
Global Asymptotic Stability of the Limit
Cycle in Piecewise Linear versions of the

Goodwin Oscillator ⋆

Adrián A. Salinas-Varela, Guy-Bart Stan, Jorge Gonçalves
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Abstract: Conditions in the form of linear matrix inequalities (LMIs) are used in this paper to
guarantee the global asymptotic stability of a limit cycle oscillation for a class of piecewise linear
(PWL) systems defined as the feedback interconnection of a saturation controller with a single
input, single output (SISO) linear time-invariant (LTI) system. The proposed methodology
extends previous results on impact maps and surface Lyapunov functions to the case when
the sets of expected switching times are arbitrarily large. The results are illustrated on a PWL
version of the Goodwin oscillator.

1. INTRODUCTION

Motivated by the pervasiveness of dynamical systems
that exhibit stable limit cycle oscillations (see Goldbeter
[1996], Mosekilde [1997], and Strogatz [2003] for numerous
examples), this paper focuses on the global analysis of limit
cycle oscillations of piecewise linear (PWL) systems. Such
systems are defined by a set of affine linear systems

ẋ = Aσx+Bσ (1)

where x ∈ R
n is the state, together with a piecewise

constant rule to switch among them

σ(x) ∈ {1, . . . ,M} (2)

that depends on present values (and possibly also on past
values) of x. This kind of systems are typically used to
model processes which encompass several modes of oper-
ation with a different (but linear) dynamical behaviour in
each mode. Unfortunately, the majority of the analytical
tools devised specifically for this kind of systems - whether
based on extensions of Lyapunov’s theory (e.g. Bran-
icky [1998], Johansson and Rantzer [1998], Petterson and
Lennartson [2002], Prajna and Papachristodoulou [2003])
or not (e.g Margaliot [2006], Iwatani and Hara [2006], Xu
and Antsaklis [1999], Boscain [2002]) - is incompatible with
the study of limit cycle oscillations. This apparent limita-
tion was addressed by Gonçalves [2000]. In the latter refer-
ence, the stability analysis of a PWL system’s limit cycle
is achieved via the use of linear matrix inequalities (LMIs)
to construct Lyapunov functions on the switching surfaces
(the subsets of the state space in which the system is
allowed to switch from one mode of operation to another).
Unlike the phase plane methods and Poincaré-Bendixson
theorem, this methodology generalises easily to high di-
mensional systems. It has been successfully applied to the
global analysis of oscillations in relay feedback systems
[Gonçalves, 2000, chapter 5] and to the characterisation of
regions of stability of limit cycles for more general PWL
systems in Gonçalves [2005]. Nevertheless, the construc-
tion of the Lyapunov functions depends upon the impact
maps (maps from one switching surface to another), which
are in turn characterised by their associated switching
times (the time between switches). Consequently, it is
impracticable when such switching times are arbitrarily
large. This paper is devoted to the analysis of a specific
class of systems in which such a situation arises.

⋆ This work was supported in part by the Mexican Council of Science
and Technology (CONACyT), the Cambridge Overseas Trust and
the Overseas Research Studentships Programme.

This paper is organised as follows. Section 2 introduces the
class of systems that we intend to analyse. Section 3 starts
by stating the conditions which guarantee the asymptotic
stability of the system’s limit cycle in the entirety of its
state space with the exception of its stable manifold. Since
the presence of this stable manifold implies the existence
of arbitrarily large switching times, conditions to overcome
such obstacle are then presented. A PWL version of the
Goodwin oscillator is used in Section 4 to illustrate our
results. Section 5 concludes and gives directions for future
research.

2. PROBLEM DEFINITION

Consider the feedback interconnection of a SISO LTI
system satisfying the following linear dynamic equations

ẋ = Ax+Bu

y = Cx
(3)

where x ∈ R
n, with a saturation controller defined as

u(t) =

{

κ if y(t) < −d
−κ/d y(t) if |y(t)| ≤ d
−κ if y(t) > d

(4)

where d > 0 and κ > 0.
By a solution of (3) - (4) we mean functions (x(t), y(t), u(t))
satisfying (3) - (4).

As discussed in [Gonçalves, 2000, chapter 7.2], this system
is symmetric around the origin and has a unique solution
for any initial state. In the state space, the saturation
controller introduces two switching surfaces consisting of
hyperplanes of dimension n− 1:

S := {x ∈ R
n | Cx = d}, S := {x ∈ R

n | Cx = −d}

On one side of the switching surface S (Cx > d), the
system is governed by ẋ = Ax − Bκ. In between the
two switching surfaces (|Cx| ≤ d), the system is given
by ẋ = (A− (κ/d)BC)x. Finally, on the other side of S
(Cx < −d), the system is governed by ẋ = Ax+Bκ. Define
the subsets S+ and S− of S as follows:

S+ := {x ∈ S | C (A− (κ/d)BC)x ≥ 0}

S− := {x ∈ S | C (A− (κ/d)BC)x ≤ 0}

As shown in Figure 1(b), S+ (S−) is the set of points
in S that can be reached by trajectories of (3) - (4)
when governed by the subsystem ẋ = (A− (κ/d)BC)x
(ẋ = Ax− Bκ). Define also S+ := −S+ and S− := −S−,
where xs ∈ −S denotes xs ∈ {x | − x ∈ S}.

