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In the nonlinear model predictive control (NMPC) field, it is well-known that the multistep control approach

is superior to the single-step approach when examining high-order nonlinear systems. In the multistep control
approach, however, the online minimization of a 2-norm square objective function over a control horizon of
length M always requires solving a set of complex polynomial equations, for which no definite solution
exists so far. Moreover, the complex nature of the receding horizon optimization also causes additional problems
to its closed-loop stability analysis. With these two serious challenges in mind, using a Veltagaerre
model-based NMPC for discussion, we propose a general technique to extend the control horizon with the
assistance of Groebner basis, which transforms the set of complex polynomial equations to a much simpler
form. We prove the closed-loop stability of the algorithm in the sense that the input and output series are
both mean-square-bounded. Finally, the efficiency of this improved algorithm is examined on an industrial
constant-pressure water supply system. Compared to the conventional NMPC schemes, the proposed method
with the control horizon extension has shown a great potential to control a wide range of nonlinear dynamic
systems.

1. Introduction (1) The online optimization of the object function always

Model predictive control (MPC) is an attractive optimization '€ads to a set of complex polynomial equations, including
strategy, particularly for nonlinear processes in real- coupling of the inputs at different step3/ for which no definite
world applications. Conventional MPC schemes have enjoyed Solution is available so far.
widespread acceptance and success as an effective technique (2) Even if this control law is available, another serious
for addressing control problems, especially in the chemical/ challenge still remains on the closed-loop stability analysis,
petrochemical industrisRecently, research has focused on which involves the receding horizon optimization nature of
the nonlinear MPC (NMPC) problem; however, the derivation NMPCS8
of these models can be very time-consuming, especially if  To meet these two challenges, one of the most frequently
the process is not well-understood. Furthermore, the NMPC stydied casesthe Volterra series model-based NMPC al-
schemes that use more-realistic nonlinear process descriptiongorithmf—will be investigated as an example. The Volterra
always sacrifice the simplicity associated with linear tech- series modéf is a nonlinear extension of the linear impulse
niques, to achieve the improved performafcehe direct  response model, which is capable of capturing the nonlinear
use of nonlinear models often leads to a high-order non- gynamics with fading memofyi.e., the effects of past inputs
linear 2optlmlzauon problem, which has not been easy to solve 4, the output are negligible after some finite time). In our study,
so far: each Volterra kernel is expanded by a complete orthonormal

To enhance the efficiency of NMPC, more and more geries of functions called the Laguerre functional setids,
empirical nonlinear models are usesljch as the nonlinear auto- which is chosen based on the effective synthesis of causal
regressive moving average with exogenous inputs (NARMAX) o0 a40rs ~ Although many orthornormal sets, such as Kautz
model? the nonlinear auto-regressive with exogenous iNPUts geyied0113nd Tschebyscheff seriésye also available, a proper
(NARX) model? the Volterra series modévl‘}.and the.Wlener Laguerre filter pole will result in fewer modeling paramet&rs’
model34 among others. Because these discrete-time modelsif the higher-order Volterra kernels can be neglected

are of high-order, a multistep input series (a multistep con- ) :
g b NP ( P During the past few years, Laguerre filters have been

trol horizon) rather than a single-step input is required to ) S . o
predict system output over certain future steps. The extensionStccessfully applied to design linear adaptive controlfers,
which has caused interest of modeling stable linear plants

of receding techniques to the multistep control situation will " PN > !
be very helpful to handle high-order nonlinearities. However, USing Laguerre filter8?"22 Compared with the FIR (finite
this extension is not easy to achieve, for the following two IMpulse) or the ARMA (autoregressive moving average)
reasons. m_odel, the La_lguerre moo!el is good a_t approximating systems
with varying time delay with the following advantage’h1517
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= - Z—=p n=1 =

where the function$(zs,...rn) are the Volterra kernels that

v, (£) . represent the npnlinear dynamigs. This type of system i's called
o 0 FMNS2 which is well-behaved in the sense that it will not
— z []1,11,- - -JN] exhibit multiple steady states or other related phenomena, such
, , , as chaotic responses. Fortunately, most industrial processes (pH
(0 Iy neutralization processes, continuously stirred tank reactor

(CSTR) processes, distillation processes, heat exchange pro-
cesses, etc.) belong to FMNS systefhin practice, a Volterra
series should be truncated at a finite vaNie!

