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Abstract— The purpose of this paper is to continue to three reactive elements which draws on and reworks results
develop the recently introduced concept of aegular positive-  of Foster, Ladenheim, Vasiliu, Reichert and others [24],
real function and its application to the classification of lav- [25]. Among the networks with three reactive elements it is

complexity two-terminal networks. This paper studies five-and i . ot e
six-element series-parallel networks with three reactiveele- verified that there is one network quartet with five elements

ments and presents a complete characterisation and graphat and_ four network quartets with Si>_< eleme_nts Whi_Ch may
representation of the realisability conditions for these metworks.  realise non-regular positive-real biquadratic functiohs

The results are motivated by an approach to passive mechardt  each case, the non-regular realisable regions for a bigtiadr
control which makes use of the inerter device. function in canonical form are determined. It is shown that
I. INTRODUCTION the non-regular realisable regions for three of the sixrelet
. . etwork quartets are identical and have a boundary which
A.famous theorem in electrlca_ll networks by_ Bott and;oincides with the realisability curve for the five-element
Duffin [1] showed that any positive-real function COUIdquartet. The fourth six-element quartet is shown to realise

be realised as the driving-point immittance of a networlél different non-regular region from the other quartets.
consisting of resistors, capacitors and inductors onlg dj-

parent non-minimality of the construction has subseqyentl
intrigued many researchers and there were a number of  |l. REGULAR POSITIVE-REAL FUNCTIONS
important papers which followed up on this question, e.jy. [2 , . . .
[3], [4], [5]. Interest in the topic lost momentum in the aarl In th|_s segtlon we recall the concept of regularity and its
1970s due to the growing importance of integrated circuit"OPerties given in [23]. _ o

Recently, a new network element (the inerter) was intro- Defln_|t|0n: A positive-real functionZ(s) is defined to be
duced for mechanical control [6] which has revived interedggularif the smallest value oRe (Z(jw)) or Re (271 (jw))
in passive network realisations. The inerter is a mechanic8CCUrs atv =0 or w = oo.
two-terminal element with the property that the appliectéor ~Lemma 1:Let Z(s) be a regular positive-real function.
at the terminals is proportional to the relative accelerati ThenaZ (s), Z (8s), Z (s—*), Z~'(s) are all regular, where
across the terminals. Applications of the method to vehicle; 5 > 0.
suspension [7], [8], control of motorcycle steering insta- Lemma 2:Let Z(s) be a regular positive-real function.
bilities [9], [10] and vibration absorption [6] have beenThenZ(s) + R andZ~!(s) + R~! are both regular, where
identified. The inerter has been successfully deployed iR is nonnegative.

Formula One racing since 2005 [11]. Lemmas 1 and 2 imply that if a network can only realise
For mechanical realisations, minimising network complexregular immittances, then so will the dual network (if it
ity is important. As such, there is fresh motivation for a-sysexists), the network obtained by replacing inductors with
tematic classification of the realisability conditions ofiple  capacitors of reciprocal values (and vice versa) and the
networks. Within the electrical circuit literature, al@mide network obtained by adding a resistor in series or in pdralle

the powerful and general synthesis results of Cauer, Fostaith the original one.
Brune, Bott-Duffin, Darlington, there was a long-running The next lemma follows from the fact that the impedance
attempt to classify the realisability condition for simpleZ (s) or admittancé” (s) of any network that has all reactive
networks by means of enumeration [12], [13], [14], [15].elements of the same kind hRs (Z(jw)) andRe (Y (jw))
[16], [17], [18], [19], [20], [21], [22]. Many partial restd  monotonic ([26, Chapter 2.2]).
were established but a complete picture was never obtained; emma 3: Any network that has all reactive elements of
even for the apparently simple case of a biquadratic. ~  the same kind can only realise regular immittances.