2.1 Class of systems under consideration.

Systems of the form (3) - (4) are nonlinear and as such,
they can exhibit extremely complex behaviours. Some may
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Fig. 1. Problem definition

be chaotic; others may have have several isolated equilib-
ria; others might have limit cycles, or even some combi-
nation of all these behaviours. Here we consider a class of
systems which satisfies the following conditions:
• There exists a periodic solution with 4 switches per

cycle, i.e. there exists a set of time instants {t∗1, t
∗
2, t

∗
3, t

∗
4}

which complies with [Gonçalves, 2000, Proposition 3.2].
• The periodic solution is locally stable, i.e. the conditions

in [Gonçalves, 2000, Proposition 3.3] are satisfied.
• The SISO LTI system (3) is of dimension 3.
• The matrix A in (3) is Hurwitz.
• The inequality κCA−1B ≤ d holds, ensuring that the

origin is the only equilibrium point.
• The matrix (A− (κ/d)BC) is assumed to have a real

negative eigenvalue and a pair of complex conjugate ones
with positive real parts.

The last condition implies that the unstable equilibrium
x = 0 possesses a stable manifold, which we will denote as
Ms. It is readily seen that solutions of (3) - (4) belonging
to Ms will approach the origin asymptotically. But what
happens when this is not the case? Will all other solutions
eventually converge to the limit cycle described by the
first two conditions? This is what we understand as “global
asymptotic stability of the limit cycle” and constitutes the
question that we propose to answer.

2.2 Structural description.

The following discussion examines the implications en-
tailed by the assumption regarding the eigenvalues of
(A− (κ/d)BC). This will play an important role when
verifying a set of sufficient conditions which guarantee that
the limit cycle is asymptotically stable in R

3 \Ms.

Let B be a basis of R
3. Suppose the linear map f : B → B

is represented by the matrix (A− (κ/d)BC) and denote
its eigenvalues as λ1,2 = α ± jβ and λ3 = γ. Since
(A− (κ/d)BC) is real, there exists a real nonsingular
matrix T such that A1 := T−1 (A− (κ/d)BC)T is in
real Jordan form [Horn and Johnson, 1985, section 3.4].
In other words,

A1 := T−1 (A− (κ/d)BC)T =

[

α −β 0
β α 0
0 0 γ

]

(5)

Note that the three columns of the matrix T , which will be
denoted as Ta, Tb, and Tc, are linearly independent vectors
and hence constitute a basis for R

3 which will be denoted
as B′. Without loss of generality, from this point onwards

we will assume that x = [x1, x2, x3]
⊤
∈ R

3 is a coordinate
vector relative to the basis B′.
For the system ẋ = A1x, an initial condition in the
subspace defined by Vu := span{Ta, Tb} will only excite
the complex conjugate mode. Hence, a necessary condition
for (3) - (4) to have a limit cycle is that the subspace Vu

is not parallel to the switching surface S. Otherwise, any
trajectory of the system ẋ = A1x starting in S− would
asymptotically approach the subspace Vu and spiral away
from the origin without reaching neither S nor S.
Similarly, any trajectory with an initial condition in the
subspace Vs := Tc only excites the stable real mode. If Vs

is not parallel to the switching surface S (i.e. Tc is not
orthogonal to the vector C⊤), then there exists a point
x̄ ∈ S− ∩ Vs such that the trajectory of (3) - (4) starting
in x̄ will converge asymptotically towards the origin. Due
to the continuity of solutions in terms of the initial states
[Khalil, 2000, Theorem 3.5], a simple argument shows
that for points in S− “arbitrarily close” to S− ∩ Vs, the
associated switching times become arbitrarily large. This
fact, as we will see in the following section, plays a very
important role when analysing the stability of the system’s
limit cycle.

3. MAIN RESULTS

This section starts by providing a sufficient condition
which guarantees that the system (3) - (4) possesses an
asymptotically stable limit cycle in R

3\Ms. The following
subsections show how to overcome certain technicalities
which might arise when one verifies the aforementioned
condition.

3.1 Stability analysis of the limit cycle

A sufficient condition for the system (3) - (4) to have
a globally asymptotically stable limit cycle in R

3 \ Ms

is given by an adaptation of the results presented in
[Gonçalves, 2000, Section 7.3] to the class of systems
considered herein. These results are based on the discovery
that impact maps can be represented as linear transforma-
tions parametrised by the switching times. The stability of
the limit cycle is then ensured by proving that the impact
maps are contractive around the points in S+ and S−

which belong to the limit cycle. These points are denoted
as x◦0 and x◦1, respectively.

