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Abstract— This paper demonstrates a method for finding the
cost function and state observer to be used in model predictive
control (MPC) so that when constraints are inactive a pre-
existing low order controller is reproduced. The MPC controller
thereby inherits its desirable properties. This can be used as
a baseline for further tuning. The available degrees of design
freedom are explored, in order to facilitate, as appropriate,
exploitation of constraint-handling, offset-free and redundancy
management capabilities of MPC.

I. INTRODUCTION

Model predictive control (MPC) has some attractive prop-
erties with respect to other control technologies. Using con-
strained optimisation, constraints can be explicitly handled
[1], allowing the domain of attraction of equilibrium points
to be extended (yielding a possible expansion of plant
capacity), or the use of cheaper, more tightly constrained
actuators. Furthermore, with careful formulation, redundancy
that might be present in the plant can be exploited, either to
increase working capacity or alternatively to provide some
degree of robustness to failures [2], [3].

Due to modern optimisation algorithms [4] and techniques
such as explicit MPC [5], combined with ever improving
computers, the relatively high computational complexity
associated with MPC is becoming a less significant barrier
to its adoption. Nevertheless, many applications where MPC
could be a practical option already have an existing controller
that exhibits desirable performance properties. A replacement
MPC controller would have to be tuned to perform at least
as well. Therefore, a practical starting point for controller
re-design would be an MPC formulation that, in the absence
of constraints, is equivalent to the original controller.

The work of [6], further developed in [7], derives an ana-
Iytical method for obtaining an observer-based realisation of
an arbitrary linear time-invariant, stabilising output feedback
controller. The Cross Standard Form (CSF), introduced in
[8], is a generalised plant model constructed with weightings
such that the optimum Hy and H ., controllers are both equal
to the observer-based realisations of a pre-specified output
feedback controller K of order greater than or equal to the
order of the plant with the goal of improving robustness
through consideration of multiple objectives. A discrete-time
variant is defined in [9], whilst in [10] the CSF is generalised
to accommodate the case where the baseline controller is of
lower order than the controlled plant.

It is proposed in [11] that such a realisation be used
as the starting point for a predictive controller which, by
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construction, will exhibit the same closed loop behaviour
as the original feedback controller in the absence of active
constraints.

This paper builds upon the work of [11]. However, it
differs from previous work by addressing the effects that
the choices of the non-unique realisation of the original
controller have on a constrained predictive controller. The
issues addressed include the decision between reverse en-
gineering in continuous time, or discretising before reverse
engineering; the allocation of the closed loop poles between
the observer error dynamics and the pure state feedback
dynamics; and the extra degrees of design freedom when
the original controller is of lower order than the plant and
constraints are enforced.

II. OBSERVER BASED CONTROLLER REALISATIONS

We use the results of [10] for low order controllers as the
basis for our MPC controller design. However, it is conve-
nient to retain the LQG formulation of [7] for generating an
MPC controller.

Let us consider a plant model and existing conventional
controller with discrete-time state-space representations

respectively, where the plant model is of order n and the
controller is of order ng < n.

There are two main structures for discrete-time observers.
These differ in how the residual is calculated. The predictor
structure provides an a priori prediction of the plant state
by using the output measurements from the previous time
step. By using Z(k|k — 1), the estimate of x at time k given
measurements from time k£ — 1 as the boundary condition,
the optimisation associated with the MPC controller can
commence before time k, thus allowing longer for the
optimisation to complete. Given an observer gain Ky, the
predictor formulation is:

B(k+1]k) = (A—K;C)a(k|k—1)+ Bu(k)+ K y(k). ()

The state estimate &(k|k — 1) is then used for control
purposes.

A controller with non-zero Dy cannot be directly re-
produced using the estimate from a discrete-time predictor.
Techniques to avoid this limitation are described later on.
However, let us assume that some transformation on (or
modification to) the system has already been performed to
ensure that the controller is strictly proper, yielding:



By considering a transformation 7" such that the controller
state xx (k) = TZ(k|k — 1) and solving for the (positive
feedback) gains in an observer-based realisation such that
the closed loop system remains the same (see [6], [7] for
derivation), it is possible to obtain controller and observer
gains, respectively, of

K.=CkT
Ky =T'Bg

(4a)
(4b)

where T is a right inverse (recalling that ng < n) of T

The filter structure provides an a posteriori filtered es-
timate of the current plant state by using measurements
from the current time step to influence the estimate of the
current state. It is possible to reproduce a controller with
non-zero Dy using a discrete-time filter, conditional on
there being a zero at z = 0 on every channel — i.e. that
Dy = CKA;BK [6]. In state space form:

