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Abstract— In this study, we consider an unknown discrete-
time, linear time-invariant, autonomous system and charac-
terise, the minimal number of discrete-time steps necessary
to compute the asymptotic final value of a state. The results
presented in this paper have a direct link with the celebrated
final value theorem. We apply these results to the design of an
algorithm for minimal-time distributed consensus and illustrate
the results on an example.

I. INTRODUCTION

Linear systems theory has played a key important role
in many technology advancements in various areas like
aerospace, communications, networks and computer engi-
neering. A particular application of linear systems theory lies
in the design of efficient distributed consensus algorithms
and this problem has received increasingly more attention in
recent years ([14], [15], [16], [17], [18] give a comprehensive
introduction to this topic summarising recent developments
in the multi-agent consensus problem). In these papers, the
proposed algorithms ensure that each agent’s state reaches
consensus asymptotically. From a practical point of view
however, requiring infinite (or arbitrarily long) time to obtain
the final consensus value of the system is unsatisfactory. In
[11], an algorithm for computing the final consensus value
within a finite number of discrete-time steps is proposed
based on the accumulation of a finite number of state values
when the system is successively started at different initial
conditions.

This paper extends the results in [11] by characterising
the minimal time which is needed to compute the asymptotic
final value of a state in the system using only the minimal
number of successive values of this state. The paper is or-
ganised as follows: after defining our notations in Section I-
A, the considered system model and problem formulation
is introduced in Section I-B. Section II proposes a method,
which allows to compute in finite time the final value of an ar-
bitrarily chosen state of the considered model. These results
are obtained using the final value theorem and the concept of
minimal polynomial of a state. Section III contains the main
results of this paper. These results allow one to characterise
the minimal number of successive discrete-time values of a
state necessary to reconstruct the minimal polynomial of a
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state and further to compute the asymptotic final value of
this state. Finally, an application of these theoretical results
to the linear decentralised discrete-time consensus problem
is proposed in Section IV. These results are contrasted with
those of [2] and it is shown that the proposed method allows
to compute the final value of an arbitrarily chosen state using
much less information and discrete-time steps. Conclusion
and future works are given in Section V.

A. Notation

For a matrix A ∈ RM×N , A[i, j] ∈ R denotes the
element in the ith row and jth column, A[i, :] ∈ R1×N

denotes its ith row, A[:, j] ∈ RM×1 denotes its jth column
and A[i1 : i2, j1 : j2] ∈ R(i2−i1+1)×(j2−j1+1) denotes
the submatrix of A defined by the rows i1 to i2 and the
columns j1 to j2. For a column vector α ∈ RN×1, α[i]
denotes its ith element. Similarly for a row vector β ∈
R1×N , β[i] denotes its ith element. We denote by eTr =[
0 . . . 0 1rth 0 . . . 0

]
∈ R1×N .

B. Problem formulation

We consider the discrete-time LTI system

x(k + 1) = Wx(k),

y(k) = eTr x(k) = xr(k)
(1)

where x(k) =
[
x1(k) x2(k) . . . xN (k)

]T ∈ RN×1,
W ∈ RN×N , and y(k) represents the observation at time
k of an arbitrarily chosen particular state xr(k) ∈ R. In
the rest of this paper, we assume that both W and x(0) are
unknown and will provide theoretical results concerning the
minimal number of discrete-time steps required to compute
the final value φr = limk→∞ xr(k) of an arbitrarily chosen
state xr. Before diving into the statement and proof of the
results of this paper, we first recall some fundamental results
concerning Jordan block decomposition of matrices as these
will be intensively used in the proofs.

C. Polynomial of Jordan blocks

Definition 1 (Jordan block decomposition, [1]): For any
square real matrix W ∈ RN×N , there exist a nonsingu-
lar matrix S such that W = SJS−1 ∈ RN×N , with

J =


J1

J2

. . .
Jl

, Ji = diag{Ji1, Ji2, . . . , Jimi},



and Jij =


λi 1

λi 1
. . . . . .