There are three important aspects to consider during the
aforementioned adaptation. The first one concerns the
selection of the points x∗0 and x∗1 such that [Gonçalves,
2000, Proposition 7.1] holds. Given that A is Hurwitz, let
PA > 0 satisfy PAA + A⊤PA < 0 and define the point
x∗0 ∈ S− as follows:

x∗0 := (d− CA−1Bκ)
P−1

A C⊤

CP−1
A C⊤

+A−1Bκ

If Vs∩S− 6= ∅, let x∗1 := x̄; otherwise, x∗1 := x◦1. Our choice
of x∗0 guarantees that Cx∗0(t) 6= d for all t > 0, as shown
in [Gonçalves, 2000, Section 7.2]. In a similar fashion, if
Vs ∩ S− 6= ∅, then Cx∗1(t) 6= d and Cx∗1(t) 6= −d for all
t > 0. Otherwise, the functions H2a(t) and H2b(t) defined
in [Gonçalves, 2000, Proposition 7.1] can be defined via
continuation for all t > 0 such that Cx∗1(t) = −d.

In the second place, the Lyapunov function V1 (V2) intro-
duced in [Gonçalves, 2000, Section 7.3] has to be centred
around the point in S+ (S−) which belongs to the limit
cycle. To do so, let Pi ∈ R

2×2 be symmetric, positive
definite matrices, gi ∈ R

2, δ ∈ R
2 and αi ∈ R such that

Vi(δ) = δ⊤Pi δ − 2δ⊤gi + αi (6)

for i = 1, 2. Let Π ∈ C⊥ (C⊥ stands for the orthogonal
complement of C). Defining d0 = Π⊤x◦0 − Π⊤x∗0 (d1 =
Π⊤x◦1 − Π⊤x∗1) and fixing g1 = P1d0 (g2 = P2d1) and
α1 = d⊤0 P1d0 (α2 = d⊤1 P2d1) centres the ellipse V1(δ) = ς
(V2(δ) = ς) around x◦0 (x◦1).

In the third place, the conditions presented in [Gonçalves,
2000, Section 6.7.2] must also be modified to incorporate
our particular choice of gi and αi for i = 1, 2. This is done
using standard algebra and is left to the reader.
The numerical verification of the conditions sketched
herein is straightforward when lower and upper bounds
on the set of expected switching times can be found. This
is done by obtaining a finite sequence t0 < t1 < · · · < tk



whose elements belong to the set of expected switching
times and verifying the conditions presented in [Gonçalves,
2000, Section 7.3] on t = {ti}, i = 0, 1, . . . , k. For large
enough k, it can be shown that such conditions are also
satisfied for all the set of expected switching times, as the
latter reference explains.
Nevertheless, it was seen in Section 2.2 that one cannot
always find an upper bound for all the sets of expected
switching times associated with the class of systems under
consideration. A methodology to address this situation is
presented next.

3.2 Verifying the conditions for stability of the limit cycle.
From this point onwards, it will be assumed that the
set Vs ∩ S− is not empty. Define T2a (T2b) as the set of
expected switching times for the impact map 2a (2b) which
takes points from S− ⊂ S (S− ⊂ S) and maps them in
S+ ⊂ S (S+ ⊂ S). As discussed in section 2, the sets
T2a and T2b are not bounded, so a numerical verification
of the conditions mentioned in Section 3.1 is futile. A
methodology to overcome this problem is presented herein.

1.- Enforcing boundedness of T2a and T2b. We start
by characterising a neighbourhood Eε of points in S
centred around Vs ∩ S−. We also provide an estimation
for a bounded set Il that any trajectory of (3) - (4) will
eventually enter. If contraction of the impact maps around
the limit cycle is guaranteed for points in this bounded
set, one can simply wait until the considered trajectory
of the system gets there; from that moment onwards,
the trajectory will converge to the limit cycle. Using
geometrical arguments, we provide an upper bound for the
switching time of points in S− which belong to Il but do
not belong to Eε. The impact maps for all such points
can then shown to be contractive using the conditions
mentioned in Section 3.1. Verifying the contraction of the
impact maps for points which belong to Eε is deferred to
the following subsection.
Start by fixing ε > 0. The set

Eε :=
{

x ∈ S
∣

∣x2
1 + x2

2 ≤ ε2
}

defines an ε-neighbourhood of the subspace Vs in the
switching surface S. For reasons that will become trans-
parent later, the fixed value of ε must be such that Eε ∩
Vu = ∅ (see Theorem 3), Eε ∩ {x ∈ S |CA1x = 0} = ∅

(see Lemma 4), and x◦1 /∈ Eε (see the remark after Theorem
7).

