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Abstract

In this paper two systems described by nonlinear ordinary differential
equations will be considered. They will be assumed to be operating inde-
pendently and to be time-invariant, unforced, and equidimensional. Dissi-
pativity theory is used to provide a sufficient condition for the component-
wise difference that exists between their state vectors to be a finite-energy
signal. The related set of storage functions will be used to provide a bound
for its L2-norm. For a specific class of switched models, a heuristic method-
ology to construct such storage functions is presented. Special emphasis
will be placed upon piecewise linear (PWL) models.

1 Introduction

In this paper, we will consider two continuous-time dynamical models, denoted
a and b, operating independently. We can think of a as the complicated but
accurate description of a real-life system and of b as a simplified version. Quanti-
fying how different their behaviour is for all time t ≥ 0 would shed some light on
how close the models are in terms of representing the same phenomenon. This
question will be addressed here for the case in which one model is given by a
particular class of nonlinear ordinary differential equations and the other one is
piecewise linear (PWL).

PWL models are pervasive in a wide spectrum of applications. For exam-
ple, [2] and [4] present PWL circuit models of hysteresis phenomena. In [3],
the response of a transmission line to a ramp input is approximated via a PWL
waveform. PWL approximations of power electronics systems are used in [12] to
cut down the time it takes to simulate such systems. In [9] a class of nonlinear
filters is explained by resorting to the theory of PWL functions. And it is also
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known that computer graphics and scientific visualisation algorithms require the
approximation of data by linear pieces [13]. This multifarious applicability has
motivated the emergence of dedicated analysis methodologies which, as the re-
sults on stability of PWL models [8], [5], [6], and [7] exemplify, tend to disregard
the relationship that exists between the model and the phenomenon it is repre-
senting by focusing entirely on the former and ignoring the latter. This situation
constitutes the motivating force behind the methodology presented herein.

Built upon the well-known dissipativity theory [16], section 2 presents a suf-
ficient condition which ensures that the component-wise difference that exists
between the trajectories of models a and b is a finite energy signal; furthermore,
it provides a bound for the energy of such signal. For a particular class of mod-
els, an algorithmic approach to the aforementioned condition is introduced in
section 3. Its use is illustrated in the examples provided in the subsequent sec-
tion. This paper concludes with a discussion on the advantages and limitations
of the obtained results.

2 Preliminaries

In this section we introduce the concepts which will be the basis for subsequent
developments.

Take i = {a, b} and let xi ∈ Xi = R
n be the state vector of the dynamical

model ẋi = fi(xi). Restrict ẋi = fi(xi) to have a unique solution or trajectory
xi(·) : R → Xi for any initial condition xi(0) ∈ Xi and denote the set of solutions
as Bi. Define the 2n-tuple x ∈ Xa×Xb as x := [xT

a x
T
b ]T , the function y : Ba×Bb →

R
n as y := xa(t) − xb(t) and the vector-valued map f : Xa × Xb → R

n × R
n as

f(x) := [fT
a (xa) f

T
b (xb)]

T .
In the preceding paragraph, two independent, unforced, continuous-time mod-

els of the same dimension are being stacked to create a new one of the form

ẋ = f(x)

y = g(x)
(1)

where the evolution over time of the two constituent models is compared by
means of the component-wise difference that exists between their state vectors,
namely y. It is clear that xa(t) → xb(t) as t → ∞ is only a necessary condition
for y to be a finite energy signal. The following proposition provides a sufficient
condition which ensures that this is indeed the case and provides an upper bound
on the energy of y.

Proposition 1. Let the supply rate function w : R
n → R be defined by w :=

−yTy. If there exists a nonnegative storage function V : Ba × Bb → [0,∞) such
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that the dissipation inequality

V (x(t0)) − V (x(t1)) ≥ −

∫ t1

t0

w dt (2)

is fulfilled for all x(t0), x(t1) ∈ Ba ×Bb and t0 < t1, then y ∈ L2, i.e. y is a finite

energy signal. Furthermore, ‖y‖L2
:=

√

∫

∞

0
yTy dt ≤

√

V (x(0)).

Proof. As the storage function V (x(t)) is nonnegative, the inequalities

V (x(t0)) ≥ V (x(t1)) +

∫ t1

t0

yTy dt

≥

∫ t1

t0

(xa(t) − xb(t))
T (xa(t) − xb(t)) dt

(3)

follow immediately from the definition of w and y and the fact that V is non-
negative. Letting t0 = 0 and t1 → ∞ in (3) and taking the square root in both
sides completes the proof.