λi

 ∈ Cnij×nij , such

that
∑l
i=1

∑mi

j=1 nij = N and λi, i = 1, . . . , l are
the distinct eigenvalues of W . The nonsingular matrix
S has the following form S =

[
S1 S2 . . . Sl

]
,

in which Si =
[
Si1 Si2 . . . Simi

]
and Sij =[

sij1 sij2 . . . sijnij

]
, where sij1 are the right eigenvec-

tors of W ,

Wsij1 = λisij1,

and sijk 6= 0 are defined by the following linear equations
for k ≥ 2

(W − λiI)sijk = sij(k−1).

sijk are called the generalised eigenvectors of W .
Let T = S−1 and assume T =

[
TT1 TT2 . . . TTl

]T
,

in which Ti =
[
TTi1 TTi2 . . . TTimi

]T
and Tij =[

tTij1 tTij2 . . . tTijnij

]T
with the same partitions as ST .

II. DECENTRALISED FINAL VALUE THEOREM

In this section, we propose an algorithm for computing
the final value of an arbitrarily chosen state xr of eq. (1)
using the minimal number of discrete-time steps, provided
that the coefficients of the minimal polynomial of this state
are known.

We first give some definitions about matrices and polyno-
mials: if p(t) = tk + βk−1t

k−1 + · · · + β1t + β0 is a given
polynomial, then one can define p(A) = Ak + βk−1A

k−1 +
· · ·+β1A+β0IN for any A ∈ RN×N . We call the polynomial
monic if the coefficient of the largest order term is 1. We then
give the definitions of the minimal polynomial of a matrix
and of the minimal polynomial of a state.

Definition 2 (Minimal polynomial of a matrix): The min-
imal polynomial associated with a matrix W ∈ RN×N is
denoted by q(t) and is defined as the unique, minimal degree
monic polynomial which satisfies q(W ) = 0.

Definition 3 (Minimal polynomial of a state): For a dis-
crete time system satisfying eq. (1), the minimal polynomial
associated with state xr ∈ R is denoted by qr(t) and is
defined as the unique, minimal degree monic polynomial
which satisfies eTr qr(W ) = 0.

Remark 1: The polynomial of a state is not necessarily
the same as that of a matrix, moreover, qr(t) divides q(t)
(see [2] for a proof of these statements).
In the following parts of this section, we are going to
characterise the explicit form of the minimal polynomial
associated with an arbitrarily chosen state xr. From eq. (1),
we have

xr(k) = eTrW
kx(0) = eTr SJ

kTx(0), (2)

where T = S−1. Based on the Jordan block decomposition

(see Section I-C), we have, for all k:

Jkij =



λi

λi
. . .

λi

+


0 1

0 1
. . . . . .

0



k

=


λki

(
k
1

)
λk−1
i . . .

(
k

nij−1

)
λ
k−nij

i

λki
(
k
1

)
λk−1
i . . .

(
k

nij−2

)
λ
k+1−nij

i

. . . . . .
...

λki
(
k
1

)
λk−1
i

λki

 ,
(3)

where (
k

i

)
=
{

k!
i!(k−i)! for k ≥ i

0 otherwise.

Now, let eTr S = eTr
[
s11 s12 . . . s1m1 s21 . . . slml

]
, γr =

[
γr11 γr12 . . . γr1m1

γr21 . . . γrlml

]
∈

R1×N , γrij ∈ R1 ×nij and Tx(0) , β =[
βT11 βT12 . . . βT1m1

βT21 . . . βTlml

]T ∈ RN×1,
with βij ∈ Rnij×1. This implies that xr(k) in (2) could be
rewritten as

xr(k) =
l∑
i=1

mi∑
j=1

γrijJ
k
ijβij

 . (4)

Using eq. (3), each term in eq. (4) can be shown to have the
following expression:

