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Singularities and symmetry breaking in swarms
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A large-scale system consisting of self-propelled particles, moving under the directional alignment rule
(DAR), can often self-organize to an ordered state that emerges from an initially rotationally symmetric
configuration. It is commonly accepted that the DAR, which leads to effective long-range interactions, is the
underlying mechanism contributing to the collective motion. However, in this paper, we demonstrate that a
swarm under the DAR has unperceived and inherent singularities. Furthermore, we show that the compelled
symmetry-breaking effects at or near the singularities, as well as the topological connectivity of the swarm in
the evolution process, contribute fundamentally to the emergence of the collective behavior; and the elimina-
tion or weakening of singularities in the DAR will induce an unexpected sharp transition from coherent
movement to isotropic dispersion. These results provide some insights into the fundamental issue of collective
dynamics: What is the underlying mechanism causing the spontaneous symmetry breaking and leading to

eventual coherent motion?
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I. INTRODUCTION

The emergence of collective motions in biological
swarms, such as schools of fish, flocks of birds, and colonies
of bacteria, has been extensively observed in nature and in
artificial simulations [1-11]. These collective biological
groups can self-organize and travel as if they were an indi-
vidual living creature. These complex and nonintuitive ag-
gregated behaviors can be induced by a simple mechanism,
namely, doing what the near neighbors do [1]. Common fea-
tures of these phenomena are (1) no leader(s) or central con-
trol; (2) absence of external stimuli; (3) no global informa-
tion sharing; and (4) homogeneous agents. Swarm behaviors
have attracted increasing interest in many fields as they can
provide insight into problems such as the collective motion
control of robots [12,13], human collective behaviors
[14-16], material shape matters [17,18], and even the devel-
opment of software agents in particle swarm optimization
algorithms [19] and genetic algorithms [20].

In 1995, Vicsek et al. [21] proposed a novel model to
imitate a biological swarm using self-propelled particles.
This minimal model captures the important rule of direc-
tional alignment: every agent moves toward the average
movement direction of its neighbors. The Vicsek model
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(VM) has been intensively investigated in recent years both
theoretically [12,22-25] and, more recently, experimentally
[7]. Compared to the constant-speed VM, a further extension
can be addressed by the adaptive velocity strategy [26],
whose basic idea is that each agent moves along the average
direction of its neighbors but with adaptive speed—when an
agent finds itself surrounded by scattered moving agents, it
may naturally feel at a loss and thus move at a very slow
speed; while if a certain direction of movement is dominant
in its neighborhood, the agent tends to take this direction
with a faster speed.

In this paper, we study swarms consisting of homoge-
neous agents that simply imitate what their near neighbors
do, in particular the VM and the adaptive velocity model
(AVM) that capture the directional alignment rule (DAR). In
such models, the system can often evolve from a rotationally
symmetric state (agents’ initial directions are uniformly dis-
tributed without any statistically dominant direction) to form
one ordered congregation. One important feature is that the
initial random distribution of agents’ movement directions
does not favor any predefined direction, and under the DAR
(with or without adaptive speed), every agent takes the aver-
age direction of its near neighbors, which also has no pref-
erential direction. No agent knows its destination, and the
emergence of the collective swarm is a purely spontaneous
result of all the agents’ interactions. Naturally, there are some
fundamental open questions regarding the emergence of or-
der in such systems: Why does this DAR induce large-scale
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FIG. 1. (Color online) Illustration of the initial directional vec-
tors of the swarm agents in 2D and 3D space. The arrows denote the
unitary direction vectors. (a),(b) 2D and (c),(d) 3D case. (a),(c)
Polar and (b),(d) isotropic cases. For simplicity, in each of the sub-
figures (a), (b), and (d), the modular vectors are plotted with the
same starting point located at the origin of the coordinates.

emergence from the isotropy in the initial state? What factors
contribute to such emergence? Can the emergent direction be
predicted and is it robust to minor disturbances?

A popular interpretation of the emergence of order is that
agents are able to move and mix in the system. This mixture
can result in effective long-range interactions among agents,
which induces a phase transition from initial disorder to or-
der [21,27-29]. Indeed, the long-range interactions can serve
as an explanation of the collective movement in polar cases
such as Figs. 1(a) and 1(c), but it is insufficient to satisfac-
torily interpret the emergent order from the isotropic cases
such as Figs. 1(b) and 1(d). Theoretical analyses [12,13,30]
show that the emergence depends on the connectivity of
graph topologies of the swarms, regardless of short-range or
long-range interactions. However, we should note that (i) the
existing literature [12,13,30] does not consider actual topolo-
gies formed by the neighborhood relations of agents’ posi-
tions in the evolutional process, and the connectivity prop-
erty imposed on the system is only a hypothetical condition
for the directional convergence result; and (ii) most impor-
tantly, although the DAR is symmetric, the literature only
considers the linearity or quasilinearity of the DAR which
implies predefined and predicted direction(s) of emergence
of the collective swarm (refer to Appendixes A and B). How-
ever, the models with this (quasi)linearity eliminate the in-
herent nonlinearity properties of the swarms and cannot be
viewed as rotationally symmetric any longer.