We denote théth-order Laguerre time function by(t) and
theith-order Laguerre filter, which is shown in the upper part
of Figure 1, by

Figure 1. Volterra—Laguerre nonlinear model in the discrete-time domain.

The Volterra-Laguerre model was first proposed and ana-
lyzed by Schetzérin 1980. Boyd and Chife proved, in 1984,
its superiority, in comparison with other empirical models, such
as the NARMAX model and the NARX model, when capturing
the dynamics of fading memory nonlinear systems (FMNSSs), .
which are defined as systems whose dependence on past inputs L) = [ (mu(t —7) dr (2)
decreases rapidly enough with ti&hereafter, more and more
researchers recognized the potential of the Voltei@guerre  where the expression g(t) is given in refs 9 and 10. Because
model in nonlinear process modeling and control. The most {1 forms a complete orthonormal set in the sphg& ™), we
typical example is Dumont’s NMPQwith the single-step control  can write, under the assumption that the Volterra kefraie
horizon, which was successfully applied to a wood chip refiner stable,
motor load control system for mechanical pulping. However,

because of the complexity of receding horizon optimization N
nature, the two general theoretical issues of NMPC, namely (a) h,(z,) = Z cipi(ty)
control horizon extension (and, in particular, finding the solution i=

of complex polynomials of equations) and (b) closed-loop N N
stability analysis still remain unsolvéd;?>-26 which greatly hy(7,,7,) = Z Z (1B (T,)
limits its further application. = E
Bearing these problems in mind, this paper presents a general : 3)
method to extend the control horizon of NMPC algorithms with

guarante_:ed stability. The main contributions of this paper are wherec;, Gy, ... are constant coefficientsThe expansion error
summarized as follows: goes to zero abl andN, approach infinity; hereN is defined

(1) The traditional single-step control NMPC algorithm is as the Laguerre series truncation length. Using the orthonormal
improved and changed to a multistep one. This is done using property of the Laguerre function, and substituting eqs 2 and 3
an important concept from the algebraic geometriamely, a into eq 1, the inputoutput model becomes
Groebner basté28-which allows the mentioned sets of complex
polynomial equations to be transformed to simpler forms with N N N
easy solution. Yl = o) + ) cli(t) + Z Z ComdnON(D) + ==+ (4)

(2) Based on a lemma proposed by Good##i#fthe stability = =Lk
of this closed-loop system is proved in the sense that the input

) Because of the fact that Volterra kernels are symmetric, we
and output series are both mean-square-bounded.

Hence, this novel method can be expected to take full define
advantage of NMPC technology and to be capable of examining L@t) = [1,(t),...] (t)]T
more-complex nonlinear dynamics. The developed algorithm PN
will be demonstrated with promising results on a real water C= [Cl!""CN]T
supply system.
The remainder of the paper is organized as follows. In section Ciu we Cpy
2, the Volterra-Laguerre Model is first introduced. In section D= o
3, two main problems are described, together with the conven- * : Can (%)

tional single-step control NMPC algorithm. In section 4, the

improved multistep control NMPC algorithm then is proposed, Here the symbol ** denotes “transpose” aBds a symmetric
together with the theoretical analysis of the closed-loop stability. 5trix.