&k + 1|k) = (A — AK;C)z(k|k — 1)
+ Bu(k) + AK y(k)
HkIK) = (I — KpC)a(klk — 1) + K (k)

(5a)
(5b)
Given a valid K (z) with feedthrough terms and zeros at z =
0 on all paths, and by considering the same transformation
as for the predictor formulation, the feedback and observer
gains (assuming no delays in the plant) are:
K.=CgT+ DgC
K;=A""(T"Bx — BDg).

(6a)
(6b)

In both cases T is the solution to the generalised Riccati
equation,

T 1] Aq H ~0 )

where A is the “A” matrix for the original closed loop
system, e.g. if the filter formulation is to be used, or a loop
shifting transformation has been used

A, _ |[A+BDkC BCk
ol = BxC Ax |-

There are multiple solutions to (7), obtainable using invari-
ant subspace methods [12]. The partition of the invariant
subspaces of A used to obtain a solution 7" determines
which poles of A appear in the state feedback dynamics
and which appear in the observer error dynamics [6], [7].

The resulting observer based controller is a (non-minimal
when ng < n) realisation of the original controller. The
closed loop system using the observer based realisation of the
controller will contain n —ng poles that did not exist in the
original closed loop system. These correspond to observer
error dynamics in the nullspace of 7', and thus are “invisible”
through K., although can affect the closed loop system if
K. were changed. They are freely assignable by the system
designer through the choice of T used to calculate K -
Defining T as the Moore-Penrose pseudo-inverse and 7+
as the orthogonal complement to 7', for any compatibly sized
matrix X:

®)

TH=T"+T"X. €))

By separating the observer modes into those in the row-space
of T" and those in the null-space of 7" by using the similarity
transform

(10)

zvz{ffﬁ, N~'=[Tt T+

on the observer matrix Ap,. = A-K fC' (for the predictor
formulation) or Ag = A—AKC (for the filter formulation)
and substituting from (7), the “free” poles can then be
assigned, as shown in [10], by calculating X in (9) as a
predictor-form observer gain for the system:
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for the predictor and filter structures respectively.

III. MPC IMPLEMENTATION

The cost function for the MPC controller must be con-
structed so that the optimum solution is equivalent to the
estimated state feedback K .2 obtained for the discrete-time
observer based controller. A zero-value infinite horizon cost
function can trivially be constructed to ensure that u(k) =
K.i(k) is the optimal solution by using a stage cost
—KCTR} {x(k)}

13)

“’”f e T e

= i

where R > 0 is a weighting matrix [13].

A standard MPC implementation performs an optimisation
over a finite, but rolling horizon. A finitely parameterised
infinite horizon cost function can be obtained by using the
candidate cost function over a finite horizon of length N and
using the solution to the discrete algebraic Riccati equation
P as a terminal cost weighting [14], [15]. The cost function

is then: N1
<Z E(k)) + 2T (N)Pz(N).
k=0

Because this cost function is designed to have an optimum
cost of zero, P will be a zero matrix of appropriate size.
Therefore no terminal cost need be added to the finite horizon
optimisation.

Polytopic or ellipsoidal constraints [16] can subsequently
be added to the MPC controller as desired. In the presence
of constraints, the stabilising properties of the original con-
troller might not be inherited, therefore, the usual technique
of applying a terminal constraint as in [17] should be applied
if theoretical stability guarantees are required.

(14)

IV. DESIGN DECISIONS AND PROCEDURES

The route from the original plant and controller pair to
an effective MPC controller involves a number of design
decisions that significantly affect the performance of the
closed loop system and how effectively constraints are en-
forced. If poor choices are made, then it is very easy to



obtain a structure that is little more useful than an elaborate
realisation of the original controller. In this section, these
decisions and their consequences are outlined.

A. Discretisation

An existing controller might be specified in continuous
time, however most practical implementations of MPC oper-
ate in discrete-time with sampled data. The procedure of cast-
ing a feedback controller into an observer-based realisation
can work for both continuous time and discrete-time systems.
So far, we have assumed everything is already discretised.
However, when the plant or the original controller is specified
in continuous time, the question arises as whether to perform
the reverse engineering procedure in continuous-time or in
discrete-time.