Now let x̄ be the point which belongs to both Vs and S−.
This point fulfills C x̄ = d and x̄ = [0, 0, x3]

⊤ for a given
x3 > 0. The following lemma shows how to coalesce the
definitions of Eε and x̄.
Lemma 1. Let 0i×j be an i× j matrix of zeros and let Ik
be the k×k identity matrix. An equivalent description for
the set Eε is given by

Eε :=
{

x∗1 + Πδ1
∣

∣ δ⊤1 PE δ1 ≤ 1
}

where

PE :=
1

ε2
Π⊤

[

I2 02×1
01×2 0

]

Π

is positive definite.

Proof: The proof follows from straightforward algebra, the
parametrisation of points in S as x∗1 + Π δ1 where x∗1 = x̄,
and the fact that the coordinates x1 and x2 relative to the
basis B′ are both zero for x̄. The positive definiteness of
PE is a direct consequence of C Tc 6= 0. �

Since the matrix A is Hurwitz and |u| ≤ κ is a bounded
input, there is a bounded set Il that any trajectory of
(3) - (4) will eventually enter, as the following proposition
demonstrates.
Proposition 2. Recall the definition of Π as a matrix
belonging to the orthogonal complement of C. Let Π1

Ta

Tb
Tc

SEε

Vu

Fig. 2. The value of ε > 0 defines the set Eε.

and Π2 be the columns of the matrix Π. Let m ≥ 2
be an integer and pick ψi for i ∈ {1, . . . ,m} such that
0 ≤ ψ1 < . . . < ψm < π. Define the row vector Fi :=
cos(ψi)Π

⊤
1 + sin(ψi)Π

⊤
2 . For the system (3) - (4),

Il :=











x

∣

∣

∣

∣

∣

∣

∣

|F1 x| ≤ κ ‖F1 e
AtB‖L1

...
|Fm x| ≤ κ ‖Fm eAtB‖L1











(7)

defines a bounded set that any trajectory will eventually
enter.

Proof: See [Gonçalves, 2000, Proposition 7.2]. �

The definitions introduced below will be needed to show
that the switching times for all points in S which belong
to Il but do not belong to Eε are bounded. Let x3p

be a
fixed nonzero real number between 0 and x3. Consider a
plane P parallel to the subspace Vu as follows:

P :=
{

x
∣

∣ [0, 0, 1]x = x3p

}

For ̺ > 0, define a circle in Vu relative to the basis
B′ by C1(̺) =

{

x ∈ Vu

∣

∣x2
1 + x2

2 = ̺2
}

. A circle in P
relative to the basis B′ can be defined analogously by
C2(̺) =

{

x ∈ P
∣

∣x2
1 + x2

2 = ̺2
}

. Let ̺1 (̺2; ̺2) be the
minimum value of ̺ such that C1(̺)∩S 6= ∅ (C2(̺)∩S 6= ∅;
C2(̺) ∩ S 6= ∅) (see Figure 3). Now define x3max as the
maximum distance between a point in S ∩ Il and the
subspace Vu.

P Vu

S

S
Ta

Tb
Tc

C2 (̺2)

C2

(

̺2

)

Fig. 3. Planes Vu and P ; circles C2(̺2) and C2(̺2)

As the following theorem demonstrates, defining the sets
P and Eε permits the computation of an upper bound for
the switching time of all points in the switching surface
S− which belong to the set Il but do not belong to the
neighbourhood Eε.
Theorem 3. Fix x3p 6= 0 between 0 and x3. Pick a value
of ε such that ̺2 ≥ ε > 0. Define the time instants

t1 := (ln ̺1 − ln ε) /α, t2 := 2π/β,

t3 := (lnx3p − lnx3max) /γ, t̆ := max(t1, t3) + t2,

t′1 :=
(

ln ̺2 − ln ε
)

/α, t′2 := π/β,

t′3 := (lnx3p − lnx3max) /γ, ˘̆t := max(t′1, t
′

3) + t′2
for the system

ẋ = A1x, x(0) ∈ (S ∩ Iinv) \ Eε (8)

Then there exists at least one time instant ts (t̆s) which

fulfills x(ts) ∈ S (x(t̆s) ∈ S ) and 0 < ts ≤ t̆ (0 < t̆s ≤ ˘̆t).



Proof: Define r :=
√

x2
1 + x2

2 and θ := arctan(x2/x1).
Hence, ẋ = A1x can be expressed via the uncoupled
differential equations ṙ = α r, θ̇ = β, and ẇ3 = γ w3

with initial conditions r(0) ≥ ε, θ(0) = θ0, and w3(0) ≤
w3max. By assumption, α > 0, β > 0, and γ < 0, so
straightforward calculations show that r

(

t̆
)

> r(t1) ≥ ̺1,

that w3p ≥ w3(t3) > w3

(

t̆
)

> 0, and that θ
(

t̆
)

= θ0 +
βmax(t1, t3) + 2π. From the second set of inequalities it
can be seen that the trajectory of (8) remains between
the planes P and Vu for all time t ≥ t3. In addition, after
the time t ≥ max(t1, t3) has elapsed, the distance between
the subspace Vs and the trajectory of (8) has grown to be
greater than or equal to ̺1 (this is given by the first set of
inequalities). Finally, the expression for θ

(

t̆
)

shows that
the additional time interval t2 allows a complete revolution
around Vs to occur, thus completing the proof. As an aside,
observe that the choice of ε guarantees that Eε ∩ Vu = ∅.