Experiments are performed in section 5. Finally, conclusions  assume the truncation length of the Volterra seriethis=

are given in section 6. 2; the Volterra-Laguerre model then beconié425
2. Volterra—Laguerre Modeling for Processes L(t) = AL(®) + Bou(t) (6)
If the dependencies of the process dynamics on past inputs Yin(t) = Ceo T CL(D) + LT(H)D L(t) (7)

decrease rapidly enough with time, the inpattput relationship
of this nonlinear process can be approximated by Volterra eries Based on this, we similarly consider the discrete-time vetsidn
as of egs 6 and 7:
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L(t + 1) = AL(t) + Bu(t) (8) al® proposed a method to generate high-order OFSs. With the
- - increase in order, the OFS model can handle more-complex
Ym(t) = Co + CL(t) + L ()DL(Y) 9) dynamics.
with 3. Problem Description
Ip 0 0 0 Generally speaking, to predict the system ougft)t an input
B 0 0 series rather than a single-step input is required in MPC. Thus,
P it seems obvious that the multistep control method is superior
A= —pB B p 0 (10a) 1o the single-step approach.
pzﬁ —pB B 0 First, aM-step control and &-step prediction NMPC are
: designed, based on the Volterreaguerre model (eqs 8 and
( l)N 2 N- Zﬁ (— 1)N 3,N—- ﬁ B p 9). The definitions of control and prediction horizons and the
| general derivation procedure of MPC can be reviewed in

Camacho and BordorisThe future staté(t +i[t)(i = 1, ...,P)

ﬁlf? in eq 14 can be predicted by combining the current stéte
( D) ﬁl/Z with the past control inputsi(t — 1) and the future changes
(10b) {Au(t +j|t),j =0, ....,.M — 1},
(_p)N—lﬂl/Z - - i—1 -
L(t+ilty=A'L(t) + ABut — 1)+ Z) Ai_BAu(t +jlt)
a (14)

p=v1-p’ (10c)
assuming that the input changas(t + j|t) = 0 forj = M, and
wherep is the Laguerre filter pole (see the upper portion of A = Z' oAl
Figure 1). The detailed model structure of Figure 1 can be If Ny =2, the model prediction (eq 14) then can be rewritten
explained as follows: the upper portion (the Lagurrre filters) as
calculates the state vectioft); accordingly, the zero-order kernel
(2), the first-order kernel [{(t),*-,In()]), and the second-order

kernel 1:2(0))1(t)Ja()...., 12(t)..... IN?(t)] are computed within A AB
the lower portion of Figure 1. Finally, combining these kernels L(t+ 1) = A2 AB U ut— 1]+
and their corresponding coefficiertgC andD yields the model : ®
output yn(t). Generally, the initial value4.(0) can be pre- AP A. .B
optimized a¥’ P17 IPNx(N+1)
] _
AlB O * 0
LO) =V1-p*[L,—p,p’ ... OV T AB AB :
: 0
n n X AU(tt) (15
Here, a finite number of Laguerre filters are used, indicating AwB Ay_B - AB (1o (19)
that the true plant is stable and observable in finite time. P P )
Equations 8-10 are an approximation in inpabutput form of ApB Ap B e Ap_11i1B [pncm
the Volterra functional series representation for a nonlinear ]
dynamic system. with

Fortunately, the model parametegsC, andD are in a linear

regressive form, which can be easily estimated by least-squaresy _(t + 1|t) = Cp'L(t + 1/t) + L "(t + 1|t)DpL (t + 1|t)
estimation (LSBE}* as follows:

y(t) = 67D(1) (11) L(t+ 1) =Lt + 1t),...LTt + PI)]"  (16b)
with AU(t]t) = [Au(t]t),... Aut + M — 1])]T  (16c)
0= [CO,Cl,"',CN,Cll,'",ClN,C21,"',C2N,"',CNN] (12) Ym(t + 1|t) = [ym(t + 1|t),---,ym(t + P|t)]T (16d)
= oo 2 XX
(I)(t) - [1!|1(t)! ;lN(t)!l]_ (t)!ll(t)IZ(t)l ’ , CpT — dlag(CT, CT)poN (166)
| (O (0.1 (O1(8),7 =[O0+ I (O] (13)
Dp = diagD,;...D)pnypn (16f)
According to eq 8,®(t) can be calculated withi(t) at each
sampling period, and the coefficienscan be identified by The associated quadratic objective function is
recursive LSE with a forgetting factdr.
Remark 1: Each stable Volterra kernel in the spdcgR™) min JAU(tt) = [[Y, (t+ 1) — Y, (t+ 1|t)||Q2 +
can be accurately approximated by a more-general type of modelAV0
called an orthonormal functional series (ORS} Pulse series, [|AU(t|t)] |R2 a7