In this paper, we reveal the inherent singularities in the
DAR of the swarm, which fundamentally contribute to the
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compelled symmetry-breaking effects. The elimination or
weakening of such singularities tends to disperse the swarm.
The emergent direction of a swarm also has the property of
unpredictability. This article is organized as follows. Section
II gives a brief review of the VM and AVM, which effec-
tively embody the DAR. Section III illustrates the existence
of singularities in the DAR of the models. The contribution
of compelled symmetry-breaking effects at singularities to
large-scale emergence is discussed in Sec. IV, together with
the property of the unpredictability of the emergent direction.
Our conclusions are given in the last section.

II. BRIEF REVIEW OF VM AND AVM

The VM supposes that all the agents move simultaneously
with the same fixed speed v, updated at time steps Ar=1. At
each time step, each agent assumes the average direction of
the agents within its neighborhood of radius R. Let X;(k)
e C denote the complex position vector of agent i on the
complex two-dimensional (2D) plane at time step k. Agent i
and agent j are neighbors at time step k if and only if the
distance |X;(k)—X;(k)|=R, where |-| denotes the absolute
value or modulus of a complex number. The constant speed
VM can be described as follows:

X,(k+ 1) =X,(k) + v,(k)At,

0,(k + 1) = (6,(k)),, (1)

where v;(k) is the velocity of agent i, with its constant speed
|vi(k)|=v,. The notation (6;(k)), denotes the average direc-
tion of neighbors within the neighborhood radius (including
the agent itself). Here, the external noise presented in the
original VM is not considered. The average direction is com-
puted by the following equation [21]:

<sin(0i(k))>,)
(cos(6,(k))), )

The AVM [26] further extends the constant-speed VM by
introducing the complex-valued local order parameter. Each
agent adjusts not only its movement direction, but also its
speed, in an adaptive fashion according to the degree of di-
rection consensus among its neighbors. Let I';(k) be the set
of agent i’s neighbors (including i itself) at time step k, and
ni(k) the number of elements in I';(k). The AVM is then
described as follows:

(6.(k)), = arctan( (2)

Xi(k+1)=X,(k) + ¢%(k)e' Py Ar,

. 1 .
¢l(k + l)etﬁi(lﬁl) — 2 esz(k),
nik+1) ;o1 )

i=1,2,...,N; k=0,1,2, ..., 3)

where /%% e C is the unitary complex vector that represents
the vectorial direction of agent j at time step k. ¢;(k+1)
measures the local degree of direction consensus among i’s
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FIG. 2. (Color online) (a) Illustration of the tangent function y
=tan(x) on the domain x € [0,27) with the range y € (—%,). (b)
Illustration of the tangent function y=arctan(x) on the domain x
€ (—o0,) with the range y € [0,27). The tangent function should
be defined as a multivalued function in this context instead of any
monotropic function. Actually, it has three overlapping branches as
illustrated in (b).

neighbors at time step (k+1). A larger ¢(k+1) corresponds
to better direction consensus. The angle 6;(k+1) implied in

Eq. (3),
Oi(k+1)= angle( >

eiaj(m) ,
jel(k+1)

is the movement direction of agent i at time step (k+1),
where the function angle(-) returns the angle of a com-

p
<O’Z>’ 2
2 jel (k+1)
_771- 9’
2 jeFi(k+1)
ok +1) e X
n
<7T?_)’ 2
2 jel(k+1)
3
<—W,2W>, E
\ 2 jeT (k+1)

sin(6(k)) >0, >
> sin(k))>0, X
sin(8,(k) <0, X

sin(6(k)) <0, X
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plex number. v;(k) £ v, (k)e% P represents the velocity
of agent i at time step k with adaptive speed |v,(k)|
=0y (k) and direction 6,(k). Since 0= ¢,(k) =1, the expo-
nent a=0 just reflects the willingness of each agent to move
faster or slower along the average direction of its neighbors
based on the local degree of direction consensus. If a=0,
then ¢{(k)=1, and the AVM degenerates to the VM with
each agent moving at the maximum speed v, without any
consideration of its local polarity. The AVM with >0 in-
duces a more intensified phase transition from a disordered
to an ordered state compared with the VM [26].

III. SINGULARITIES IN THE DAR

The DAR should be rotationally symmetric, which is very
different from the linearity or quasilinearity rules that actu-
ally prefer a certain movement direction (see Appendixes A
and B for details). Next, we demonstrate the existence of
singularities and the strongly nonlinear nature of the DAR in
the swarm. Note that the parameter ¢,(k+1)e/%* 1) is ex-
pressed as the sum of complex unit vectors ¢'%® in Eq. (3).
It can be equivalently expressed as the triangular formations:

&;(k + D)cos(i(k + 1)) = L >

cos(6;(k)),
ni(k + l)jeFl-(kH) !