γrijJ
k
ijβij =

nij−1∑
t=0

(
nij−t∑
s=1

γrij [s]βij [s+ t]
(
k

t

)
λk−ti

)

=
nij∑
h=1

γrij [h]βij [h]λ
k
i +

nij−1∑
h=1

γrij [h]βij [h+ 1]
(
k

1

)
λk−1
i

+ . . .+ γrij [1]βij [nij ]
(

k

nij − 1

)
λ
k−nij

i

, gij(λi, k) + g
(1)
ij (λi, k) + . . .+ g

(nr
ij−1)

ij (λi, k),
(5)

in which gij(·, ·) : C× Z→ C, and g(nr
ij−1)(·, ·) represents

the (nij − 1)th derivative of gij(·, ·) with respect to λi, and
nrij ≤ nij . Consider

∑nij−1
r=1

∑mi

j=1 g
(r)
ij (λi, k) = Gi(λi, k)

and notice that
(

k
nr

ij−1

)
= k(k−1)...(k+2−nr

ij)

(nr
ij−1)(nr

ij−2)...1 ∝ k
nr

ij−1. This

implies that Gi(λi, k) ∝ kn
r
i−1, in which nri = maxj{nrij}.

Based on eq. (5), eq. (4) becomes

xr(k) =
l∑
i=1

Gi(λi, k) ,
lr∑
i=1

vTi (k)Ĝi (6)

in which Ĝi ∈ Rnr
i is a constant vector containing the

parameters of Gi(λi, k), lr ≤ l (because some Ĝi(k) could



be 0) and vTi (k) ,
[
λki kλk−1

i . . . kn
r
i−1λ

k−nr
i +1

i

]
. Let

V (0, k) ,


vT1 (0) vT2 (0) . . . vTlr (0)
vT1 (1) vT2 (1) . . . vTlr (1)

...
...

. . .
...

vT1 (k) vT2 (k) . . . vTlr (k)

 ∈ C(k+1)×(Dr+1),

(7)
in which Dr + 1 =

∑lr
i=1 n

r
i . V (0, k) is a confluent

Vandermonde matrix, which satisfies the following property
(see [3]): V (0, Dr) =

[
Er JTr Er . . . (JDr

r )TEr
]T

, in
which Jr is the Jordan block corresponding to the eigenval-
ues λi in eq. (6), ETr =

[
e[m1]T , . . . e[mlr ]T

]
is a vector

partitioned according to Jr, e[mi]T = [1, 0, . . . , 0] ∈
R1×mi , and V (0, k)[k + 1, :] = ETr J

k
r . Let hTr =[

ĜT
1 . . . ĜT

lr−1 ĜT
lr

]
∈ R1×(Dr+1). hTr is thus also a

constant vector and we have:

xr(k) = V (0, k)[k + 1, :]hr = ETr J
k
r hr, ∀ k. (8)

Theorem 1: Consider the discrete-time LTI system given
in eq. (1). The minimal polynomial associated with state xr,
and defined in Definition 3, is the same as the characteristic
polynomial of the matrix Jr appearing in eq. (8). The
final value of xr, i.e., φr can be computed based on the
coefficients of the minimal polynomial of xr, and on the
successive values of xr as described in eq. (11).

Proof: The Jordan matrix Jr appearing in eq. (8)
has the following property: each of its Jordan block has
distinct eigenvalues. Due to this latter property, the minimal
polynomial of xr is the same as the characteristic polynomial
of Jr [1]. Therefore, this minimal polynomial possesses the
following explicit form: qr(Jr) = det(Jr − tI) =

∏lr
i=1(t−

λi)n
r
i = JDr+1

r + αDrJ
Dr
r + . . .+ α1Jr + α0 = 0, and has

degree Dr + 1.
From eq. (8), we then obtain

xr(Dr + 1) = ErJ
Dr+1
r hr

= −Er(αDrJ
Dr
r + . . .+ α1Jr + α0I)hr

= −αDr
xr(Dr)− . . .− α1xr(1)− α0xr(0).