The present paper is a successor to [23] which formalised | g yyma 4: Any network that has a path between the two
the concept of aegular positive real function, introduced oyternal terminald and1’ or a cut set ([27]) that places

the terminology of a network quartet, and gave a completg,q1/ in different connected parts consisting of one type of
reworking and characterisation of the class of transfoleser oactive element can only realise regular immittances.

networks containing two reactive elements. The preserempap We now focus attention on biquadratic positive-real func-
considers five- and six-element series-parallel networiiks w tions
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where A,B,C,D,E,F > 0. It is well known [14], [28], N
[29] that Z (s) is positive real if and only if
2
o= BE — (\/AF - \/CD) > 0. )

We will make use of the resultant of the numerator and
denomerator in (1) which is given by

K = (AF — CD)? — (AE — BD)(BF — CE). NE dual s
e (UesV,Wew 1)

e (UHV)\\\ /,»”(UHV) .

(Wew b (W < w1

s 8

Ny
Lemma 5:A positive-real biquadratic impedance (1) is

regular if and only if the conditions of at least one of thefig- 1.  Transformations relating members of a network euasnd
following four cases are satisfied: corresponding transformation in the canonical form (3).

Case 1.AF —CD > 0 and

M =E(BF—-CE)—-F(AF - CD) 20, s~1) and duality. Such a family of 4 related networks has
Case 2.AF — CD = 0 and appeared in [22] with the terminology “Untergruppe”.

A2 =B(AE - BD) - A(AF - CD) = 0, It follows from (2) thatZ. (s) is positive real if and only
Case 3.AF —CD <0 and if

A3 = D (AF — CD) — E (AE — BD) >0,

1
=AUV +2— (= + W) > 0.
Case 4.AF — CD <0 and 7 ( )

w

Ay =C(AF - CD) - B(BF - CE) > 0. The resultant ofZ.. (s) is
Lemma 6: A positive-real biquadratic impedance (1) with 1 1
Z(0) = Z (00) # 0,00 (which impliesAF — CD = 0) is K. =4U? +4V? — 4UV(W + W)+ (W — W)

regular. _ _
Lemma 7:A positive-real biquadratic impedance (1) with For any polynomialp (U, V, W) we introduce the nota-
the resultantX < 0 has Re(Z(jw)) and Re (Y (jw)) tion p* (U, V,W) = p(U,V,W~') and p' (U,V,W) =

monotonic, hence is regular. p(V,U,W). We observe thav? = of = 0. and K} =
Lemma 8: A positive-real biquadratic impedance (1) with Kl =K,. Let

any of the parameterd, B, C, D, E and F' equals zero is 1

regular. Moreover, any such impedance can be realised by Ae =AUV —4AV2W — (57 = W)

a series-parallel network with at most two reactive elemmen

o We can now restate Lemmas 5-7 for the canonical form (3):
and two resistive elements.

Lemma 9:Let Z.(s) be a positive-real biquadratic de-

[1I. A CANONICAL FORM FOR BIQUADRATICS AND fined in (3). Then:
NETWORK QUARTETS 1) Z.(s) is regular if and only if at least one of the
The classification of networks is facilitated by the follow-  following four conditions is satisfied:
ing transformations on the impedanZgs): Case 1.W <1 andA. >0,
1) Multiplication by a constant multipliety, Case 2.W < 1 and\{ >0,
2) Frequency scalings — s, Case 3.W > 1 andA? > 0,
3) Frequency inversions — s !, Case 4. > 1 and ;" > 0.
4) Impedance inversiorZ — Z—1. 2) WhenW =1, Z. (s) is regular.

Based on Lemma 8, it is clear that we can restrict further3) WhenK, <0, Z.(s) is regular. . o
analysis of the synthesis problem for biquadratics (1) to Lemma 9-1) defines theegular regionof a biquadratic in
the case thatd, B,C,D,E,F > 0. Using the first two the (U, V)-plane, as shown in Fig. 2. In [23] the following

transformationsZ (s) can be reduced to a canonical form theorem was shown. o _
Theorem 1:A biquadratic impedance (1) can be realised

7 (s) = s +2UVWs + W (U, V,W >0). (3) by series-parallel five-element networks with two reactive
§2 4 (2V/~ /_W) s+ 1/W7 T ' elements if and only if it is regular.
For the realisation of the biquadratic, it is sufficient tetrit IV. FIVE-ELEMENT THREE-REACTIVE ELEMENT
attention to the class in (3). This canonical form was first SYNTHESIS OFTHE BIQUADRATIC
considered in [18]. In [17], Ladenheim claims there are eight series-parallel