&k + 1)sin(6(k + 1)) = _ >

in(6,(k
ni(k + 1)jEFi(k+1) sin(6/(6) &)

for all i=1,2,...,N. Therefore, we have

> sin(4,(k)

jel(k+1)

> cos((k))

jel(k+l)

0;(k + 1) = arctan

(5)

Note that, in Eq. (5), the range of the arctangent function
arctan(-) or the domain of the tangent function tan(-) should
be defined in the interval [0,27) (see Fig. 2) instead of its
principal value interval (—=7/2,7/2) as in Ref. [13] (see also
Appendix B).

Considering that every agent will move toward the direc-
tion of its local polarity, it is natural that 6,(k+1) in Eq. (5)
should be defined unambiguously in the following multival-
ued function:

cos(6;(k)) >0,
Jjel(k+1)

cos(6;(k)) <0,
jeT (k+1)
(6)
cos(6;(k)) <0,
JjeTl(k+1)

cos(6;(k)) >0,
jeT (k+1)
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Here 6;(k+1) €[0,2). Note that there is no difference be-
tween defining 6;(k+1)=0 or 27 in the case of

> sin(gik)=0, X

jel(k+1) jel(k+1)

cos(6,(k)) >0

in Eq. (7); that is, the range interval of 6;(k+1) € [0,2) or
(0,27] has no effect on the behavior of the swarm, while
with the linearity rule, the intervals [0,27) and (0,27] will
lead to different behaviors in some extreme cases [31].

The dilemma of the DAR is that when

> sin(6(k)=0, X

jel(k+1) jel(k+1)

cos(6;(k)) =0

the direction 8,(k+1) cannot be defined, since
0,(k + 1) = arctan(0/0) = undefined. (8)

Actually, this is the inherent and unavoidable singularity in
the DAR, which is equivalent to the expression ¢,(k+1)=0
in Eq. (3) of the AVM, i.e.,

> sin(6;(k) =0,
b+ 1)=0es ]’ )

> cos(6;(k)) = 0.

jel(k+1)

As mentioned above, ¢;(k+1) measures the local degree of
direction consensus among the neighbors of agent i. If agent
i is in the apparently polar case [i.e., ¢,(k+1)>0], the aver-
age direction is actually well defined. For example, if there
are two neighboring agents heading to the east and north,
respectively, it is straightforward that the average direction is
the northeast. But for the nonpolar or very weakly polar case,
such as four neighboring agents heading to the east, north,
west, and south, then what is the average direction? They are
in a dilemma in deciding the average direction. Such situa-
tions happen when ¢;(k+1)=0 or ¢, (k+1)=0, where the
directions of individuals in agent i’s neighborhood have no
or an indistinct polarity. In such cases, the average directions
are poorly defined. These cases are unavoidable in the DAR.
Note that, in the case of ¢;(k+1)=0 or ¢;(k+1)=0, it is not
appropriate to stipulate the angle 6;(k+1) of the complex
zero-vector

sin(6(k) =0, X
> sin(gik)=0, X
> sin(6k) >0, X

sin(6,(k) <0, X
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cos(6;(k)) >0,
jel(k+1)

cos(6;(k)) <0,
jel(k+1)

cos(;(k)) =0, M

jel(k+1)

cos(6;(k)) = 0.
jelk+1) ‘

1 E (0

nik+1)jcr )

to be zero, which is equivalent to designating the east as the
average direction. This stipulation favors a certain direction
and thus breaks the rotationally symmetric property of the
DAR in the swarm.

IV. ROLE OF SINGULARITIES IN THE EMERGENCE
OF COLLECTIVE MOTION

The singularity may be undesirable for theoretical analy-
sis, but is tractable in numerical computation, for a computer
has a certain numeric precision (floating-point representa-
tion) to express and compute numbers, and the average di-
rection 6(k+1) can always be designated even when ¢;(k
+1) infinitely approaches zero. However, individuals do not
know the average direction of motion when confronted with
such singularity surroundings, but they are “forced in com-
puter simulation to decide an average direction and move on
accordingly. We will demonstrate that the singularity derived
from this poorly defined case is favorable to the emergence
of a swarm. This compelled mechanism tends to reduce the
extreme local disorder of the system. The symmetry breaks
at the singularity and a positive local polarity emerges from
the isotropy.