The proof for t̆s is similar and is thus left to the reader.
Notice that in this case only half a revolution around Vs
is needed; this is a direct consequence of the fact that
̺2 > ̺1 > ̺2. �

The above theorem permits the conditions mentioned in
Section 3.1 to be verified for all points in S ∩ Il which do
not belong to Eε. As the points in Eε cannot be neglected,
the next section will show how to deal with them.

2.- Investigation of the set Eε. This subsection shows
how to verify that trajectories starting in the set Eε \ Vs

converge to the limit cycle of system (3) - (4). Although
the approach used here involves showing that the impact
maps are contracting around the limit cycle, its novelty
resides in the fact that it does not recur to the switching
times associated with points in Eε \ Vs.

We start by proving that, under some assumptions, a
trajectory of ẋ = A1x which starts in a point belonging to
Eε \ Vs will take at least some time tE,2a (tE,2b) to reach
the switching surface S (S).

Lemma 4. Define w2a(t) := CeA1tΠ
d−Cx∗

1
(t) for t > 0 and

w2a(0) := −CA1Π
CA1x∗

1

. Let

d̃2a(t) =
1

2
PE

−1 w⊤

2a(t), d2a(t) =
d̃2a(t)

(

d̃
⊤

2a (t)PE d̃2a(t)
)1/2

for all t ≥ 0. Assume that the value of ε chosen to
characterise the set Eε is such that

(w2a(0) d2a(0) − 1)(−w2a(0) d2a(0) − 1) > 0

Let tE,2a be the smallest value of t ∈ T2a \ {0} for which
the expression

(w2a(t) d2a(t) − 1) (−w2a(t) d2a(t) − 1) (9)

is less than or equal to zero. Then, all points in Eε \
Vs which switch in S have an associated switching time
greater than or equal to tE,2a.

It can also be shown that all points in Eε \ Vs which
switch in S have an associated switching time greater

than or equal to tE,2b by defining w2b(t) = CeA1tΠ
−d−Cx∗

1
(t) for

t ∈ T2b and using this expression instead of w2a(t) in the
abovementioned result.

Proof: Define St2a
(St2b

) as the set of initial conditions
x1a

∈ S− (x1b
∈ S−) such that −d ≤ Cx(t) ≤ d on

[0, t2a] and Cx(t2a) = d (−d ≤ Cx(t) ≤ d on [0, t2b] and
Cx(t2b) = −d). Corollary 4.1 in Gonçalves [2000] shows
that, for all t2a in T2a \ {0}, the set St2a

is a subset of the
linear manifold St2a

:= {x∗1 + Πδ1 |w2a(t2a) δ1 = 1}. For

t2a = 0, the set St2a=0 is given by {x∗1 + Πδ1 |w2a,0 δ1 = 1}
since w2a,0 δ1 = limt→0 w2a(t) δ1. It is then obvious that
if the set Eε has no points in common with St2a

for all
t2a ∈ [0, tE,2a), then the switching time for all points in
Eε must be equal to or greater than tE,2a.

As a shorthand, we will be using w2at for w2a(t2a) and d2at

for d2a(t2a). Define the sets

S′

E,t :=
{

δ1 ∈ R
2

∣

∣ δ⊤2at PE δ1 = 1
}

S′

w,t :=
{

δ1 ∈ R
2 |w2at δ1 = 1

}

Straightforward manipulations show that δ⊤2at PE = cw2at

for c =
(

w⊤
2at PE w2at

)−1/2
, so the sets S′

w,t, S′

E,t and

−S′

E,t represent lines in R
2 parallel to each other. Further-

more, S′

E,t and −S′

E,t are tangent to the ellipse δ⊤1 PE δ1 =
1 at the points δ1 = δ2at and δ1 = −δ2at. It then follows
that St2a

∩Eε 6= ∅ if and only if (w2at d2at−1)(−w2at d2at−
1) > 0. This equivalence is explained by the fact that
(w2at d2at −1) and (w2at(−d2at)−1) have the same sign if
and only if S′

w,t is not located between the lines S′

E,t and

−S′

E,t. This means that no δ1 can satisfy w2at δ1 = 1 and

δ⊤1 PE δ1 ≤ 1 simultaneously, as Figure 4 shows. In this
case, the sets Eε and St2a

have no points in common, so
our claim follows.
The proof for tE,2b follows the same line of reasoning and
is thus omitted. �

S

Πw⊤
2at

St2a

Eε

Πδ2at

−Πδ2at

x∗1

Fig. 4. St2a
∩ Eε 6= ∅. The dashed lines rep-

resent the sets
{

x∗1 + Π δ1
∣

∣ δ1 ∈ S′

E,t

}

and
{

x∗1 + Π δ1
∣

∣ δ1 ∈ −S′

E,t

}

.