Laguerre series, and Kautz series are three typical OFSs, with .
orders of 0, 1, and 2, respectively. In addition, Heuberger et where the rectified model output prediction vecto¥ig(t + 1)
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= Y(t + 1) + e(t), with modeling erroe(t) = y(t) — ym(t), Q set of eq 18 in a straightforward manner. The detailed description

=[1, ...,1},; the softening reference vector is of the Groebner basis and the relevant contents are given in
Appendix A and refs 27 and 28. Actuallffl < i < M) in eq
Y (t+ 1) = [y (t+ 1), ...yt + P)]T 18 forms an ideal on a polynomial ring, whose definition is

also shown in Appendix A. The Buchberger algoriffirthen
with yi(t + i) = aly(t) + (1 — o)y (1) (fori =1, ...,P), aLis the could be applied to generate the Groebner bases, which
softening parametey(t) is the set point, an@ andR are both transforms the complex equation set (eq 18) into simpler basis
positive-definite symmetric weighting matrices, which are Polynomials that represent the solutions for the manipulated
always set a® = |, R =r - | for convenience. The first and  Vvariable profile.
second terms of eq 17 intend to penalize the error between the In this scheme, the lexicographic order (which is a type of
set point and output and penalize the control efforts, respectively. relative importance order; see Appendix AXafu(t|t), ..., Au(t
The AU(t|t) minimizing the objective function (eq 17) can + M — 1jt)} is generally set ad&wu(t + M — 1jt) “is more
be obtained by solvingJ/dAU(t|t) = 0. Because, at each step, important than"Au(t + M — 2|t) “is more important than’..
Jin eq 17 is a quadratic polynomial of the control variables “is more important thanAu(t|t). A set of M Groebner basis
AU(t[t), ..., Au(t + M — 1]t), it is obvious thatJ/dAU(t|t) = 0 polynomials, including two sets of equations, then is generated
leads to a set ol cubic equations as follows:
(1) An mth-order polynomial equation in onlgu(t|t), i.e.,
polynomial equation 1:
3

3 i :
. . | —
f,= iZO iZO S(ji)z-"iMAull(tlt)Aulz(t + 1t) - ; oAu(tity=0 (for o, = 0) (20)
1= M~
AUMt+M—1t)=0 (2) (M — 1) polynomials equations in
Au(t + 1[t),+, Au(t + M — 1]t) (21)

polynomial equatiorM: . . o
whereoi(i = 0, 1, ...,7) are determined by the coefficients

3 3
fy = Z) ZDa(ffg_..iMAu'l(t|t)Au'2(t + 1jt) - S iy e Sy, Of €0 18,

i= iv= Thus, eq 20 can be used to gei(t|t), which would lead to

AUMt+ M — 1) =0 (18) its corresponding predictiot — 1) steps prediction of input

series, i.e.{Au(t + 1Jt), ..., Au(t + M — 1jt)}, according to eq

with 0 < iy + iz + «=- + iy < 3,ij eNTU{0}(j = 1, ...,M), and 21. To ensure the existence of a real rdétshould be adjusted
the rational coeﬁicients“)i .. =1,.., M) are determined to makern an odd number. In this way, the structure of Groebner
by u(t — 1), L(t), &(t), r andY,{t + 1). Unfortunately, there is  bases is formed to provide the straightforward solution of
so far no definite solution for the polynomial set (18), and the Problem 1. In practical applications, one should not be intimi-
underlying difficulty lies on the crossing terms of different steps’ dated by the complex forms of eq 18 and its corresponding

control signals. Groebner basis (egs 20 and 21), because this solution can be

In summary, there are two unsolved problems related to the €asily implemented with the existing software packages (e.g.,
NPMC: GroebnerBasis ()n Mathematicj. Moreover, because eq 20