(9)

Since this latter equation holds for all hr (which is dependent
of the initial condition x(0)), the following linear difference
equations must be satisfied ∀k ≥ 0:

xr(k+Dr+1)+αDr
xr(k+Dr)+. . .+α1xr(k+1)+α0xr(k) = 0.

(10)
Using the Jury stability criterion for polynomials [8], we can
check whether the polynomial defined in eq. (10) possesses
at least an unstable root, i.e., a root, different form 1 and
such that its magnitude is larger or equal to 1. If qr(t) =
0 possesses at least one unstable root, then we know that
φr = limk→∞ xr(k) = ∞. On the contrary, if all the roots
of qr(t) = 0 are stable, then φr = 0. Furthermore, as shown
in [2], under the assumption that the minimal polynomial in
(10) does not possess any unstable root, except for one single
root located at 1, we can take the Z-transform of (10) and
apply the final value theorem to compute the final value of

xr based on the coefficient of the minimal polynomial qr(·):

lim
k→∞

xr(k) = lim
z→1

(z − 1)Xr(z)

=

[
xr(Dr) xr(Dr − 1) . . . xr(0)

]
S[

1 1 . . . 1
]
S

,

(11)

in which S =


1

1 + αDr

1 + αDr−1 + αDr

...
1 +

∑Dr

j=1 αj

.

In the rest of the paper, we make the following assumption:
Assumption 1: qr(t) = 0 does not possess any root such

that its magnitude is larger or equal to 1, except, potentially,
for one single root located at 1.

Remark 2: Once the coefficients of the minimal polyno-
mial of xr are known the result in eq. (11) shows that,
under Assumption 1, the final value of xr can be obtained
as a linear combination of the first Dr +1 successive values
of xr obtained according to eq. (1) starting from the initial
condition xr(0), where Dr + 1 is the degree of the minimal
polynomial of xr.

Remark 3: A consequence of Theorem 1 is that the roots
of qr(t) = 0 are the eigenvalues of the Jordan matrix Jr
appearing in (8).

In the following section, we propose an algorithm for
computing the coefficients of the minimal polynomial of xr
using the least number of successive values of xr.

III. COMPUTATION OF THE COEFFICIENTS OF THE
MINIMAL POLYNOMIAL OF xr

In the previous section, we showed that the final value of
an arbitrarily chosen state xr of a discrete-time, LTI system
can be computed in minimal time based on the knowledge
of the coefficients of the minimal polynomial of xr (see
eq. (11)). In this section, we first provide centralised results
characterising the minimal number of successive discrete-
time values of xr needed to compute the coefficients of the
minimal polynomial of xr in eq. (10). We then propose a
decentralised algorithm for obtaining these coefficients using
the minimal number of successive discrete-time values of xr.

A. Centralised computation of the coefficients of the minimal
polynomial of xr

In this subsection, we assume knowledge by the arbitrarily
chosen state xr of the order Dr+1 of its associated minimal
polynomial qr(·) and of the multiplicity δr of the root 0 of
the minimal polynomial of xr. For this reason, the results
presented in this subsection are considered “centralised”. In
the next subsection, we propose a decentralised algorithm
which does not require the knowledge of Dr + 1 and δr.

Theorem 2: Consider the model in eq. (1). Assuming
that the arbitrarily chosen state xr knows the order and
the multiplicity of the root 0 of its associated minimal
polynomial and that Assumption 1 is satisfied, the minimal
number of successive discrete-time values (starting from the
discrete-time instant i) of an arbitrarily chosen state xr



necessary to compute the minimal polynomial coefficients
α0, α1, . . . , αDr appearing in eq. (10) is 2(Dr + 1) − δr −
min{i, δr}.