In a weakly polar case [i.e., ¢;(k+1)<<1], agents may still
have some difficulty in determining the poorly defined aver-
age direction (see Fig. 3). Actually, a latent assumption em-
bedded in the DAR is that every agent has an infinite ability
to discriminate to find the right average direction 6;(k+1)
even under very small local polarity ¢,(k+1)=0. However,
when the ability to discriminate is finite, the nearly singular
case becomes a dilemma, namely, finding the average direc-
tion is a difficult task for the agents. It may be reasonable to
suppose that for real agents, when ¢;(k+1) is larger than or
equal to a certain threshold, say ¢, agent i has the ability to
determine the average direction, while when ¢;(k+1) < g,
agent i is not able to detect the weak polarity direction. A
smaller threshold ¢, corresponds to a higher demand upon
the agents for the ability of polar discrimination. In a nearly
locally isotropic case, an agent does not have enough justifi-
cation to change its original direction. The sufficiency of the
justification is parametrized as the threshold ¢,
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FIG. 3. (Color online) What the polarities ¢»=0.05 and 0.1 look
like. The arrows denote the unitary directional vectors. (a) ¢
=0.05. (b) ¢=0.1. (c) The directions of the 19 arrows that are
uniformly distributed on the unit circle with one additional arrow
pointing in the direction , leading to ¢=0.05. (d) The directions of
the nine arrows that are uniformly distributed with one additional
arrow pointing in the direction 7, leading to ¢=0.1. (a) and (b)
were produced by translational movement of the arrows without
changing the directions from the original figures (c) and (d),
respectively.

To illustrate to what extent the symmetry-breaking effects
at or near singularities contribute to the emergence of collec-
tive motion, we weaken the singularities in the AVM [26]
and investigate the emergence of order again:

X(k+ 1) = X,(k) + ¢(k)e " Pp At

E eia.i(k) s

jel(k+1)

ik +1)=

_
nik+1)

angle( >

i6;(k)
sefnn ) dlk+1)= do,

6:(k), ik +1) < ¢y,

0i(k+ l) =

i=1,2,....,N; k=0,1,2,.... (10)

Compared to Eq. (3), the only difference is that, for every
agent i, when the local polarity ¢;(k+1)= ¢, its next direc-
tion 6;(k+1) is appointed as the average direction within its
neighborhood; otherwise, it does not change its direction
[33]. Note that, instead of adopting the previous value 6;(k)
here, 6,(k+1) can also be assigned with a random direction
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FIG. 4. (Color online) Ilustration of the threshold ¢, for 2D
swarm agents to update their directions of motion. The direction of
agent i is updated only when ¢;(k+1)= ¢,.

in the interval [0,277), but should not be a specific direction
such as the direction of the east or north, for this will intro-
duce an additional symmetry-breaking factor to the swarm.
Here the predefined constant 0= ¢y =1 serves as a threshold
for agents to update their movement directions (see Fig. 4).

This adjustment in Eq. (10) weakens the singularities, but
does not destroy the rotational-symmetry property of the
model, that is, the model itself does not favor any predefined
direction. When the threshold ¢,=0, the singularity-
elimination model Eq. (10) degenerates to the standard AVM
[26] as shown in Eq. (3). To measure the emergence of order
within the swarm accurately, the standard deviation S, of the
series of unitary directional vectors ¢'%*) of all agents at time
step k is defined as follows:

N
1 .
M= 0 e (.
i=1

N

1 . )

L2 [ oI~ gh] < R (1)
i=1

The notation * denotes the complex conjugate. S, reflects the

degree of emergence in the swarm: when ¢/(k)=0, that is, the

swarm shows no polarity or emergence, we have

N

L i it
Sa= 1\ 2 ¢y =1, (12)
i=1

For the convergence case, i.e., direction consensus among all
individuals, |#(k)|=1 and S;=0. In numerical simulations,
S;<<1 reflects large-scale emergence, while S;~1 means
isotropic dispersion.

The main concern is that the emergence of order displays
a sharp transition. Figure 5(a) shows the unexpected behav-
ior of S, as a function of ¢, in the steady state of the swarm:
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FIG. 5. (Color online) Oder emergence degree of 2D swarms.
Consider N agents moving in a 2D plane without boundary restric-
tions [26]. The positions of agents are initially randomly distributed
on a disk of radius 2.5 with random initial directions. R=2. All
estimates are the results of averaging over M =400 realizations of
the swarm in steady state. The termination condition is that the
standard deviation of N vectors consisting of the coterminous direc-
tional differences of every agent is less than 0.0001. (a) Average
standard deviation S, in steady state as a function of threshold ¢
€ [0,1] for different &. N=400, vy=1.0. (b) S, in steady state as a
function of threshold ¢, for different speeds vy with a=0. N=400.
(c) S, as a function of threshold ¢, for different densities with v
=1.0 and a=0.
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for @=0 and ¢y,=0, the swarm takes on large-scale order
emergence; however, when the threshold ¢, increases a little,
the degree of emergence of order reduces sharply. As the
threshold ¢, continuously increases, an ordered state can
never be achieved.

Of course, when the threshold ¢, is larger, the local po-
larity of every agent has less probability to exceed the thresh-
old; therefore, the agents tend to move in their previous di-
rection and the swarm will not gain order." The larger the
threshold ¢,, the fewer symmetry-breaking effects the
swarm assumes, and thus the larger the degree of the sym-
metry property the swarm retains.