Using time tE,2a (tE,2b), it can be determined how close to
the subspace Vu the trajectory has to be when it reaches
S (S).

Lemma 5. Let Sd ⊂ (S− \ Vs) (S−d ⊂ (S− \ Vs)) be the
set of points that will eventually switch in S (S). Define
tE,2a and tE,2b as in Lemma 4. Let x3E+

be the maximum
distance between a point in Eε and the subspace Vu. Define
x3E2a

:= x3E+
exp(γ tE,2a) and x3E2b

:= x3E+
exp(γ tE,2b).

Then any trajectory of ẋ = A1x starting in Sd ∩ Eε

(S−d ∩ Eε) will not be away from the subspace Vu by
a distance greater than x3E2a

(x3E2b
) when it switches at

S (S).

Proof: The proof follows from the definition of tE,2a, tE,2b

and x3E+
by recalling that the stable behaviour of ẋ = A1x

is uncoupled from the unstable one. �

An additional geometrical argument then characterises
subsets of S and S that this trajectory will reach.
Lemma 6. Assume that the value of ε used to characterise
the set Eε complies with the conditions given in Theorem
3 and Lemma 4. Define

̺
E2a

:=
d+ c̃3 x3E2a

√

(c̃1)2 + (c̃2)2
, q := ̺

E2a
exp

(

2πα

β

)

(10)

where [ c̃1 c̃2 c̃3 ] := C, and x3E2a
is defined as in Lemma

5. Let the set Sη,2a be defined by



{

CA1x
∣

∣ C x = d, x2
1 + x2

2 ≤ q2, 0 ≤ x3 ≤ x3E2a

}

and denote its infimum and supremum values as η a1 and
η a2, respectively. If η a1 is negative, then re-define it as
η a1 := 0. Then all trajectories of ẋ = A1x which start in
the set Eε \Vs and eventually switch in S will do so in the
set SE2a ⊂ S defined by

SE2a := {x ∈ S | 0 ≤ x3 ≤ x3E2a
, η a1 ≤ CA1x ≤ η a2}

Now define q
2b

via the substitution of x3E2a
by x3E2b

in
(10). Define the set Sη,2b by

{

CA1x
∣

∣ C x = −d, x2
1 + x2

2 ≤ q2
2b
, 0 ≤ x3 ≤ x3E2b

}

and denote its infimum and supremum values by η b1 and
η b2, respectively. If ηb2 is positive, then re-define it as
ηb2 := 0. Then all trajectories of ẋ = A1x which start
in the set Eε \ Vs and eventually switch in S will do so in
the set SE2b ⊂ S defined by

{x ∈ S | 0 ≤ x3 ≤ x3E2b
, η b1 ≤ CA1x ≤ η b2 }

Proof: We begin by noticing that x3E2a
can be used, as

in Section 3.2.1, to define a plane PE2a which is parallel
to the subspace Vu. The value of ̺2 associated with PE2a

is denoted as ̺
E2a

and is greater than ε due to the as-
sumptions placed on the latter. Now recall the definitions
r :=

√

x2
1 + x2

2, θ := arctan(x2/x1), and the fact that the
solutions at time t = 2π/β of the differential equations

ṙ = α r; θ̇ = β with initial conditions r(0) = ̺E2a;
θ(0) = θ0 are equal to q; θ0 + 2π. This shows that
once any trajectory of ẋ = A1x starting in Sd ∩ Eε

has reached the set
{

x ∈ R
3

∣

∣x2
1 + x2

2 = ̺2
E2a

}

, it must
undergo another complete revolution around Vs before
reaching

{

x ∈ R
3

∣

∣x2
1 + x2

2 ≥ q2
}

. Given the geometrical
interpretation of ̺E2a, this cannot be done without reach-
ing the switching surfaces S and S first.
To prove that a point in Sd ∩Eε cannot eventually switch
outside SE2a, we proceed by contradiction. Suppose that
a point x̃ ∈ Sd ∩ Eε switches outside SE2a. Notice that
switching in the set {x ∈ S | x3 < 0} is impossible due
to the dynamics of the system. Furthermore, Lemma 5
shows that switching in the set {x ∈ S | x3E2a

< x3} is
impossible too. Hence, the point in Sd ∩ Eε is restricted
to switch in the set S× := S×1