In the continuous-time case, a continuous-time observer is
obtained and the estimated state sampled. If the gain used
to form stage cost (13) is the same as the continuous time
state feedback gain, the closed loop system behaviour might
be very different to that when using the original controller.
Better matching can be achieved by finding an “equivalent”
discrete-time cost weighting matrix [18] that minimises an
integral cost function whilst being formulated as a discrete
time problem as done in [11]. This however, changes the
effective gain of the unconstrained controller such that its
rows are no longer in the row space of 7T'. As a consequence,
the n — nx poles corresponding to error dynamics in the
nullspace of T will affect even the unconstrained closed
loop system. This added complication constitutes a strong
argument for directly obtaining the discrete-time observer-
based realisation.

If the discrete-time observer-based realisation is used, a
zero-order hold method best models how a simple MPC con-
troller will drive the real plant. For the controller, it might be
preferable to use a first-order hold or a Tustin transformation,
particularly at low sampling frequencies. These can introduce
non-zero Dy terms even if none existed in the continuous
time controller. This process should, therefore, be performed
before any transformations to ensure strict properness.

B. Ensuring a Strictly Proper Controller

If a predictor structure is used for the observer, the
controller to be reproduced must be strictly proper—the D
matrix must be zero. We outline two methods for working
around this restriction for the case where Dy is non-zero.

1) Loop Shifting: The controller feedthrough term can be
applied directly to the plant [19], leading to the following
modified plant and controller:

G(z):{A+léDKC§} (15a)
Ko(z) = {‘é—ﬂBTK} . (15b)

The closed loop system is not modified. However, the direct
feedthrough component incorporated into the plant model
uses the measured output, whilst the MPC prediction uses
the observer output (the output values cannot be extrapolated

over the prediction horizon without the estimates of unmea-
sured states). Input constraints might therefore be violated,
or, control can be overly conservative when the observer error
y(k) — Ci(k|k — 1) is large in magnitude.

2) Unit Delay or Low Pass Filter: Adding a unit delay
or a low pass filter in series with the original controller
prior to obtaining the observer-based realisation will ensure
a strictly proper K’O(z). By avoiding a direct feedthrough,
the MPC controller directly manipulates the plant input u (k)
rather than an estimate of the input. This allows hard input
constraints to be imposed. The conventional controller Ky(z)
must be sufficiently robust to tolerate the adverse effects on
stability margins that the phase shift due to this modification
might have.

C. Ensuring Correct Zeros in Controller

If a filter structure is used for the observer, the controller
model must have a zero at z = 0 on every channel for correct
replication. If K(z) does not include these zeros, success
might be achieved by introducing a (stable) dipole of the

form,
Wz

Wz-1
where W is a “large” number, into the open-loop controller
model. This introduces the required zeros whilst at the same
time has minimal effect on open loop gains and phase shifts
of the unconstrained controller. As long as the new poles
introduced into the closed loop system near the origin are
placed in the observer error dynamics, acceptable perfor-
mance and robustness to disturbances and parasitic delays
can be achieved.

(16)

D. Fixed Poles (from A1)

The allocation of the closed loop poles between the ob-
server error and the (unconstrained) state feedback dynamics
is an important design decision when implementing an MPC
controller in this manner. When discretisation occurs before
obtaining the observer-based realisation, all arrangements
should give identical closed loop performance. Each com-
bination is merely a different non-minimal realisation of
the original discretised controller. However, there can be
a marked difference in the observer error dynamics. As
previously stated, in the presence of constraints, this error
can manifest itself as a violation of constraints, or overly
conservative control (depending on the sign of the error).
These types of error are particularly marked when using a
formulation where Dyy is directly fed back to the input of
the plant, bypassing the MPC controller, whilst the MPC
controller has to enforce constraints using an estimate, CZ
from the observer.

For meaningful predictions of the state trajectory to be
made, the quality of the observations must be high. Intuition
would therefore suggest, subject to keeping conjugate pairs
together, and not attempting to shift uncontrollable modes
between the feedback dynamics and the observer dynamics
[71, that the fastest of the available closed loop poles be allo-
cated to the observer error dynamics. However, a modicum



of common sense must be applied, especially if poles close to
the origin have been introduced into the controller to ensure
that it be strictly proper — if these are driven into the left half
of the unit disc in the closed loop system, the observer will
become susceptible to high frequency noise. Additionally,
if a dipole has been introduced into the controller, poles
introduced into the closed loop system near the origin must
appear in the observer error dynamics otherwise the closed
loop system will become extremely sensitive to the delay
inevitably introduced by the online calculations which must
occur after each sampling instance.