Figure 5(b) reports S, in steady state as a function of ¢,
for different speeds v, with @=0. The larger the speed pa-
rameter v, the larger the degree of symmetry the swarm
retains. Figure 5(c) shows that, as the density of the swarm
increases, the same degree of phase transition occurs for rela-
tively smaller threshold values ¢y.

The prolonged contacts among the agents can enhance the
emergence of order, which is somewhat consistent with the
results reported in Refs. [12,13,26,30]. This can also be seen
from two aspects in Figs. 5(a) and 5(b). (i) From Fig. 5(a),
for a certain threshold ¢,, whether the threshold ¢y=0 or
not, the swarms with a larger a can generate more intensified
emergence of order than when a=0. For a larger «, the
speeds of agents are relatively slow in the transient process,
especially at the onset of the evolution. Thus the transforma-
tions of the agents’ positions are relatively less distinctive
than in the case of a=0, and the neighborhood relations tend
to be retained in the next time step or even further. These
prolonged contacts are beneficial to the directional consensus
[26]. (ii) Figure 5(b) illustrates the difference in emergence
for different v, and implies that a slower speed, which gives
prolonged contacts among agents, enhances the emergence
of order.

In Fig. 5(b), the speed vy=0 represents a special case
where all the agents in the swarm are still, with only their
directions updating, and the neighborhood relations of every
agent are invariant. Clearly, in this case, any value of « has
no effect on the swarm. The curve of =16 (vy=1.0) in Fig.
5(a) and the curve of vy=0.0 in Fig. 5(b) are similar. Note
that the speeds of all agents reach the maximum v, # 0 after
a short transient process [26]. We can conclude that the
emergence of order is mainly determined by the early evolu-
tional process.

For a smaller ¢, the demand of local polarity discrimi-
nation for swarm agents is higher. Also, for the same degree

of emergence S,, ¢, is larger in cases of «>0 than when
a=0 [see Fig. 5(a)].

The singularity also has the property of instability and the
swarm may sometimes be sensitive or even hypersensitive to

'When the threshold is larger, the swarm agents tend to show
selectivity increasingly. They only interact with their neighbors in
relatively strong polarity cases, and the influences of their neighbors
in the less strong polarity cases are weakened. The agents tend
to show more effect of “inertia” along their respective previous
direction, and the symmetry property from the onset is thus more
reserved.

021920-6



SINGULARITIES AND SYMMETRY BREAKING IN SWARMS

minor disturbance at or near singularities. For example, let &
be infinitesimal. Then for the following two cases of the
surroundings of agent i at time step k:

> sin(6(k) =0,

jeT (k1)
> cos(8;(k)) - 0+e (case 1),
jelk+1) '
> sin(6,(k) =0,
JjeTl(k+1)

> cos(0;(k)) - 0—e (case 1),

jel(k+1)

the corresponding results are

0
O(k+1)= arctan( )
O+e

=)
0-¢/)’

respectively, which differ by 4r; this difference is sharp and
unexpected. Figure 6(a) gives an illustration of three neigh-
boring agents near a singular case. Agents 1 and 3 move
along the directions of 0 and 2/3, respectively. Suppose
that the direction of agent 2 is (47/3—§,) before the distur-
bance, where ¢ is infinitesimal; then the coherent movement
direction is in the second quadrant of the 2D plane, i.e.,

and

Oi(k+1)= arctan(

0,(k+1)=0,(k+1)= 03k + 1) e (w2, 7).

When agent 2 is subjected to a minor disturbance and
changes its direction to (47/3+§&,) [denoted as agent 2’ in
Fig. 6(a)], where &, is also infinitesimal, then

0,(k+1)=0,(k+1)=03(k+ 1) e 3m/2,2),

that is, the movement direction is in the fourth quadrant. The
results in these two cases differ by at least 7/2. Similar
phenomena of disturbance sensitivity exist even for large
swarms from a macroscopic perspective [Fig. 6(b)]. The final
emergent polarity of the whole system is robust to small
disturbances in some cases, but it can also be extremely frag-
ile under some circumstances. Even for the same swarm with
the same initial conditions, different levels of precision in
numerical simulations will result in different emergent direc-
tions of the swarm. Anticipation of the result may not be
possible, unlike with the linearity or quasilinearity model of
the swarm (see Appendixes A and B). Such a robust, yet
fragile (or vulnerable) property is also found in many net-
works [32], and this may be one of the universal properties
of complex systems. Modern analysis and technologies typi-
cally think much of robustness instead of fragility. However,
in our opinion, the latter deserves more attention in the study
of multiagent systems. It is this singularity that partially en-
dows the system with the significant nonlinear characteris-
tics.
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FIG. 6. (Color online) (a) Illustration of the singularity of three
neighboring agents in the 2D plane. (b) Abrupt change induced by
minor directional disturbance of only one agent in an approximately
isotropic swarm in 2D space. In this instance, all agents are ran-
domly distributed on a disk with random radii distributed in the
interval [0,2.5) and random direction angles distributed in the in-
terval [0,27). N=500, R=3.0, vy=1.0, and a=0. The final coherent
movement direction is 4.187 rad, as illustrated in the third quadrant
on the unit circle in the 2D complex plane, but when an agent
(numbered 474 of this example) in the initial condition changes its
direction by only 0.0001 rad counterclockwise, the coherent move-
ment direction of the swarm changes to 0.5164 rad.

