique, but it
is shown in (Delmond et al., 2006) that the corre-
sponding optimal controller is unique, providing
that the solution T is chosen so as to satisfy a
standard regularity condition on the H2 problem
represented by (5).

A notable feature of (5) is that the cross standard
form has the same state vector as the plant.

4. MPC PROBLEM FORMULATION FROM
H2 PROBLEM

We will assume an MPC cost function of the form

VMPC = xT
NPMxN+

N−1
∑

k=0

[xT
k , uT

k ]

[

QM SM

ST
M RM

] [

xk

uk

]

(8)
with

[

QM SM

ST
M RM

]

≥ 0 and PM ≥ 0. (9)

Here we assume that the MPC controller operates
in discrete time, that x0 represents the state (es-
timate) at the time when the MPC controller is
deciding which input signal to apply, and N is the
length of the horizon over which the controller is
‘planning’, namely over which it evaluates and op-
timises performance. Most formulations of MPC
assume that SM = 0, but this is not necessary
(Rao et al., 1998). Also, most practical formula-
tions of MPC replace uk by

∆uk = uk − uk−1 (10)

because the steady-state values of the inputs are
usually non-zero, and penalising deviations from
incorrect steady-state values — which would re-
sult from using a model with incorrect steady-
stage gains — leads to steady-state errors on the
controlled variables. The use of cost function (8)
with a linear model and linear inequality con-
straints enforced over the finite horizon of length
N leads to a convex quadratic programming op-
timisation problem, providing that (9) holds. Im-
plementation of an MPC controller requires the
repeated on-line solution of this quadratic pro-
gramming problem, and application of the initial
segment of the solution as the input to the plant.

Note that if constraints are not active and a
linear model is used, then (8) is equivalent
to an infinite-horizon cost if PM is chosen as
the solution of an appropriate Riccati equation
(Sznaier and Damborg, 1987; Chmielewski and
Manousiouthakis, 1996).

The LQG cost function has the form

VLQG =

E lim
T→∞

1

T

∫ T

0

[x(t)T , u(t)T ]

[

QL SL

ST
L RL

] [

x(t)
u(t)

]

dt

(11)

where E denotes the expected value. It is assumed
that {xT , uT } is a Gaussian stochastic process,
whereupon the optimal control is the same state
feedback as that which minimises the LQR cost
function

VLQR =

∫ ∞

0

[x(t)T , u(t)T ]

[

QL SL

ST
L RL

] [

x(t)
u(t)

]

dt

(12)
and this optimal state feedback should act on the
optimal estimate x̂(t) of the state x(t) (Anderson
and Moore, 1990; Kwakernaak and Sivan, 1972).

Finally, the H2 cost function is



VH2
= ‖Fℓ(P, K)‖2

2 (13)

= ‖C1ζ + D12u‖
2
2 (14)

when w is an impulse (vector) of unit energy, ζ is
the state of the generalised plant P :
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 (15)

and

‖z‖2
2 =

∫ ∞

0

z(t)T z(t)dt. (16)

Since we are considering the case nK ≤ n, we have
ζ = x in the Cross Standard Form, and hence we
can deduce, from (14), the cost

∫ ∞

0

[xT , uT ]

[

CT
1 C1 CT

1 D12

DT
12C1 DT

12D12

] [

x

u

]

dt (17)

with, from (5), C1 = −CKT −DKC and D12 = I.
This cost is not unique, since T is not unique
(though most solutions for T yield the same
optimal controller, as already remarked). 1

The optimal controller K0 which solves problem
(2) has a (generally non-minimal) observer-based
realisation

K0 =

[

A + BDKC + KcB + KfC −Kf

Kc DK

]

(18)

where the state-feedback gain Kc solves the LQR
problem for the cost (17), and hence corresponds
to the cost (1). Note that this implies that Kc =
C1 = −CKT − DKC. The transposed observer
gain KT

f solves the dual LQ problem with cost

∫ ∞

0

[xT , wT ]

[

B1B
T
1 B1D21

DT
21B

T
1 DT

21D21

] [

x

w

]

dt (19)

where B1 = T †BK − BDK and D21 = I.