Next we observe that frequency inversi(rn<—> s*l) cor- networks which can realise classes of biquadratic immit-
responds to the transformatié# < W ! in the canonical tances which otherwise would require a full Bott-Duffin
form and impedance inversion (duality) corresponds to th&ynthesis. Vasiliu [19] later shows that four of these nekso
transformationsU/ «— V, W < W L. This is illustrated in can be realised by networks of two reactive and three
Fig. 1 where the four networks NN,, N., Ny are related resistive elements. In [17], [19] it is not shown whether the
by interchange of inductors and capacitors (denoted by remaining four networks can realise biquadratic immitesnc



() (d)

2 Ly
Cy
dual
M>o0 R2 C2 "
I
sess L ‘ ‘ st
SO
Ae >0 -~
dual
SRR
7. <0 Ae=0 © ()
0 g.=0 Fig. 3. The series-parallel three-reactive five-elememnivoek quartet that
0 1 2 can realise non-regular biquadratics.
TABLE |
Fig. 2. The regular impedances of (3) with’ € (0, 1). THE REALISABILITY CONDITIONS OF THE NETWORK QUARTET OFFIG. 3

FOR A BIQUADRATIC IMPEDANCE IN THE CANONICAL FORM(3).

which cannot be realised in a simpler manner. Here we

Networks Necessary and Suffii Range of W for

provide the range of parameter values corresponding to cient conditions for a| which  non-regular
non-regular biquadratics in the canonical form which are non-regular (3) to be| region is non-empty
realisable by this network quartet (Theorem 3 and Table I). | _ realisable
_ : : Fig. 3@ | 13=0 W € (0,0.3702)
Theorem 2:All series-parallel networks with three re- Fig 3(b) =0 W e (0.0.3702)
active and two resistive elements can only realise regular Fig: 30 :;"; — W€ (1/0.3702, o0)
immittances except for the network quartet of Fig. 3. Fig. 3(d) 7:;4 —0 W € (1/0.3702, 00)

Proof: The procedure used to reduce to eight series-
parallel networks is not described in [17]. A complete
elimination process based on the regularity concept isngive i
in [30]. m s on the curvey; = 0 (y3 = 0). Furthermore, (3) can only

It can be calculated that the positive real biquadratif® non-regular wheml” e (0,0.3702).

impedance (1) with all parameters positive and the resultan _ Proof: See [31]. _ o U
K +# 0 can be realised as in Fig. 3(a) wifey, Rs, L1, C: The conditions for a non-regular biquadratic impedance in
and C» positive and finite, if and only if the canonical form (3) to be realisable by the network quarte

) of Fig. 3 are summarised in Table I.
D(BE — CD)” — AE* (BE — CD) + A’E*F =0 (4)
V. SIX-ELEMENT THREE-REACTIVE ELEMENT

(the extra inequalityBE — CD > 0 given in [17] for SYNTHESIS OF THEBIQUADRATIC

this network can be seen to be redundant). The realisability ) ) .
conditions for the other three networks can be obtained by Vasiliu [20] claims that, there are in total 16 series-pafal
the transformations < s—!, Z < Z~'. The realisability networks with three reactive elements, which can realise
condition of the network Fig. 3(a) for the canonical form (3)Piguadratic immittances which otherwise would require a
can be derived from (4), which is: full Bott-Duffin synthesis. In this section, a restudy ofshi
topic based on the concept of regular positive-real funstio
Y3 = y3173— = L6 UPW?V? —8UW (2U°W? + 1)V is presented. We go beyond [20] to identify the non-regular

LARWR 4 AUWA 41 =0 realisable regions in théU, V')-plane for each quartet. We
’ will show that the non-regular realisable regions are idaht
where for three of the quartets.
2 2 /
Yak =AVWU =2W (U +UVU? - 1) -1 A. Elimination of the Networks that Can Only Realise Reg-

It is interesting to note that a necessary condition for-real'la" Biquadratics

isability in this quartet is tha/ > 1 or V' > 1. We now Lemma 10:The network shown in Fig. 4 can only realise

describe explicitly the non-regular realisable regionghie regular biquadratic impedances (1).