Proof: By definition of 0 as a root of the minimal
polynomial, we have a0 = · · · = aδr−1 = 0 and the first δr
values of xr, i.e., xr(0), . . . , xr(δr − 1) are useless for the
computation of the coefficients of the minimal polynomial
qr(·). Eq. (10) thus writes αδr

xr(k + δr) + αδr+1xr(k +
δr + 1) + . . . + αDrxr(k + Dr) + xr(k + Dr + 1) = 0.
Because there are Dr+1−δr unknowns in this equation, i.e.,
αδr , . . . , αDr , we need Dr + 1− δr independent equations.
These equations are given by:

∀k = i, i+ 1, . . . i+Dr − δr :
xr(k +Dr + 1) + αDr

xr(k +Dr) + . . .+ αδr
xr(k + δr) = 0.

Since these equations can easily be shown to be linearly
independent (see [9] for more details), the minimal number
of successive discrete-time values of xr (starting from xr(i))
which are needed to compute the nonzero coefficients of the
minimal polynomial of xr is 2(Dr + 1) − δr −min{i, δr}.

B. Decentralised computation of the coefficients of the min-
imal polynomial of xr

In this section, we assume that the computation of the final
value of xr must be realised in a purely decentralised way,
i.e., without access to any kind of centralised information
such as the order Dr + 1 of the minimal polynomial of xr
The problem is defined as follows:

Definition 4 (Decentralised problem): Consider the linear
dynamics in eq. (1). The goal for an arbitrarily chosen
state xr is to compute its final asymptotic value φr =
limk→∞ xr(k) using only its own previously observed val-
ues. In particular, we assume xr does not have access to any
other external information such as the degree of its minimal
polynomial Dr + 1, or the total number of states N in the
dynamics (1).

To determine the coefficients of the minimal polynomial
of xr, we will use a particular Hankel matrix Xr(k1, k2) ∈
R(k1+1)×(k2+1) (k1, k2 ∈ N) containing the values of xr at
successive discrete time instants.

Xr(k1, k2) ,


xr(0) xr(1) . . . xr(k2)
xr(1) xr(2)) . . . xr(k2 + 1)

xr(2)
. . . xr(k2 + 2)

...
...

. . .
...

xr(k1) xr(k1 + 1) . . . xr(k1 + k2)

 .
(12)

Theorem 3: Consider the model in eq. (1). If Assump-
tion 1 is satisfied, the minimal number of successive discrete-
time values (starting from the discrete-time instant 0) of
an arbitrarily chosen state xr necessary to compute the
minimal polynomial coefficients α0, α1, . . . , αDr appearing
in eq. (10) is 2ρr + 1 = 2Dr + 3, where ρr is the maximal
rank of Xr for increasing values of its dimensions, i.e.,
ρr , rankXr(Dr, Dr) = rankXr(Dr + 1, Dr + 1) = · · · =
rankXr(∞,∞). The coefficients of the minimal polynomial
associated with xr are then obtained by computing the kernel

of the Hankel matrix Xr(Dr + 1, Dr + 1), i.e., αr =[
α0 α1 . . . αDr

1
]T ∈ ker{Xr(Dr + 1, Dr + 1)}.

Proof: From eq. (8), it is easy to show that the Hankel
matrix in (12) has the following decomposition

Xr(k1, k2) =


ETr
ETr Jr

...
ETr J

k1
r

 [hr Jrhr . . . Jk2r hr
]
. (13)

where ETr , Jr and hr are defined in eq. (8). Based on the
decomposition in eq. (13), we can characterise the minimal
dimensions k1,min and k2,min necessary to the computation
of the coefficients of the minimal polynomial of xr.