V. CONCLUSIONS

For swarms of homogeneous agents, emergence of order
can be generated by a simplistic mechanism for the agents—
doing what their near neighbors do. This mechanism seems
to be symmetric without any preferred direction(s). But when
referenced coordinates are introduced into such swarm sys-
tems to denote and compute the directions, the rotationally
symmetric DAR actually has symmetry-breaking effects (in
contrast, the linear or quasilinear form of the DAR is itself a
symmetry-breaking rule with a certain preferred direction). It
can designate the average direction of agents in the surround-
ings of a polarity that is not apparent, or even a singularity.
This plays an important role in promoting large-scale emer-
gence of order, especially from the isotropic state.

The DAR may be suitable for self-propelled physical par-
ticles such as the atoms in a ferromagnet, whose mechanism
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of directional determination may be precise. But is the DAR
[with or without other additional rule(s)] suitable for biologi-
cal bacterial, fish, or bird swarms? The swarm agents are
supposed to be able to detect the average directions even at
nonapparent local polarities for large-scale emergence of or-
der, but how do they discriminate those local polarities
around themselves that are even smaller than a very small
threshold ¢, (see Fig. 3)? In addition, do the swarm agents
have their private referenced coordinate(s) as we humans as-
sign to them [such as the case of Fig. 6(a)]? If each of them
does have its private coordinates, how do the agents calibrate
their private reference coordinates to the common “standard”
one? Of course, it is not necessarily the case, as some species
do have references (such as the magnetic field of earth, the
air or ocean current), but others do not.

Therefore, thus far, we may not have completely satisfac-
tory answers to the questions (i) why the large-scale emer-
gence of order is generated in natural swarms without any
preferred direction; and (ii) what symmetry-breaking rule(s)
the natural swarms actually adopt. There are some deep se-
crets in natural swarm intelligence that we humans have not
discovered yet. The exploration of nature’s secrets is an in-
teresting yet challenging journey ahead.
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APPENDIX A: LINEAR SCALAR EXPRESSION
OF THE DAR

Let 6;,(0) be the scalar movement direction of agent i in
polar coordinates at initial time step k=0, i=1,2,...,N;
these initial directions 6;(0) are evenly distributed in the in-
terval [0,27) or (0,27]. The DAR that every agent moves
toward the average movement direction of its near neighbors
is expressed in the linear scalar form as follows [12,30]:

s ej(k)),

ni(k+1) (jer,-(k+1)

where 6;(k+1) is the average direction of agent i’s near
neighbors (including itself) at the next time step k+1.

Here we show that Eq. (A1) is a symmetry-breaking rule
in itself, which has one certain preferred direction for the
swarms.

Note that the convex combination is defined as follows:
for the non-negative parameters y;, i=1,2,...,N, with con-
straint 3 ,=1, the sum

0k +1)= (A1)

N
X = E YiXi
i=1

is a convex combination of the N variables ux;, i
=1,2,...,N. The convex combination has the property
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FIG. 7. (Color online) Tllustration of the existence of the pre-
ferred directions of the linear scalar rule Eq. (Al). The common
simulation parameters of the swarm are N=200, L=5. (a) Non-
convergence case, 0e[0,2), R=0.5, and vy=0.5. (b) Conver-
gence case, 6e[0,27), R=1.0, and v(=0.5. (c) Nonconvergence
case, fe[-m,m), R=0.5, and v(=0.5. (d) Convergence case, 6
e [-m,m), R=1.0, and v(=0.5. In the cases (a),(b), the preferred
directions are both 7r; in (c),(d), the preferred directions are 0 in
polar coordinates.

min{x;} =x;,=max{x;} for all i=1,2,...,N. When all v
>0, i=1,2,...,N, x is a strictly convex combination of
x;, i=1,2,...,N and min{x;} <x,<max{x;}.

We show that the scalar rule Eq. (A1) with the initial
condition 6,(0) € [0,2m), i=1,2,...,N favors the movement
direction 7. In Eq. (A1), the average direction 6;(k+1) is a
convex combination of the n,(k+1) elements 6,(k) with equal
coefficients

Nk+ D)= ypyk+1)= -+ =k +1)= -+ = Unk+1)

for all j e I'j(k+1). Therefore, in Eq. (A1), the initial condi-
tions 6,(0) €[0,2) imply that 6,(k) €[0,2) for all k> 0.
Denoting the set of the directions of all agents as {6(k)} at
time step k, the convex hull conv{f(k)} satisfies

conv{@(k + 1)} C conv{O(k)} (A2)

for all k, i.e., the convex hull is nonincreasing as the system
evolves. Since the initially distributed directions of agents
are random and statistically symmetric, the convex hull does
not favor any interval [0, ) or [7,27) statistically. Gener-
ally, the convex hull conv{f(k)} decreases as the system
evolves. When it reduces to a singleton {6} (i.e., a point set
of one element 6,), we say that the system converges to the
direction 6,. For the nonconvergence case, the snapshot of
motions of the system always looks like Fig. 7(a). For the
convergence case, the convex hull converges to a singleton
{m} with little error [see Fig. 7(b)].