(U, V)-plane for this quartet. Proof: See [32]. ]
Theorem 3:The impedance (3) can be realised by the Lemma 11:The networks shown in Fig. 5 can only realise

network shown in Fig. 3(a) (Fig. 3(b)) if and only (/, V)  regular biquadratic impedances (1).
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Fig. 5. Three series-parallel six-element networks witheghreactive
elements which based on Lemma 11 can only realise regulaatigtics. .
dual
Proof: See [32]. [ ] © ®)
Theorem 4:A non-regular biquadratic immittance can be
realised by a series-parallel network with three reactive a
three resistive elements if and only if it is realisable byngo @ (d)
network in the four network quartets of Fig. 6. Ly o
Proof: The proof makes use of Lemmas 10, 11 and the Ry dual
properties of regularity introduced in Section Il. The deth Ry C2 T
proof is provided in [30]. ]

B. The Non-Regular Realisable Region of the Network Quar-

tet Fig. 6-1, 11, 1lI ’—H—%
By the method introduced in [20], the realisability condi- \_WV_thJ o m

tions of the network Fig. 6-I(a) for (1) can be derived, which

are: (c) (b)
B?—4CA>0 (5)
and
) @ (@
C(E—-Cu)®>F(B(E-Cu)—AF)>0, (6) L v
where " 17, dual Wm
D(B+vVB?2—41AC Rs 72
W= ( ) : (7) —
2AC
It can be calculated that. = 0 (\* = 0) is equivalent to s l v sos

either\._ =0 or A,y =0 (\;_ =0or \;, =0), where
Aex =2VIW — (U £ U2 =14+ W?2). »’\/\/\/—{ [jgi?}.wm
dual

Lemma 12:Any (U,V,W) satisfyingW < 1, U > 1,

Aee >0 (W > 1,U > 1, X3_ > 0) is inside the regular © (b)
region. Fig. 6. The four network quartets of the series-parallete¢hreactive six-
Proof: See [32] n element networks that can realise non-regular biquadratic

Theorem 5:A non-regular biquadratic impedance (3) is
realisable by the network of Fig. 6-1(a) if and onlylf > 1,



W=0.25

N —0 TABLE 1l
2 - THE REALISABILITY CONDITIONS OF THE NETWORK QUARTETS OF
\ FIG. 6-1,11,I11 FOR A BIQUADRATIC IMPEDANCE IN THE CANONICAL
\ ‘-\ FORM (3).
\\ i
\ Networks Nec. and Suff.| Range of W for which
conditions for a| non-regular region is non
\ non-regular (3) to| empty
\ be realisable
_ \ Fig. 6-LIL1M(a) U>1,v_ >0 | W € (0,0.3702)
Yo+ =0 Fig. 6-LILIKb) | V> 1,40 >0 | W€ (0,0.3702)
Fig. 6-1,I1,1T(c) U>1,vi_ >0 | W € (1/0.3702, c0)
, . Fig. 6-1,11,111(d) V>1,7 >0 | We (1/0.3702, c0)
e =
'ri— =0
_ A =0
\\\\\,\\7 TABLE Il
] THE REALISABILITY CONDITIONS OF THE NETWORK QUARTET OF
FIG. 6-1V FOR A BIQUADRATIC IMPEDANCE IN THE CANONICAL FORM
00 1 2 (3).
U
Networks Realisability Conditions
Fig. 7. The non-regular impedance (3) that can be realisatidoypetworks - ty - > UW
of Figs. 6-I(a), li(a) and Ill(a) withW € (0,0.3702). Fig. 6-IV(a) | {(U,V)|3z € (O,mm(le ,7)) : fa(z) = 0}
Fig. 6-IV(b) | {(U,V)|3z € (o,min(1,w2, %)) (@) =0}
) , ) Fig. 6-IV(c) | {(U,V)|3z € (0,min(1, &5, X)) : f&(x) =0}
vs— > 0. (See hatched region of Fig. 7.) Moreover, this non— o - ( — TV ) —
regular region is non-empty if and only i’ € (0,0.3702). [ F9- &NV@ | {UV)[5z € <O’m'”(1’ w2 W)> Hfa (@) =0}