(1) Problem 1: Solution of Polynomial Equations. To do so, is dependent only oAu(t|t), the Au(t|t) can be obtained using
obtain the multistep control lawu(t|t) from eq 18. a function such asoots( )in MATLAB._The only real roots of _

(2) Problem 2: Stability of the control law. Prove the closed- €d 20 are evaluated and substituted into eq 21. These equations
loop stability of the above control law. calculate candidatesu(t + 1Jt), ... Au(t + M - 1|t) for each

Remark 2: Au(t]t). Finally, only Au(t|t) that produces the minimum object

(1) Actually, problems 1 and 2 are the common problems function is implemented in the system. This process is repeated
for most of the empirical model-based NMPCs. at each sampling period. The detailed procedure of online

(2) If M = 1, then problem 1 becomes a simpler single-step calculating is shown in Figure 2: firstJ/dAU(t|t) = O is used
control: to compute theM cubic equations (egs 18), and then the

Groebner basis technique is applied to get the polynomial

oJ 3 2 described in eq 20; finally, eq 20 is solved to obtain the control
= sy(DAU(t|t) + s,(HAuT(t|t) +
anuqy ~ SOAUY + S,OAUTHY law Au(t]o).
s,(HAU(tt) + s,(t) (19) On the other hand, input magnitude constraints can be also

included in the current algorithm. The optimal solution to the

The solution and application of this case study are presentedConstrained problem is equivalent to finding the global minimum

in detail in the work of Dumont and Band Parker and Doy, Within the constrained region. If the minimum does not lie within
However, this single-step control method cannot handle high- the constrained region, then the c_)bjectlve fun_ctlon is evaluated
order nonlinear dynamics, because the control horizon is only at eac.h constraint, and the man_lpulated .varl.ab.le move corre-

one step. Moreover, because of the complex nature of recedingSP°nding to the minimum objective function is implemented.

horizon optimization, the closed-loop stability analysis of this compared to some widespread nonlinear programming-based
algorithm has not been given yet. MPC algorithms using the objective function (eq 17), the

advantage of the current method is obvious, because gradient
descent-based nonlinear programming solvers can only converge
to a local minimum, whereas the current analytic solution

4.1. Multistep Control NMPC Using a Groebner Basis controller guarantees convergence to the global minimum
(Problem 1). An important concept from algebraic geometry, objective function value. More details can be seen in the work
called the Groebner basis, can be applied to solve the complexby Parker’

4. Controller Development and Theoretical Analysis
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Figure 2. Multistep control algorithm structure.

Remark 3:
(1) In contrast to Parkerthe advantages of this work are
given as follows: (a) The control horizon is extended to

algorithm (eq 19 or 20) has a similar form of eq 22, as shown
below (a detailed derivation is given in Appendix B):

multisteps, rather than just two steps ahead, which makes thetz-H) Ay (t) = Ho(Z Yyt + P) +

method more flexible. Moreover, this method can be even
generalized to more-general open-loop stable NARMAX model-
based NMPC$:3 (b) A theorem is proposed to guarantee the

closed-loop stability of this method, and parameters can be
adjusted according to this theorem.

(2) The multivariable problem is a straightforward extension
of the current formulation, although analytic solution of the
vector objective function (eq 17) requires further work.

4.2. Closed-Loop Stability Analysis (Problem 2)For the
proposed multistep control algorithm (eq 20), the theoretical
issues regarding problem 2 will be discussed here.