Further, suppose 6;(0) € [-7,m) [instead of 6,(0)
€[0,2) as above] for all agents i in the swarm Eq. (A1);
then generally the motion of the system looks like Figs. 7(c)
and 7(d). The agents in this case favor the movement
direction 0. Actually, for the linear scalar Eq. (Al) with
0,(0) e [+, m+a), where a €[0,27), the final polarity
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FIG. 8. (Color online) Let 6,0) €[0,2m), i=1,2,...,N, under
all possible scalar reference coordinates. The directions of agents
under any reference coordinate are counted counterclockwise. The
average direction of the four neighboring agents is shown in this
figure under reference coordinate 1 or 2. For the cases under all
possible reference coordinates, see Table 1. Note that, for these four
agents, the directions can be viewed as evenly distributed in the
interval [0,27), with average direction r, only when the direction
of the reference coordinate points west (east) by south (north), /4.

direction and convergence direction of the swarm can both
be predicted as the direction «. This is equivalent to the
following: the property of the preferred direction of the sys-
tem Eq. (Al) is reference-coordinate dependent. The
reference-coordinate dependence is also illustrated in Fig. 8.

The linear scalar rule Eq. (A1) also has the property that,
under this rule, the directions in the interval [0,27) (or any
other interval of the initial directional distribution) do
nothave equal (or rotationally symmetric) “status.” Here we
illustrate that this nonsymmetric linear scalar rule serves as
the very interpretation of the undesired phenomenon men-
tioned at the end of [12,30]. As stated in Refs. [12,30], it is
straightforward that the two directions 0.1 and (277-0.1) are
obviously very close in polar coordinates on the plane [see
Fig. 9(a)], the average direction is the direction of the east.
But the average direction is actually 7, according to Eq.
(A1),

TABLE 1. The average direction of the four agents in Fig. 8
under all possible scalar reference coordinates. (East, north] means
that the direction of the reference coordinate is located in the range
from east counterclockwise to north but not including east. The
average direction shifts discretely.

Reference direction Average direction

(East, north]
(North, west]
(West, south]
(South, east]

West by south 7/4
East by south 7/4
East by north 7/4
West by north 7/4
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FIG. 9. (Color online) Illustration of the non-rotationally-
symmetric relationship of the directions’ adjacency property. The
directions that lie at both ends of the interval [0,27), such as 0.1
and (277-0.1), should be very close directions for swarm agents in
the 2D plane by intuition. However, they are actually not considered
as close under the linear scalar rule Eq. (A1); the average direction
is 77 instead of 0 (the direction of the east). This is the very reason
for the counterintuitive phenomenon mentioned in the literature
[12,30], which cannot be overcome in linear models.

so both of the two agents will almost reverse compared to
their former directions 0.1 and (27—0.1), respectively. Actu-
ally, the two directions are not considered as adjacent in the
scalar computation rule Eq. (A1). This can be clearly seen in
Fig. 9(b); the adjacency relationship of the two directions 0.1
and 0.3 is not the same as that of (277—0.1) and 0.1. This
symmetry-breaking status is the very reason why some un-
desired problems arise, as mentioned in the literature [12,30].

The predictable polarity together with the counterintuitive
and undesired problems reflect the loss of the rotationally
symmetric property of the DAR after linearity as in Eq. (A1).

APPENDIX B: QUASILINEAR EXPRESSION
OF THE DAR

The restriction of the principal value interval
(=7/2,/2) of the arctangent function arctan(-) in Ref. [13]
reduces the essentially nonlinear directional alignment model
[Egs. (3) and (5)] to a quasilinear one. Note that, for the
principal value interval (—7/2,7/2), the tangent and arctan-

FIG. 10. (Color online) Illustration of motion direction range of
agents. (a) Less and (b) more than the half plane.
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gent functions are both monotropic. Therefore, from Eq. (5)
in Sec. III, we have

> [cos(8;(k)tan(6,(k))]

jel(k+1)

tan(G(k + 1)) = (B1)

> cos(;(k))
jel(k+1)
In the quasilinear expression Eq. (B1) of the DAR, the
function tan(é,(k+1)) can be viewed as a strict and linear
convex combination of the n;(k+1) series of functions
tan(6;(k)) with the corresponding positive coefficients

cos(8,(k))
S cos(6(k)

Jjel(k+1)
for all j e I'j(k+1).
As a consequence, the angle 6;(k+1)=arctan(tan 6,(k
+1)) with its range 6;(k+1)e (-7/2,7/2). That is,
for the initial directional distribution 6;,(0) € (—m/2,/2),

>0 (B2)
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i=1,2,...,N, all agents under this quasilinearity rule only
move toward directions in the right half plane at any itera-
tion. In this case, ¢;(k+1)>0 always strictly holds for any
agent i and at any time step k; thus no singularity exists in
this quasilinear swarm. As in the linear form, the swarm in
this case prefers the motion direction 0 statistically [for illus-
trations, see Figs. 7(c) and 7(d).