Although dissipativity theory is an important theoretical tool, a constructive
methodology to find storage functions is not available for all kinds of models. And
even for those cases which do have an associated constructive methodology, the
convex set of possible storage functions (see [16]) is not necessarily a singleton. In
the forthcoming section we will restrict ourselves to a particular class of models;
this allows us to advance a methodology to construct storage functions as well as
criteria to select one which tightens the bound for ‖y‖L2

mentioned in proposition
1.

3 Algorithmic implementation

In this section, we take model a to have a polynomial nonlinear vector field fa(xa)
and model b to be PWL. In addition, we will restrict ourselves to the space of
polynomial functions when looking for a storage function V that satisfies propo-
sition 1. This opens the door to an algorithmic approach to proposition 1 based
on the SOS decomposition of multivariate polynomials [11]; an example of the at-
tainable results can be found in section 4.1. Moreover, all propositions included
in this section can be easily adapted to consider models with non-polynomial
vector fields provided they are recasted according to [10]. While the details are
easy to carry out and have been omitted, section 4.2 presents an example which
is assumed to be derived from such a recasting process.
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Let model a have a nonlinear vector field fa(xa) and model b be PWL. Then
(1) can be expressed as

ẋ = Fl(x), l ∈ L = {1, . . . , N}

y = g(x)
(4)

where x ∈ Xa × Xb is the continuous state, l is the discrete state, Fl(x) is the
vector field describing the dynamics of the l-th mode and L is the index set. This
is a switched system with a polynomial vector field, and is said to be in the l-th
mode at time t if x(t) ∈ Xl, where Xl ⊂ Xa × Xb is a region of the state space
described by

Xl = {x ∈ Xa × Xb | φlh(x) ≤ 0, for h = 1, . . . ,MXl
} (5)

for some real-valued polynomial functions φlh. Additionally, the state space par-
tition {Xl} must satisfy

⋃

l∈LXl = Xa×Xb and int(Xα)
⋂

int(Xβ) = ∅ for α 6= β,
where int(·) denotes the interior of a set. A switching surface between the α-th
and β-th mode, i.e. a boundary between Xα and Xβ, is given by

Sαβ = {x ∈ Xa × Xb | ϕαβ 0(x) = 0, ϕαβγ(x) ≤ 0, γ = 1, . . . ,mSαβ
} (6)

for some real-valued polynomial functions ϕαβγ . In addition, it will be assumed
that model (4) does not allow the presence of chattering or sliding-modes.

Considering model (4), we will look for several polynomial functions Vl(x)
(typically corresponding to the state space partition {Xl}); these polynomial
functions will be concatenated in order to get the function V (x) mentioned in
proposition 1. As Vl(x) being polynomial implies that the necessary partial
derivatives exist, this amounts to asking the conditions

Vl(x) ≥ 0

∇Vl(x) · Fl(x) ≤ w
(7)

to hold only on Xl and, if the function V (x) is to be continuous, considering
Vα(x) = Vβ(x) for all x ∈ Sαβ as well. The resulting piecewise polynomial
function V (x) will be defined by V (x) = Vl(x) if x ∈ Xl.

Recalling that the polynomial function Θ(x) is a sum of squares (SOS) if
there exist polynomials θj(x) such that Θ(x) =

∑

j(θj(x))
2, it can be seen that

such condition naturally implies the non-negativeness of Θ(x). To see how we
will be using this result say we want to use the S-procedure [1] to check that the
condition

Vl(x) ≥ 0 when φlh(x) ≤ 0 for l ∈ L and h = 1, . . . ,MXl
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holds. Instead of finding positive constant multipliers (the standard S-procedure),
we search for SOS multipliers âlh(x) such that

Vl(x) +
∑

h

âlh(x)φlh(x) is a SOS for all l ∈ L (8)

Since âlh(x) ≥ 0 and the condition (8) is satisfied, for any x such that φlh(x) ≤ 0
we automatically have Vl(x) ≥ 0, so sufficiency follows. This condition is as least
as powerful as the standard S-procedure, and many times it is strictly better.
Besides this, what is more interesting is the case in which the monomials in
the polynomial Vl(x) have unknown coefficients, and we want to search for the
values of those coefficients so that Vl(x) satisfies (8). SOS programming [14], [15]
easily allows this, and so it will be used to provide an algorithmic approach to
proposition 1.