Without loss of generality, we start by characterising the
minimal value of k2. In order to do so, we fix k1 and assume
that dr + 1 is the smallest integer for which the Hankel
matrix Xr(k1, dr + 1) loses its column rank. Consequently,
there exists a vector ar =

[
a0 a1 . . . adr

1
]T

such
that Xr(k1, dr + 1)ar = 0. This, in turn, implies that[
hr Jrhr . . . Jdr+1

r hr
]
ar = 0, which is equivalent to

a0hr + a1Jrhr + . . .+ adrJ
dr
r hr + Jdr+1

r hr = 0. (14)

Since eq. (14) must hold ∀hr, the following equation must be
satisfied a0+a1Jr+ . . .+adi

Jdr
r +Jdr+1 ≡ 0. By definition

of the minimal polynomial of state xr, the minimal dr must
thus be Dr and ar = αr.

We now characterise the minimal value of k1. For that, we
assume that k2 is fixed to its minimal value computed above,
i.e., k2 = k2,min = Dr+1, and denote by d̃r+1 the smallest
integer which satisfies the following property: if Xr(d̃r +
1, Dr+1)αr = 0, then ∀d̃ ≥ d̃r, Xr(d̃+1, Dr+1)αr = 0.
Using the definitions of Xr in (12) and the linear difference
eq. (10), it is easy to see that this latter property holds ∀d̃r ≥
Dr−1. However, in order to compute Dr, we need to check
for which value of Dr rankXr(Dr, Dr) = rankXr(Dr +
1, Dr+1). The construction of Xr(Dr+1, Dr+1) requires
knowledge of the values of xr(0), . . . , xr(2Dr + 2). Once
the value of Dr is obtained, the coefficients of the minimal
polynomial can be computed by looking at the kernel of the
matrix Xr(Dr+1, Dr+1), i.e., Xr(Dr+1, Dr+1)αr = 0.

The analysis above shows that k1,min + k2,min + 1 =
(Dr + 1) + (Dr + 1) + 1 = 2Dr + 3 = 2ρr + 1 with ρr =
rankXr(Dr, Dr) since Xr(Dr, Dr) is full rank. Therefore,
the minimal number of consecutive state values of xr needed
to reconstruct the coefficient of the minimal polynomial of
xr is 2Dr + 3.

Theorem 3 gives a simple decentralised algorithm for
computing the coefficients of the minimal polynomial of
xr based on square Hankel matrices of the form given in
eq. (12).

Corollary 1: Consider the model in eq. (1). For any state
xr such that Assumption 1 is satisfied, the number of
successive values that must be considered in order to be able
to compute the coefficients of the minimal polynomial of xr
is upper bounded by 2N + 1. This latter upper bound is
achieved when the minimal polynomials of all states are the
same as the characteristic polynomial of W , and W has no
0 eigenvalues.



Proof: It can easily be shown from the definition and
the fact Dr + 1 ≤ N .

The above proposed coefficient-reconstruction algorithm
does not depend on the starting discrete-time instant of xr if
the minimal polynomial of state xr does not have any root
at 0. Therefore, we could start at any arbitrary discrete-time
k and follow the same procedure. However, if the minimal
polynomial of xr has a root of multiplicity δr at 0, then this
can be exploited in order to reduce the necessary number of
successive values of xr as summarised in Corollary 2.

Corollary 2: Consider the model in eq. (1). Assuming that
Assumption 1 is satisfied, the minimal number of successive
discrete-time values starting from discrete-time instant i of an
arbitrarily chosen state xr necessary to compute the minimal
polynomial coefficients appearing in eq. (10) is 2(Dr+1)−
δr −min{i, δr}+ 1.

Proof: The proof is based a similar approach as the
one used in the proof of Theorem 3. Notice that

Xr(Dr + 1, Dr + 1)αr
= Xr(Dr + 1, Dr + 1)[:, δr + 1 : Dr + 2]α̂r,

where αr =
[
α0︸︷︷︸
=0

. . . αδr−1︸ ︷︷ ︸
=0

αδr . . . αDr 1
]T

and α̂r =
[
αδr . . . αDr 1

]T
. We then note that in

a decentralised problem setting (see Definition 4), k1,min

should be chosen the same as k2,min. Therefore it is easy
to see that the minimal number of successive values of xr
corresponding to Xr(Dr+1, Dr+1)[δr+1 : Dr+2, δr+1 :
Dr + 2] is 2(Dr + 1 − δr) + 1. Similarly to the proof of
Theorem 2, we can easily show that the successive values
corresponding to i < δr, i.e., xr(0), . . . , xr(δr − 1) are
useless for the computation of the coefficients. Therefore the
minimal number of successive value of xr is 2(Dr + 1) −
δr −min{i, δr}+ 1.