∪ S×2
where

S×1
:= {x ∈ S | 0 ≤ x3 ≤ x3E2a

, η 1 > CA1x}

S×2
:= {x ∈ S | 0 ≤ x3 ≤ x3E2a

, η 2 < CA1x}

Since the definitions of η 1 and η 2 ensure that the set
{

x ∈ R
3

∣

∣ Cx = d, 0 ≤ x3 ≤ x3E2a
, x2

1 + x2
2 ≤ q2

}

is contained in the set SE2a, it is readily seen that
x2

1 + x2
2 > q2 for all points x ∈ S×. This contradicts

the information presented in the previous paragraph. In
addition, all trajectories of ẋ = A1x starting in S− are
restricted to switch either in the set S+ or in the set S+.
Hence, our claim follows.
The proof for SE2b follows the same line of reasoning and
is thus omitted. �

We now present a condition which guarantees that the
mapping of points in Eε\Vs to the aforementioned subsets
of S and S is contracting around the limit cycle.
Define SES := SE2a and SES := −SE2b. We furthermore
consider the following notation: if S is a set, then define
the set S − xs as

S − xs := {x− xs |x ∈ S}

To verify that trajectories starting in the set Eε \ Vs

converge to the limit cycle of system (3) - (4), it is sufficient
to show that the impact maps which take points from

Eε \ Vs and map them in S and S are contracting. A
sufficient condition which guarantees such contraction is

{

max V1(δ2a)
s.t. Πδ2a ∈ SES − x∗0

}

<
{

min V2(δ1)
s.t. Πδ1 ∈ Eε − x∗1

}

{

max V1(δ2b)
s.t. Πδ2b ∈ SES − x∗0

}

<
{

min V2(δ1)
s.t. Πδ1 ∈ Eε − x∗1

}

(11)
We now present a set of linear matrix inequalities which,
if fulfilled, guarantee that conditions (11) hold.

Theorem 7. Define Γ := [0, 0, 1] and let M be a 3 × 3
matrix with rows given by Γ, C, and CA1, respectively.
Let

ϑa,1 := [ 0, d, η a1 ]
⊤

ϑa,2 := [ x3E2a
, d, η a1 ]

⊤

ϑa,3 := [ 0, d, η a2 ]
⊤

ϑa,4 := [ x3E2a
, d, η a2 ]

⊤

ϑb,1 := [ 0, d, −η b1 ]
⊤

ϑb,2 := [−x3E2b
, d, −η b1 ]

⊤

ϑb,3 := [ 0, d, −η b2 ]
⊤

ϑb,4 := [−x3E2b
, d, −η b2 ]

⊤

where w3E2a
, w3E2b

, η a1, η a2, η b1, and η b2 define the sets
SES and SES .

Define σa,i = V1

(

Π⊤
{

M−1ϑa,i − x∗0
})

and σb,i =

V1

(

Π⊤
{

M−1ϑb,i − x∗0
})

for i ∈ {1, 2, 3, 4}. If there exist
nonnegative scalars τa,i and τb,i such that the matrices

[

P2 + τa,iPE −g2
−g⊤2 α2 − σa,i − τa,i

]

[

P2 + τb,iPE −g2
−g⊤2 α2 − σb,i − τb,i

]

are positive definite for all i ∈ {1, 2, 3, 4}, then conditions
(11) hold.

Proof: The matrix M can be shown to be non-singular by
considering that A1 6= ξI3 together with the fact that the
vector Γ⊤ /∈ Vu.

Let i ∈ {1, 2, 3, 4}. The fact that M−1 exists shows that
SES (SES) can be visualised as the set of points in S

enclosed within the parallelogram with vertices M−1ϑa,i

(M−1ϑb,i). Since the function V1 is convex by construction
(see section 3.1), maximising its value over the sets SES −
x∗0 and SES − x∗0 can be done by computing its value at

the points Π⊤{M−1ϑa,i−x
∗
0} and Π⊤{M−1ϑb,i−x

∗
0}; the

biggest of such values is the desired result. Hence, enforcing
conditions (11) is equivalent to asking the inequalities

σa,i < V2(δ) = δ⊤P2 δ − 2δ⊤g2 + α2

σb,i < V2(δ) = δ⊤P2 δ − 2δ⊤g2 + α2

to hold for all δ 6= 0 such that δ⊤PE δ ≤ 1. It is obvious
that if there exist nonnegative scalars τa,1 and τb,1 such
that

δ⊤P2 δ − 2δ⊤g2 + α2 − σa,i − τa,i (1 − δ⊤PE δ) > 0

δ⊤P2 δ − 2δ⊤g2 + α2 − σb,i − τb,i (1 − δ⊤PE δ) > 0

hold, then the aforementioned inequalities hold too. Real-
ising that one can write this as

[

δ
1

]⊤
[

P2 + τa,iPE −g2
−g⊤2 α2 − σa,i − τa,i

]

[

δ
1

]

> 0

[

δ
1

]⊤
[

P2 + τb,iPE −g2
−g⊤2 α2 − σb,i − τb,i

]

[

δ
1

]

> 0

completes the proof. �

Remark: For Theorem 7 to be useful, the set Eε must be
defined in such a way that it does not contain the point
x◦1. If it did,

min V2(δ1)
s.t. Πδ1 ∈ Eε − x∗1



would be equal to zero and, given that V1(δ) is nonnegative
for all values of δ, the inequalities in (11) would never be
fulfilled.