Lemma 12230 For a discrete-time system

T(Z HAU(t) = HEZ Yyt + P) +
-1
’ T.(z HAU(t) + DEZ Ho(t) (22)

whereu and P; are positive integerAu(t)} and{y(t)} are
incremental input series and output series of the system,
respectively;H(z 1), D(z'%), and T(zY) (fori = 1, ...,u) are
polynomials inz1; {w(t)} is stochastic white noise defined in
the probability spacect,F,P); {F} is the subo-algebra series

of F; andF; contains all information of this system up to time
t. In addition,{ w(t)} satisfies the following three assumptions:

(A1) E{w(t)/F,_,}250 (E{-} denotes the
expectation value) (23)

(A2) E{o*()F_}8p0<p<w)  (24)

- 1g 28
m — Soo
(A3) ,L' msup Z o ()< (25)

where the superscript “as” denotes “asymptotically”. If all the
zeros ofT(z 1) are inside the unit circle of the complex plane
of the Z-domain, then

1 (AU“(1)) 3551 : VAt +d) + K (26)
NKZ =N k; 2

with 0 < Ky < o0 and 0< Ky < oo,
|
Based on the VolterraLaguerre model (eqs-8L0), it can

-1
; Tz HAU(Y) + Doz Ha () (27)

For the traditional single-step algorithm (eq 18)= 2; for our
multistep control law (eq 20 = #. Note that assumptions
A1—A3 determine the stochastic characteristics of the external
noise, whereas Lemma 1 will no longer be valid for colored or
unbounded noise.

According to the general form (eq 27) of the closed-loop
system, combined with Lemma 1, the stability theorem of our
algorithm can be given as follows.

Theorem 1. If the closed-loop system determined by the
control law (eq 19 or 20) satisfies assumptionsA¥, then it
can be concluded that the system is closed-loop stable in the
sense that the input serifgi(t)} (i = 1, ...,«) and output series
{y(t)} are both mean-square bounded.

(A4) the external stochastic white noisgt) satisfies as-
sumptions Al, A2, and A3, and the modeling ereft) solely
containsw(t), i.e.,

() — Yn(t) = (1) (28)

(A5) the initial control lawu(0) is bounded, and

(A6) there exist parameteh, P, N, r, p such that all of the
zeros of the polynomial(z %) in eq 27 are inside the unit circle
of the Z-domain complex plane.

Proof: From Lemma 1, considering that the refererygg¢
+i), (i = 1,-+,P) are bounded, we have that the sefiasi (t)} (i
=1, ...,u) is mean-square bounded if assumption A6 is satisfied.
Furthermore, from assumption A5, it can be obtained that
{u®},( =1, ...,u) are also mean-square bounded. On the other
hand, in accordance with assumption A4, and taking into
consideration of Appendix B, we have

Ne
y) =c,+C"y Az 'Bu(t) +

[\
Az B|'D|S A'lZB|u¥(t) + w(t) (29)

N,
1=

whereN is a sufficiently large positive integer (see Appendix
B for details). Then, from assumption A4, combined with the

be obtained that the closed-loop system determined by thefact that bothN. and N, are finite positive integers, it can be
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concluded that the output seri¢g(t)} are also mean-square
bounded.
|

Remark 4: The control law (eq 27) is a closed-loop
controller, because the modeling ergeft) = y(t) — ym(t) is fed
back to compute the control law. Moreover, althougft) is
directly related toy(t), the conditions of Theorem 1 can still be
satisfied. Let us explain as follows.

As shown in Figure 2, the system output is expressed as

y(t) = y(t) + o(t)

wherey(t) is the nominal output and(t) is the external noise.
On the other hand, generally speaking, the modeling etpr
contains unmodeled dynami&g) and external noise(t), i.e.,

e(t) = &) + o(t)

Here,&(t) denotes the difference betwegit) and model output
ym(t), i.e.,

§O = YO — yu(D)

Actually, in Theorem 1, it is assumed that the Voltefra
Lageurre model matches the nominal model of the plant, i.e.,

EO=YO —yu()=0

Thus, e(t) = w(t). This assumption is reasonable, because the Control Siemens MM 440
Laguerre-Volterra model has been proved to have the capability Frequency
of accurately approximating arbitrary FMNSs with sufficiently Convertor
large N and N, (see refs 4 and 5). In industrial engineering
applications, this assumption can be interpreted as “in contrast
tollw (D)1, 1IE(D)I is negligible”. Consequently, external noise