Example 1: We consider an autonomous LTI discrete-time
system for which the minimal polynomial of the arbitrarily
chosen state xr is of degree 3 and has the roots {0, 1, 1/2}.
The corresponding Hankel matrix composed of the succes-
sive values xr(0), . . . , xr(6) is given by:

Xr(3, 3) =

 1/6 2/3 7/12 13/24
2/3 7/12 13/24 25/48
7/12 13/24 25/48 49/96
13/24 25/48 49/96 97/192

 .
Noting that rankXr(3, 3) = rankXr(2, 2) = 3, we need
2(Dr + 1) + 1 = 2 × 3 + 1 = 7 steps to compute the
coefficients of the minimal polynomial of xr. However, if
we build the Hankel matrix using successive values of xr
which start from the discrete time 2, then rankXr(3, 3)[2 :
4, 2 : 4] = rankXr(3, 3)[2 : 3, 2 : 3] = 2, that is to say,
we only need 2 × (3 − 1) + 1 = 5 steps to reconstruct the
coefficients.

Remark 4: Even if W contains some unstable eigenval-
ues, some states may still converge to a finite asymptotic
value if their corresponding minimal polynomials do not have

any unstable roots. For example, consider W =
[
2 0.1
0 0.5

]
in

(1). The corresponding linear dynamics is unstable. However,
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Fig. 1. Graph with constant edge weights of 1/N .

the state x2(k) = 0.5kx2(0) converges to a finite final value
as k → ∞ because its associated minimal polynomial does
not have any unstable roots.

Finally, we propose a complete algorithm to compute the
final value φr = limk→∞ xr(k) using the minimal number
of successive values of the observed state xr. For simplicity,
we are using the successive values of xr starting from xr(0)
and assume that qr(t) = 0 does not have any 0 root.

Step 1: Increase the dimension k of the square Hankel
matrix Xr(k, k) until it loses rank and store the first defec-
tive Hankel matrix.

Step 2: The normalised kernel[
α0 α1 . . . αDr 1

]T
of the first defective Hankel

matrix gives the coefficients of eq. (10).
Step 3: Compute the final value φr using Theorem 1.

IV. APPLICATIONS

In this section, we apply the results presented in the
previous sections to the distributed asymptotic consensus
problem defined in Definition 5. In particular, we show that
each node can immediately compute the consensus value
after observing and storing the evolution of its own value
over a finite and minimal number of discrete-time steps.

Definition 5 (Distributed asymptotic consensus): The
system (1) is said to asymptotically achieve distributed
consensus if

lim
k→∞

x(k) = 1cTx(0)

where 1 is the column vector with all components equal to
1, and cT is some constant row vector. In other words, the
values of all nodes converge to the same linear combination
of the initial node values cTx(0).

As shown by [7], the distributed consensus problem for-
mulated in Definition 5 with c normalised so that cT1 = 1,
can be solved under the following assumptions:

1) W has a simple eigenvalue at 1, and all other eigen-
values have a magnitude strictly less than 1.

2) The left and right eigenvectors of W corresponding to
the eigenvalue 1 are cT and 1, respectively.

In [2], it has been further shown that if the matrix W
satisfies the above mentioned conditions, then each agent
can compute its final consensus value in a finite number of
discrete-time steps.

In order to give a illustrative example, we are going to
compare our algorithm with the one proposed in [2].