4. EXAMPLE.

The following example is a PWL version of the third order
dimensionless Goodwin oscillator model whose parameters
are congruent with those presented in Stan et al. [2007].
The SISO LTI block obeys

ẋ =
[

−0.5 0 0
0.5 −0.5 0
0 0.5 −0.5

]

x+
[

1
0
0

]

u

y = [ 0 0 1 ]x

while the saturation block is described by

u(t) =

{

1/2 if y(t) < −1/9
−9/2 y(t) if |y(t)| ≤ 1/9
−1/2 if y(t) > 1/9

The feedback system has a locally stable limit cycle that
switches four times per cycle with period t◦ ≈ 2(1.5398 +
2.0911). The intersection of the limit cycle with the switch-
ing surface S occurs at x◦0 ≈ [0.0652, 0.2634, 0.1111]⊤

and x◦1 ≈ [−0.5067, −0.0352, 0.1111]⊤. The set Il was
constructed according to Proposition 2 by selecting m =
18 and ψi = (m−1)(π/18). The choice of x3p ≈ 0.0809 and
ε = ̺2 ≈ 0.6111 yields T2a = [0, 15] and T2b = [0.47, 18.43],
(refer to section 3.2.1 and [Gonçalves, 2000, Proposition
7.5]). For this system, the Lyapunov functions on S are
defined by the matrices P1 ≈

(

3847.7 1366.2
1366.2 595.6

)

and P2 ≈
(

1757.8 906.5
906.5 595.6

)

. To show the validity of these functions, the
system was simulated on the time interval [0, 30] starting
from the initial condition x(0) = [0.6, 0.6, 1/9]⊤.
The most relevant results of such simulation are shown in
table 1; as expected, the value of the Lyapunov functions
decreases every time the trajectory reaches a switching
surface.

t x(t) Vi

0 [ 0.6, 0.6, 0.1111 ]⊤ V1 = 73.6639
3.4664 [ -0.7172, -0.2272, 0.1111 ]⊤ V2 = 17.9082
4.7706 [ -0.3091, -0.3949, -0.1111 ]⊤ V1 = 8.1239
7.2691 [ 0.6247, 0.1311, -0.1111 ]⊤ V2 = 3.9507
8.895 [ 0.193, 0.329, 0.1111 ]⊤ V1 = 1.8294

10.9568 [ -0.5745, -0.0873, 0.1111 ]⊤ V2 = 1.1052
12.774 [ -0.1357, -0.2989, -0.1111 ]⊤ V1 = 0.5203
14.608 [ 0.546, 0.0654, -0.1111 ]⊤ V2 = 0.3411
16.5382 [ 0.1051, 0.2833, 0.1111 ]⊤ V1 = 0.1618
18.2465 [ -0.5296, -0.052, 0.1111 ]⊤ V2 = 0.1102
20.2434 [ -0.0881, -0.2748, -0.1111 ]⊤ V1 = 0.0524
21.8804 [ 0.5201, 0.0449, -0.1111 ]⊤ V2 = 0.0364
23.9165 [ 0.0784, 0.2700, 0.1111 ]⊤ V1 = 0.0173
25.5127 [ -0.5145, -0.0408, 0.1111 ]⊤ V2 = 0.0122
27.5716 [ -0.0729, -0.2672, -0.1111 ]⊤ V1 = 0.0058
29.1442 [ 0.5113, 0.0385, -0.1111 ]⊤ V2 = 0.0041

Table 1. Results of the system’s simulation over
the time interval [0, 30] with initial condition
x(0) = [0.6, 0.6, 1/9]⊤. The first and second
columns show the time instants in which the
system’s trajectory reaches a switching surface
and the points in which this happens, while the
third one gives the value of the appropriate

Lyapunov function at such points.

5. CONCLUSIONS.

This paper presented a methodology to analyse the global
stability of the limit cycle of a PWL saturation system
which cannot be directly analysed using the methodology
presented in Stan [2005]. It is based on the construction
of quadratic Lyapunov functions on the system’s switch-
ing surfaces and covers the case in which the expected
switching times associated with the system’s impact maps
are arbitrarily large. The first step involves defining a
subset of the system’s switching surfaces in which the
switching times are bounded; the methodology developed

by Gonçalves [2000] is then applied to the study of such
subset. The second step recurs to a geometrical argument
in order to guarantee that all the trajectories which do
not start in the aforementioned subset converge either to
the origin or to the limit cycle. Taken together, both steps
achieve the desired objective.
Future work involves the extension of the present results
to higher-dimensional systems, thus opening the door to
the analysis of models other than the third-order Goodwin
oscillator presented herein.
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