E. Free Poles (from choice of X)

The poles introduced as a consequence of the observer
being of higher order than the original controller affect
the MPC controller performance, despite their associated
modes being “invisible” through the initial calculated K.
The solution to the conventional, linearly constrained MPC
problem is piecewise affine with respect to the current
measured state [5]. When constraints become active the gain
component of this function will change, and the observer
error modes which were previously invisible in the closed
loop system will have effects. Thus the system designer
must choose appropriate positions for these newly introduced
closed loop poles.

Also, if a continuous time realisation is used, and an
“equivalent cost” formulation obtained, the unconstrained
feedback gain will not be equal to the continuous time
feedback gain, thus error dynamics in the nullspace of T’
might affect the plant input.

Rather than direct pole placement, one might use prior
knowledge about noise covariances to calculate a discrete-
time Kalman filter for the system (11). The filter gain can
then be used as X in (9). This allows a more intuitive design
procedure if the measurement noise and input disturbance
covariances can be estimated.

V. CONTROLLERS WITH INTEGRAL ACTION

A controller might exhibit integral action as a means of
ensuring offset-free control despite persistent disturbances.
Naive reproduction of such a controller through the reverse
engineering procedure would reproduce the input/output
characteristics, however the quality of the observer estimates
would be severely compromised in the presence of a persis-
tent disturbance which would manifest itself as a bias on
each state estimate. This is particularly problematic for a
constrained predictive controller, as poor predictions made
from biased state estimates may lead to overly conservative
control action, or control action that leads to inevitable
infeasibility.

To remedy this, the plant model can be augmented with
a persistent input disturbance (although other models are
possible [20], [21]). By considering an augmented state
vector [J;T dT]T with plant dynamics of the form

A B|B
Gz)=1|0 I|0 (17)
c 0o

(or equivalent if using a filter observer structure) and consid-
ering the original controller Ky as an observer on the trans-
formed state xx = T [37 JT]T, the reverse-engineering
process can be directly applied, reproducing the original
dynamics perfectly, but providing more accurate observations
of Z under persistent disturbances, and an estimate of these
disturbances, d. Further tuning is then possible by replacing
the persistent disturbance model with a more general model
[20], [21] if required.

VI. ALTERNATIVE COST FUNCTION FORMULATIONS
A. Degrees of Freedom in R and Choice of Norms

The above MPC formulation minimises a weighted
quadratic cost function of the input and the state. When
constraints are active preventing this cost from reaching zero,
there is a degree of design freedom in the choice of R,
allowing a weighting to be placed on each input channel.

When dim(u) > 2, the choice of R affects the constrained
solution by prioritising which directions of u should be
matched to K.z most closely when a perfect match is
impossible without violating constraints. If R = R(k) is
allowed to vary throughout the prediction horizon, then
weightings can be chosen to prioritise matches at different
points in the horizon. It would also be valid [22] to minimise:

N-1

> 1R(u(k) — Kea(k)llp. € {1,00}.

k=0

(18)

As long as no constraints are active, zero cost will still be
achieved when u(k) = K.z(k). However, when constraints
are active, minimisation of the 1-norm minimises the ab-
solute sum of errors whilst minimisation of the co-norm
minimises the worst case error.

B. Trajectory Matching

It is questionable whether there is any meaningful an-
swer to “which input channel do I want to match to the
original controller output most closely?”. The design goal
is to reproduce the time-domain response of the original
controlled system as closely as possible in the absence of
constraints, and reproduction of the control action is merely a
means to an end. Instead, some measure of the error between
the constrained trajectory and the prediction of the nominal
trajectory under the unconstrained state feedback gain K,
can be penalised. By decoupling the desired trajectory from
a prescribed control allocation, redundancy of actuators can
also be exploited in a natural manner. An appropriate cost
function could take the form

Q: z(1) — /ilflbx(O) l?u(())
Q (o) - Aa) ||| R N )
0 (+() - Aa(0) Fu(N =],

where A, = A+ BK,. and with weightings Q and R chosen
to prioritise minimising trajectory error over minimising
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Fig. 1. Simulation results for reverse-engineered single axis attitude control
system subject to a step disturbance of 0.1 Nm using a predictor-form
observer

control inputs. Q might also be chosen to prioritise the
minimisation of errors in certain modes, for example, it
might be preferable to prioritise minimisation of any unstable
modes. The actuators can also be prioritised by the choice
of R. Redundancy can then be exploited automatically in
normal operation, and under actuator failure all that is needed
is an external fault detection, isolation and recovery (FDIR)
algorithm to trigger a change of constraints to make a “best
effort” at maintaining nominal performance.