Example 2: The topology we are considering is repre-
sented in Fig. 1. This topology is the same as the one used



in [2] and will be used here to contrast our results with
those of [2]. In [2], the method proposed to compute the
coefficients of the minimal polynomial of xr requires Dr+1
successive values of xr per iteration with a total number of
N+1 independent iterations, i.e., a total of (Dr+1)(N+1)
successive values of xr. In contrast, Theorem 3 of this paper
shows that the minimal number of successive values of xr is
2(Dr + 1) + 1 (see Table I for a comparison of the number
of successive values that must be considered for each node).
Furthermore, contrary to what is assumed in [2, Section V],

[2] Theorem 3
N1 4× 7 = 28 2× 4 + 1 = 9
N2 4× 7 = 28 2× 4 + 1 = 9
N3 4× 7 = 28 2× 4 + 1 = 9
N4 5× 7 = 30 2× 5 + 1 = 11
N5 6× 7 = 36 2× 6 + 1 = 13
N6 6× 7 = 36 2× 6 + 1 = 13

TABLE I
COMPARISON OF THE NUMBER OF SUCCESSIVE VALUES Ni NEEDED FOR

NODE i TO COMPUTE ITS FINAL VALUE.

Theorem 3 does not require that the arbitrarily chosen state
xr knows to the total number of nodes present in the network,
or any other kind of global (centralised) information about
the network. The only assumption is that a node is able
to store his own 2(Dr + 1) + 1 previously observed states,
where Dr is the maximal number such that the corresponding
Hankel matrix Xr(Dr, Dr) defined in eq. (12) is full rank.

Because the topology is undirected and connected,
the final value of each node is the average of the
initial state values (average consensus value, see [15]).
For the randomly chosen the initial state x(0) =[
1.3389 2.0227 1.9872 6.0379 2.7219 1.9881

]T
,

the final consensus value is thus 2.6828. We illustrate the
results presented in Theorem 3 by focusing on node 1 step
by step:
Step 1:

X1(3, 3) =

1.3389 2.5747 2.7797 2.8164
2.5747 2.7797 2.8164 2.8211
2.7797 2.8164 2.8211 2.8174
2.8164 2.8211 2.8174 2.8107

 ,

X1(4, 4) =


1.3389 2.5747 2.7797 2.8164 2.8211
2.5747 2.7797 2.8164 2.8211 2.8174
2.7797 2.8164 2.8211 2.8174 2.8107
2.8164 2.8211 2.8174 2.8107 2.8029
2.8211 2.8174 2.8107 2.8029 2.7946

 .
Because rankX1(3, 3) = rankX1(4, 4) = 4, we store
X1(4, 4).
Step 2: We obtain the coefficients of the minimal
polynomial of x1 by computing the normalised kernel
of X1(4, 4)

[
0.0833 −0.8611 2.4444 −2.6667 1

]T
.

The minimal polynomial of x1 is therefore q1(t) =
t4 − 2.6667t3 + 2.4444t2 − 0.8611t + 0.0833, which is the
same as the one given in [2, Section V].
Step 3: The final consensus value φr can
be computed using eq. (11) with S =[
1.0000 −1.6667 0.7778 −0.0833

]T
. φr is then

given by

φr =

[
x1(3) x1(2) x1(1) x1(0)

]
S[

1 1 . . . 1
]
S

=

[
2.8164 2.7797 2.5747 1.3389

]
S[

1 1 . . . 1
]
S

= 2.6828.

V. CONCLUSION, DISCUSSION AND FUTURE WORK

As a major contribution of this paper, we propose a
decentralised algorithm enabling a node to compute its final
value using only the minimal number of successive values of
itself. The information at the disposal of a node is minimal as
well since we do not require any global knowledge, e.g., the
total number of nodes in the system, or the specific weights
of the links.

A more general linear system model is considered and
discussed in detail in [9] and [10]. Future work will investi-
gate extensions of the presented results to linear time-varying
discrete-time system and LTI discrete-time system perturbed
with noise.
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