Proof: We first rewrite the realisability conditions for
the network of Fig. 6-I(a) for the canonical form (3). Note

that (5) is equivalent td/ > 1 and the right hand inequality pe checked that the realisable region in (beV')-plane for

in (6) is equivalent toy;— > 0 or y31 > 0, depending on  the canonical form (3) of the network quartets of Figs. 6-I1
whether the— or + sign is chosen fop. in (7). ~_ and Il differ and are also different from the network quarte

- WhenW <1, we first consider the case that negative sigipf Fig. 6-1. However it turns out that the set of non-regular
is chosen for.. The left hand inequality in (6) is equivalent yigyadratics which are realisable by these network queartet

to v6 = Y6+ 76— > 0, where is the same. The conditions for a non-regular biquadratic
_ 2 Y T impedance (3) to be realisable by the network quartets of
Yor = 2VW - W (U v 1) (U VU 1) " Fig. 6-I, II, Il are summarised in Table II.

which is equivalent tdJ > 1, (U, V) is aboveys,. = 0 o C. The Non-Regular Realisable Region of the Network Quar-
below~s_ = 0. It can be calculated that the resultant of the Fig. 6-IV

polynomialsys— and A._ is ) )
For any polynomial f(z,U,V,W) we introduce

27 (W2 (\/UQ - U) VU1 -V — 1+ W2) the notation f*(z,U,V,W) = f(z.,U,V,W~'), and
_ _ fi(z, U, V,W) = f(z,V,U, W). The complete realisability
which cannot equal zero. Further, it can be checked th@bnditions of the network quartet of Fig. 6-IV for
the curveys- = 0 is always above the curvd.. = 0 the biquadratic canonical form (3) can be deduced
(see Fig. 7). Sinceys, < v, if (U,V) is in the non- from [20]. These are summarised in Table Ill, where
regular region forlV < 1, v > 0 is equivalent toy;— < 0 f3(z) = 2° + 12 + Iy — 3 = 0, and
(by Lemma 12), which is then redundant. For the case that
positive sign is chosen fqr, sinceys,. > 0 impliesys_ >0 11 =12V —16V* — 3 —4V*W? + 16UVW — 8VUW,
we do not find any additional non-regular region in thej, = SU?W?2 — SUVW (4VUW — W? +1 — 4V?)
(U, V)-plane. Based on Theorem 3 we know that = 0 _8V2 3.
can be outside of the regular region with < 1 if and
only if W € (0,0.3702). This proves the result for the case
W < 1. The conditions of Table Il can be made more explicit
WhenW > 1, it follows from the proof of Theorem 3 that using the method of sturm chains, though the polynomials
the curvesysy = 0 are inside the regular regiokl > 0. in the sturm sequence are quite complex. Fig. 8 shows
Then based on Lemma 12, neithey_ > 0 nor vs4 > 0 the realisable regions in th@/,V)-plane whenW equals
covers any non-regular region witly > 1. m 0.35 for the network of Fig. 6-1V(a). Part of the boundary
The realisability conditions for the biquadratic (1) foeth curve for the non-regular realisable region for the network
networks of Figs. 6-1I(c) and lli(c) are given in [20]. It can of Fig. 6-1V(a) is determined by the zero set of a high order
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Fig. 8. The whole region in théU, V)-plane that can be realised by the
network of Fig. 6-1V(a) withiW = 0.35.

[19]

polynomial~g involving U, V andW. It is to be noted that [20]
the non-regular regions which are realisable by the quartfzrl]
of Fig. 6-1V are different from the previous three. The full
characterisation of the realisable regions for this quate
given in [32].

[22]

VI. CONCLUSION
[23]

This paper studies five- and six-element series-parallel
two-terminal networks with three reactive elements angy)
presents a complete characterisation and graphical mpres
tation of the realisable conditions for these networksslt i?®]
shown that the non-regular realisable regions for three @fg)
the six-element network quartets are identical and have a
boundary which coincides with the realisability curve fort?7]
the five-element quartet. The fourth six-element quartet igg)
shown to realise a different non-regular region from theeoth
quartets.
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