VII. EXAMPLE

We demonstrate the reverse engineering technique on
the discrete-time controller with integral action from [23,
Example 9.4.1] for a single axis attitude control system with
angle measurement only. The state-space realisation of the
conventional controller with a sampling time of 0.25 s is

1412 —0.8235 | 32
Ko(2)lp,—g25 = | 05 0 0 (20)
—-13.01  26.14 | 871

whilst the plant is modelled as a double integrator with a
persistent input disturbance. We introduce a redundant torque
pair that is left idle by the original controller. The controller
has poles at 1 and 0.41, zeros at 0.98 and 0.91, and the
feedthrough component is large.

Figures 1 and 2 show the system response and observer
error dynamics, respectively, to a step disturbance of 0.1 Nm
simulated using the MPT Toolbox [24] and control weight-
ings obtained by reverse engineering the original controller
first by adding a unit delay to ensure strict properness (solid
line), then by using loop shifting (dash-dot line). Addition-
ally, when using loop shifting, the plant input estimated from
the observer values (and thus the value on which constraints
would be enforced) is plotted (dotted line) alongside the
actual input to the plant (dash-dot line).

Adding a full unit delay reduces the damping of the closed
loop system as can be seen in Figure 1. On the other hand,
when using loop shifting, the error transient on the attitude
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Fig. 2. Observer error transients for reverse-engineered single axis attitude
control system subject to a step disturbance of 0.1 Nm using a predictor-
form observer

angle estimate, shown as the error on state 1 in Figure 2,
is large enough such that when amplified by Dy the error
between estimated input and actual input is of an order of
magnitude similar to that of the actual input. This means that
constraints will be difficult to enforce correctly.

Therefore the filter observer form must be used and a
dipole introduced (with subsequent care needed to ensure
putting a pole near z ~ 0 in the observer). Figure 3 shows
the response of the attitude angle to a step disturbance of
0.1 Nm for:

« unconstrained reproduction of the baseline controller in
series with a dipole and a parasitic delay of 0.1 s to
represent the MPC calculation time (dotted line);

o torque constraints of 0.125 Nm, only one thruster pair,
with parasitic delay (dash-dot line);

o torque constraints of 0.125 Nm per thruster pair, with
extra thruster pair allowed, but still penalising error
from original single torque pair feedback, with parasitic
delay (thin dashed line); and

« torque constraints of 0.125 Nm with trajectory match-
ing as in (19) with Q = diag[1000, 1000, 1000] and
R= diag[1, 10] and parasitic delay (solid line).

The time domain response with the dipole introduced and
a delay of 0.1 s introduced to simulate the MPC processing
time is virtually indistinguishable from the original closed
loop system. Input constraints can be imposed. If there
is redundancy and a saturation is incurred, even whilst
penalising error from the original state feedback law, the
second torque pair is used to reduce the cost (thin dashed
line). Attempting to match a state trajectory rather than an
input trajectory allows the second torque pair to be used in
order to match the output response of the original closed
loop system (solid thin line).

VIII. CONCLUSIONS

This paper has outlined some of the design decisions that
must be made when using the observer based realisations
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of [6], [7], [10] to form the basis of a constrained MPC
controller. For most predictable behaviour it is strongly
recommended to discretise the plant model and original
controller and obtain a complete discrete-time observer based
realisation to work from. To enforce hard input constraints,
either an observer structure with feedthrough must be used,
or the controller K(z) should be transformed to be strictly
proper by adding a unit delay, or a low pass filter in series
subject to the original controller being sufficiently robust to
tolerate this. To ensure good predictions, the fastest closed
loop poles must correspond to the modes of the observer
error dynamics. Additionally, by aiming to match the state
trajectory of the original controller rather than the input
actions, we can exploit actuator redundancy.

Further work is needed to investigate the effectiveness
of this procedure for obtaining an initial MPC controller
design for large MIMO systems. Additionally, further work is
required to investigate approximations of arbitrary controllers
without using cross terms between input and state in the cost
function.
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