Proposition 2 (Global analysis). Consider the switched model (4). If there
exist polynomials Vl(x), ĉαβ(x) and sums of squares âlh(x), b̂lh(x), such that

Vl(x) +

MXl
∑

h=1

âlh(x)φlh(x) is SOS for all l ∈ L

w +

MXl
∑

h=1

b̂lh(x)φlh(x) −∇Vl(x) · Fl(x) is SOS for all l ∈ L

Vα(x) + ĉαβ(x)ϕαβ0(x) − Vβ(x) = 0 for all α 6= β

(9)

then V (x) = Vl(x) for x ∈ Xl is a storage function in accordance with proposition
1. Hence, for any positive real constant ε, the set

Xε =
{

x ∈ Xa × Xb |V (x) ≤ ε2
}

(10)

describes the set of initial conditions x(0) ∈ Xa×Xb which guarantee that ‖y‖L2
≤

ε.
Furthermore, let zl(x) be vectors of monomials in x and Pl be real symmetric

matrices of appropriate dimensions such that Vl(x) = zT
l (x)Pl zl(x) for all l ∈

L. Take γl for all l ∈ L and γobj to be real numbers. Let ‖ · ‖2 denote the
Euclidean norm. The following SOS optimisation programme, if feasible, ensures
that V (x) = Vl(x) ≤ γobj‖zl(x)‖

2

2
for all x ∈ Xl and tightens the bound for ‖y‖L2

,

min γobj

s. t. γl z
T
l (x) zl(x) − Vl(x) is SOS for all l ∈ L

γobj − γl ≥ 0 for all l ∈ L

the set of conditions (9) hold.

(11)
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Proof. The non-negativeness of Vl(x) in Xl follows from the first condition in
(9) considering the negative semi-definiteness of φlh(x) in Xl and the positive
semi-definiteness of âlh(x). A similar argument applied to the second condition
ensures that ∇Vl(x) · Fl(x) ≤ w in Xl. Continuity of V (x) is guaranteed by the
third condition recalling that ϕαβ0 = 0 for all x ∈ Sαβ and all α 6= β. The claim
about the set Xε follows from proposition 1 and equation (10).

The first two constraints in (11) imply, respectively, the two inequalities
λmax(Pl) ≤ γl ≤ γobj, where λmax(·) denotes the maximum eigenvalue of a
real symmetric matrix. These inequalities are in turn equivalent to Vl(x) ≤
γl‖zl(x)‖

2

2
≤ γobj‖zl(x)‖

2

2
, a fact which can either be seen directly from the con-

straints in (11) or inferred by the equality Vl(x) = zT
l (x)Pl zl(x). It then follows

that taking γobj as the minimisation objective tightens the bound for ‖y‖L2
.

In principle, one could substitute (11) by the SOS programme

minVl(x(0)) subject to the set of conditions (9)

for a given x(0) ∈ Xl, l ∈ L. If the programme is feasible, we obtain the
smallest possible value for V (x(0)). As a byproduct, we also get a set Xε which
fulfils the characteristics mentioned in proposition 2 but for which there is no
guarantee that the bound for ‖y‖L2

is reasonably tight. If a reasonably tight
bound is required for a set of initial conditions x(0) ∈ Xl, l ∈ L, the fact that the
minimisation of Vl(x(0)) would have to be done on a point-by-point basis renders
the idea useless. On the other hand, as the approach presented herein via (11)
is specifically tailored to consider sets of possible initial conditions rather than
isolated points, it constitutes a much superior alternative.

Note that proposition 2 is suitable for the analysis of the model (4) over the
entire state space Xa×Xb. Minor modifications allows proposition 2’s groundwork
to be adapted to local analysis, as we shall see next.

Without loss of generality, let the origin be an equilibrium point of both
models a and b. Let R be a bounded region of the state space Xa×Xb containing
the origin; (i.e. 0 ⊂ R ⊂ Xa × Xb); let R be defined by

R = {x ∈ Xa × Xb | ψr(x) ≤ 0, for r = 1, . . . ,MR} (12)

for some polynomial, real-valued functions ψr. Let Lc be the index set of the
regions Xl of the state space which are entirely contained in R, Ln the index set
of the regions Xl which are entirely outside the region R, and Lp be the index
set of the regions Xl which are partially contained in R, viz.