An MPC cost function can be obtained from any
of the cost functions (17) or (1) in three steps:

(1) Obtain an approximately equivalent infinite-
horizon cost function in discrete time.

(2) Obtain an equivalent finite-horizon cost func-
tion with terminal cost, of the form (8).

(3) (Optional.) Obtain an equivalent cost func-
tion with ∆uk instead of uk — see (10).

The MPC problem formulation is completed by
using the observer gain Kf to obtain state esti-
mates, and using these estimates in place of x in
the MPC cost function and in any state-related
constraints (again making appropriate approxi-
mations for discrete-time operation of the MPC
controller).

1 Note that this shows that, if the Cross Standard Form
exists, then one can always find a state weighting matrix
QL with rank(QL) = m which yields the given controller
K0.

To obtain discrete-time equivalents we use the
standard assumption of piecewise-constant in-
puts, changing only at the sample intervals of
duration Ts, giving xk+1 = F (Ts)xk + G(Ts)uk,
where

F (t) = eAt, G(t) =

∫ t

0

eAτdτB. (20)

The cost function equivalent is found as described
in (Franklin et al., 1990, section 9.4.4), namely as

∞
∑

k=0

[

xT
k uT

k

]

Q

[

xk

uk

]

(21)

where

Q =

∫ Ts

0

[

FT (t) 0

GT (t) I

] [

CT
1 C1 CT

1

C1 I

] [

F (t) G(t)
0 I

]

dt

(22)
since D12 = I.

An alternative procedure is to obtain an approx-
imately equivalent discrete-time controller first,
then use the discrete-time version of the Cross
Standard Form (Voinot et al., 2003). This would
obviously be preferred if one were given a discrete-
time controller initially.

Finally one replaces the infinite-horizon cost (21)
by a finite-horizon cost with terminal cost:

N−1
∑

k=0

[

xT
k uT

k

]

Q

[

xk

uk

]

+ xT
NPMxN (23)

where PM solves the discrete algebraic Riccati
equation corresponding to the discrete-time LQ
problem defined by (21) — since the optimal cost
from time N onwards is then given by xT

NPMxN .
Writing F and G instead of F (Ts) and G(Ts),
PM ≥ 0 is the stabilising solution of

PM = QM + FT PMF−

(FT PMG+SM )(GT PMG+RM )−1(FT PMG+SM )T

(24)

where QM , SM , RM are sub-blocks of Q, as in (8).
This last step assumes that N is sufficiently large
that, in the absence of disturbances and modelling
errors, the constraints become inactive by the end
of the N -step horizon when the system operates
under MPC control with the initial condition
x0. This allows a finite-dimensional optimisation
problem to be solved, despite costing over an
infinite horizon.

5. CONTROLLERS WITH DIRECT
FEED-THROUGH

Many controllers used in practice, such as PI
controllers, have direct “feed-through”, that is,
they are not strictly proper (DK 6= 0). But
any continuous-time LQG controller obtained as



the solution to a problem with realisable plant,
disturbance and noise models, is strictly proper.

We therefore make the standard transformation
to an equivalent plant-controller pair (P̃ , K̃0) in
which both P̃ and K̃0 are strictly proper, by
defining ν = u − DKy, which will be the input to
the new plant P̃ and the output of the controller
K̃0 = K0 − DK (Zhou et al., 1996). The state-
space realisation of P̃0 is

P̃0 =

[

A + BDKC B

C 0

]

(25)

The procedure described above is now applied to
(P̃ , K̃0) to find the matrices PM , QM , RM , SM .
The MPC controller is then applied with the cost
function (8) and uk replaced by νk = uk − DKyk

(with transformation to the form involving ∆νk

if desired). Note that, since this is a linear trans-
formation, the MPC problem remains in the stan-
dard form, with linear inequality constraints on
uk, ∆uk and xk remaining as linear inequalities on
νk, ∆νk and xk. Furthermore, since DK is known
exactly, no additional error is introduced into the
constraint definitions by this transformation.

It is assumed here that computation time is small
compared with the sampling time Ts, so that
the control input uk (or νk) is applied a short
time after the measurement yk is obtained, and
hence the discrete-time implementation is capable
of approximating the continuous-time controller
with DK 6= 0.