Actually, for any interval (B;,8;+8,) defined for the ini-
tial movement direction 6,(0) of agents i, i=1,2,...,N, B,
€ R, and with the range of the arctangent function arctan(-)
also defined in the same interval (B;,8,+/3,), we have the
following. (1) When the parameter 3, satisfies 0<fB,=r,
that is, in less than the half plane [see Fig. 10(a)], the system
Eq. (3) or Eq. (5) has a quasilinear property without any
possibility of singularities, and ¢;(k+1)>0 always holds for
all i and k. (2) When B, >, that is, in more than the half
plane [see Fig. 10(b)], there exist the possibilities that ¢,(k
+1)=0 [see also Eq. (9) in Sec. IIT], and the system is
strongly nonlinear with singularities, but it still cannot be
viewed as a rotationally symmetric rule when 3, <2

[1] J. K. Parrish, Science 284, 99 (1999).
[2] P. K. Visscher, Nature (London) 421, 799 (2003).
[3] H. Levine, W.-J. Rappel, and I. Cohen, Phys. Rev. E 63,
017101 (2000).
[4] 1. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R.
Franks, J. Theor. Biol. 218, 1 (2002).
[5] 1. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, Nature
(London) 433, 513 (2005).
[6] J. K. Parrish, S. V. Viscido, and D. Grunbaum, Biol. Bull. 202,
296 (2002).
[71J. Buhl, D.J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland,
E. R. Miller, and S. J. Simpson, Science 312, 1402 (2006).
[8] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S.
Chayes, Phys. Rev. Lett. 96, 104302 (2006).
[9] D. Grunbaum, Science 312, 1320 (2006).
[10] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, Bull. Math.
Biol. 68, 1601 (2006).
[11] A. Kolpas, J. Moehlis, and 1. G. Kevrekidis, Proc. Natl. Acad.
Sci. U.S.A. 104, 5931 (2007).
[12] A. Jadbabaie, J. Lin, and A. S. Morse, IEEE Trans. Autom.
Control 48, 988 (2003).
[13] L. Moreau, IEEE Trans. Autom. Control 50, 169 (2005).
[14] D. J. Low, Nature (London) 407, 465 (2000).
[15] D. Helbing, I. Farkas, and T. Vicsek, Nature (London) 407,
487 (2000).
[16] Z. Neda, E. Ravasz, Y. Brechet, T. Vicsek, and A. L. Barabasi,
Nature (London) 403, 849 (2000).
[17] V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105
(2007).

[18] M. van Hecke, Science 317, 49 (2007).

[19] K. E. Parsopoulos and M. N. Vrahatis, Nat. Comput. 1, 235
(2002).

[20] J. H. Holland, Adaptation in Nature and Artificial Systems
(MIT Press, Cambridge, MA, 1992).

[21] T. Vicsek, A. Czirdk, E. Ben-Jacob, 1. Cohen, and O. Shochet,
Phys. Rev. Lett. 75, 1226 (1995).

[22] G. Gregoire and H. Chate, Phys. Rev. Lett. 92, 025702 (2004).

[23] C. Huepe and M. Aldana, Phys. Rev. Lett. 92, 168701 (2004).

[24] M. Aldana, V. Dossetti, C. Huepe, V. M. Kenkre, and H. Lar-
ralde, Phys. Rev. Lett. 98, 095702 (2007).

[25] M. Nagy, I. Daruka, and T. Vicsek, Physica A 373, 445
(2007).

[26] W. Li and X. Wang, Phys. Rev. E 75, 021917 (2007).

[27]J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).

[28] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).

[29] T. Vicsek, Nature (London) 411, 421 (2001).

[30] A. V. Savkin, IEEE Trans. Autom. Control 49, 981 (2004).

[31] It is easy to illustrate the undesired phenomenon of the linear-
ity rule. Suppose that there are two neighboring agents heading
east and west, respectively, for the direction domain [0,27).
The average direction of these agents is 7/2; however, for the
direction domain (0,27], the average direction is 37/2. See
also Appendix A.

[32] R. Albert, H. Jeong, and A. L. Barabdsi, Nature (London) 406,
378 (2000).

[33] Such a direction assignment can be found implicitly in some
prior swarm models [4,5].

021920-10