Lc = {l ∈ L |Xl ∩R = Xl}

Ln = {l ∈ L |Xl ∩R = ∅}

Lp = {l ∈ L |Xl ∩R 6= Xl, Xl ∩R 6= ∅}

(13)
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Denote the regions themselves by Xlc , Xln , and Xlp .
The region Xlp ∩ R (i.e. the part of Xlp contained in R) can be obtained by

recalling the definitions of Xl and R given by equations (5) and (12). Let the
sets {φ?

lh(x)} and {ψ?
lr(x)} be respectively given by {φlh | (φlh(x) = 0) ∩R 6= ∅}

and {ψr | (ψr(x) = 0) ∩ Xl 6= ∅} for h = 1, . . . ,MXl
, r = 1, . . . ,MR, and a

previously-determined l ∈ Lp. Define then

Xlp ∩R =

{

x

∣

∣

∣

∣

φ?
lh(x) ≤ 0 for h = 1, . . . ,mXl

ψ?
lr(x) ≤ 0 for r = 1, . . . ,mR

}

(14)

noticing that mXl
≤Mxl

and mR ≤MR.
It is worth mentioning that determining the sets given by equations (13) and

(14) is a hard problem in general. However, for some specific instances this can
be readily done, as is the case in the examples presented herein.

Proposition 3 (Local analysis). Consider the switched model (4) and the
region R given by (12). If there exist polynomials Vl(x), ĝαβ(x) and sums of

squares âlh(x), b̂lh(x), ĉlh(x), d̂lr(x), êlh(x), and f̂lr(x) such that

Vl(x) +

MXl
∑

h=1

âlh(x)φlh(x) is SOS for all l ∈ Lc

w +

MXl
∑

h=1

b̂lh(x)φlh(x) −∇Vl(x) · Fl(x) is SOS for all l ∈ Lc

Vl(x) −

mXl
∑

h=1

ĉlh(x)φ
?
lh(x) −

mR
∑

r=1

d̂lr(x)ψ
?
lr(x) is SOS for all l ∈ Lp

w +

mXl
∑

h=1

êlh(x)φ
?
lh(x) +

mR
∑

r=1

f̂lr(x)ψ
?
lr(x) −∇Vl(x) · Fl(x) is SOS for all l ∈ Lp

Vα(x) + ĝαβ(x)ϕαβ0(x) − Vβ(x) = 0 for all α 6= β where α, β ∈ Lp ∪ Lc

(15)
then V (x) = Vl(x) if x ∈ Xl yields a storage function V (x) which complies with
proposition 1 in the region R described by (12). Hence, for any positive real
constant ε, the set

X ?
ε =

{

x ∈ Xa × Xb |V (x) ≤ ε2
}

⊆ R (16)

describes the set of initial conditions x(0) ∈ R which guarantee that ‖y‖L2
≤ ε.

Furthermore, let γl and γobj be real numbers. The existence of sums of squares

ĥlh(x), îlh(x), and ĵl(x) such that the following SOS optimisation programme is
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feasible ensures that V (x) ≤ γobj for all x ∈ R and tightens the bound for ‖y‖L2
.

min γobj

s.t. γl +
∑MXl

h=1
ĥlh(x)φlh(x) − Vl(x) is SOS for all l ∈ Lc

γl +
∑mXl

h=1
îlh(x)φ

?
lh(x) +

∑mR
r=1

ĵlr(x)ψ
?
lr(x) − Vl(x) is SOS for all l ∈ Lp

γobj − γl ≥ 0 for all l ∈ Lc ∪ Lp

the set of conditions (15) hold.
(17)

Proof. The proof follows the same lines than the one for proposition 2 and is thus
omitted.

Remark 1. Note that the set {x ∈ R | V (x) ≤ γobj} computed using proposition
3 is not necessarily contained in R. Further computations are required to find the
range of values of ε for which condition (16) holds.

Ensuring that the inequalities (7) hold for all regionsXlc andXlp ∩R, together
with the continuity of V (x) in R, is achieved by the SOS-based relaxations given
by (15). If the region R were defined by

R =

{

x

∣

∣

∣

∣

ψr(x) ≤ 0, for r = 1, . . . ,MR

xja
− xjb

= 0, for j = 1, . . . , n

}

rather than by (12), this would imply that the set X ?
ε given by (16) would be

explicitly tailored to consider only those initial conditions which fulfil xa(0) =
xb(0). Unfortunately, this requires the third condition in (15) to include terms
of the form

∑n

j=1
(xja

− xjb
) p̂lj(x), where p̂lj(x) are polynomial functions in x.