If the given controller K0 is given in discrete time,
and the whole process of finding an equivalent
MPC controller is pursued in discrete time, the
same method had to be applied to deal with
DK 6= 0. It is possible to have an LQG controller
with DK 6= 0 by using the “estimator” form of
the controller, namely one which applies state-
estimate feedback of the form uk = Kcx̂k|k (rather
than uk = Kcx̂k|k−1). However in this case the
direct feed-through term is restricted to be DK =
KcKf (Alazard et al., 2004), which does not allow
arbitrary stabilising controllers to be put into this
form. It is therefore necessary to use the same
approach as in the continuous-time case.

6. EXAMPLE

We consider a linearised model for the lateral
dynamics of the Lockheed C-5A transport aircraft
in a particular flight condition, with 2 inputs, 4
states and 4 outputs. The inputs are the aileron
deflection and the rudder angle, respectively, and
the states are the lateral velocity, the roll rate,
the yaw rate, and the roll angle. All the states
are measured, so the outputs are the same as
the states. The model is taken from (Cook, 1997,
Example 5.6).

A simple stability augmentation controller pro-
vides PI action from the roll angle to the ailerons:

K14(s) = −0.28−
0.02

s
(26)

and proportional action only from the yaw rate to
the rudder:

K23(s) = 1.4 (27)

All other elements of the controller transfer func-
tion matrix are 0. This controller is used in a pos-
itive feedback loop, since the gains in the transfer
function from rudder to yaw rate are negative,
because of the sign conventions that are used. This
controller gives an asymptotically stable closed
loop. It is a typical example of a simple but highly
structured controller which has been arrived at
using application-specific expertise.

Constructing the Cross Standard Form for this
plant-controller pair — after transformation to
the equivalent strictly proper pair — gives, as
one possibility (which depends on the choice of
solution T to (6)):

− Kc = C1 =
[

3.5088× 10−3 −0.32201 −1.0886 −0.36136
0 0 0 0

]

(28)

The fastest pole of the open-loop aircraft is
−1.106, and the fastest pole of the closed loop is
−1.04. A sampling rate of 2 Hz (= 12.6 rad/sec)
should therefore be adequate for a discrete-time
controller, so we choose Ts = 0.5 sec. This gives

QM =









0 −0.0005 −0.0020 −0.0006
−0.0005 0.0471 0.1855 0.0542
−0.0020 0.1855 0.7355 0.2136
−0.0006 0.0542 0.2136 0.0623









(29)

SM =









0.0016 0.0002
−0.1468 −0.0213
−0.5781 −0.0884
−0.1688 −0.0247









(30)

RM =

[

0.4754 0.0665
0.0665 0.5136

]

(31)

Note that QM is close to being a rank-2 matrix.
Solving (24) gives

PM =









7 × 10−7 −0.0002 −0.0007 −0.0002
−0.0002 0.0086 0.3124 0.1101
−0.0007 0.3124 1.1735 0.4029
−0.0002 0.1101 0.4029 0.1415









(32)

7. CONCLUSION

A method has been demonstrated for finding the
cost function and state estimator to be used in
MPC, in order to obtain the same controller as



a given low-order controller when constraints are
inactive, and hence when the MPC controller is
operating within its baseline linear regime. This
is a very useful starting point for the development
of an MPC controller when a successful existing
controller is known, but it is desired to add the
constraint-handling capabilities of MPC, and per-
haps other functionality such as fault-tolerance.

This paper is essentially an exploitation of the
Cross Standard Form developed by (Delmond et

al., 2006) and in related works, and does not
introduce any new theory. The exploitation is for
similar purposes as those proposed by (Delmond
et al., 2006); their main motivation was improving
the robustness of existing controllers. It is only our
application to MPC that is new here.

It remains to explore the degrees of freedom of-
fered by the choice of T when solving (6). Al-
though each solution leads to the same controller
in the linear case, it can be expected that dif-
ferent cost functions will give different control
actions when constraints become active. Alterna-
tive discretisation strategies when given an initial
continuous-time controller also remain to be ex-
plored. Generalisation to high-order controllers,
with nK > n, should be straightforward, since
the Cross Standard Form for that case is already
available from (Alazard and Apkarian, 1999).
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