Similar terms must also be included in the fourth condition in (15) and the
second constraint in (17). This increases the complexity of the SOS programme
and in general introduces additional conservativeness to the aforementioned SOS
relaxations, thus making the idea impractical.

4 Examples

4.1 Example 1

Let model a be given by

ẋ1a
=

1

10
x3

2a
+ x2a

− 0.1x1a

ẋ2a
= −x3

1a
− 0.1x2a

(18)
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and model b be given by

ẋb =

[

−0.1 1
−1 −0.1

]

xb for x1b
< 0

ẋb =

[

0 1
−1 0

]

xb for x1b
≥ 0

(19)

Let the region for local analysis R be given by

R = {x | x2

1a
+ x2

2a
− 4 ≤ 0, x2

1b
+ x2

2b
− 4 ≤ 0} (20)

To illustrate the results which can be obtained with the proposed method-
ology, both propositions 2 and 3 will be put to use twice. In the first try, we
will look for polynomials and sums of squares which contain all monomials in
x of degree up to 6; in the second one, we will go up to 8. If suitable storage
functions V (x) can be found, the value of ‖y‖L2

will be computed for selected
initial conditions which fulfil xa(0) = xb(0) and V (x(0)) = ε2 for a given ε which
guarantees that {x |V (x(0)) = ε2} ⊆ R.

Figure 1 shows the results. As one might expect, local analysis yields better
results for the region of interest R than the global one. It is also worth noticing
how results improve as we look for polynomials and sums of squares of increasingly
higher degree.

4.2 Example 2

In this example, we will suppose that the PWL model given by (19) is being used
to approximate a different model a and a similar analysis to that of the previous
example will be carried out.

Let model a be given by

ẋ1a
=

x3

2a

x2

2a
+ 1

− 0.1x1a

ẋ2a
= −

x5

1a

x4

1a
+ 5

− 0.1x2a

(21)

Model b and the region for local analysis R will be given by (19) and (20),
respectively.

Notice that model a has a rational vector field rather than a polynomial
one. In spite of that, propositions 2 and 3 still apply if all conditions which
include the term ∇Vl(x) ·Fl(x) are multiplied by the positive definite polynomial
(x2

2a
+ 1)(x4

1a
+ 5).
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Figure 1: Value of ‖y‖L2
for initial conditions which fulfils xa(0) = xb(0) and

V (x(0)) = 109.73. The stem plot shows the actual value while the solid line
shows the bound given by

√

V (x(0)).
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Propositions 2 and 3 will be again put to use twice. In the first try, we will
look for polynomials and sums of squares which contain all monomials in x of
degree up to 4; in the second one, we will go up to 6. Figure 2 shows the results.
Notice that there is no plot for the first try using proposition 2 because the
associated SOS programme turned out to be infeasible.
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Figure 2: Value of ||y||L2
for initial conditions which fulfill xa(0) = xb(0) and

V (x(0)) = 86.49. The stem plot shows the actual value while the solid line shows
the bound given by

√

V (x(0)).

5 Concluding remarks

Proposition 1 presented a sufficient condition for the signal y - as described in
section 2 - to belong to L2 space. For the class of systems described in section
3, propositions 2 and 3 presented a heuristic approach to build bounded-degree
polynomial functions which fulfil the conditions to become the storage functions
described in proposition 1.

There is a subtle but important difference between propositions 2 and 3. As
R was defined to be a bounded region, the polynomial functions Vl(x) can indeed
be bounded by constants γl provided that x belongs to R. This is not true for an
unbounded region, so this difference explains why the sets of constraints in (11)
and (17) use different approaches to tighten the bound for ‖y‖L2

.

It must also be acknowledged that failing to find a storage function V (x) by
means of propositions 2 and/or 3 does not allow us to advance a definite conclu-
sion regarding the finiteness of the energy of the signal y. In such a case, looking
for polynomials or sums of squares of increasingly higher degrees could eventu-
ally allow us to find the required V (x), as illustrated by the example presented
in section 4.2.
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