. . —
(t) is directly related toy(t) as p—
v =30 + o) e nmm\-m-lomsss-arn.s AAA
Meanwhile, the conditions of Theorem 1 can be satisfied. ﬂ(nmé,m(:;] ml, S‘“h‘::ﬂ:‘{*‘m ‘_;’“'"'

Remark 5: Let us give the interpretations of assumptions
A4—A6. With the assistance of assumption A4, Problem 2 is Figure 4. Signal and water flow chart.
naturally transformed to the framework of Lemma 1. However,
if the modeling errore(t) contains components other than

external white noisew(t), the problem will become more 60
complicated. BecausAu(t) is proven to be bounded at each =
step, assumption A5 guarantees the mean-square boundedness g s
of u(t). Moreover, according to Lemma 1, assumption A6 e 40
ensures the mean-square boundednesgtpf gg
In real applications, to decrease the computational complexity, g zso
one can first set the paramet&tsM, andP as integers in some
limited ranges, such as [5,10], [2,15], aiM, 5], respectively, n
and then set the value pfaround the optimal value gained by 20bee i
Campello and co-workef8:1*Afterwards, tune parameteuntil =
one finds a suitable parameter combinationmRN(M,P,r) that 0 IR S e e 5
satisfies assumption A6. Note that, in the process of adjusting Output 5,y

r, one can still slightly tunep around the optimal value to current

accelerate the parameter setting procedure. In contrast to thé:igure 5. Characteristics curves of Grundfos &typed centrifugal pump.

traditional single-step algorithm (eq 19), the control horizon ) o

parameteM of eq 20 can be designed to enlarge the stable (1) CNMPC (conventional NMPC)which is based on the
region according to Theorem 1. Consequently, our improved NAARX model (which is a special case of the NARMAX
algorithms (eq 20) have the potential to handle more-complex Models) defined as

nonlinear dynamics, which will also be validated by the case

studies in section 5. ! "

Yl = ) FOA=D)+ ) gut=1)+w® (30)

5. Case Study

5.1. Constant-Pressure Water Supply Control SysteniThe The functiong{f(-)} and{g(-)} are scalar nonlinearitie;and
two NMPC algorithms to be examined are stated as follows: n are input and output memories, respectively, arft) is the
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Figure 7. Control performances of tracking 36-35.6 KPa.

external white noise. This approach uses nonlinear programming The control performances of LNMPC are compared with

to handle input magnitude constraints. CNMPC in Figures 6 (tracking the double-step signal 35.4
(2) LNMPC, which is the multistep VolterraLaguerre 43.4 KPa), 7 (tracking the double-step signal 3€86.6 KPa),
model-based NMPC (see eq 20). and 8 (tracking the double-step signal 4530.0 KPa). Robust-

In this section, statistical experiments will be performed on ness to the external disturbance is also examined at the 160th
a practical industrial system to further validate the feasibility second, as shown in Figure 7, where the opening of the hand
and superiority of LNMPC. valve 5 in Figure 3 is increased by 20%. The parameters in
The constant-pressure water supply system is shown in FigureFigures 6 and 7 are set as follows:
3. The executer is the Siemens MM440-type frequency con-  For CNMPC: P = 7, M = 1, forgetting factori = 0.7,
verter, and the controlled plant is the Grundfos CHI-2 type control signal weighting = 0.9, the softening parametar=
centrifugal pump. The signal and water flowchart are shownin .2 f,-), gi(-) in eq 30 are set to be polynomials witk= 3, n
Figure 4. The pressure sensor transforms the output water— 5
pressure to a standard voltage signat$1V). Through A/D For LNMPC: P = 7, M = 3, initial forgetting factorio =
transmission, the signal is sent to the serial port of a personaly ¢\ — 2 p=0 74' N=7 'r =09
computer (PC). The controller in the PC calculates the control '’ o c ' .
signal and sends it in the standard current signal2@ mA),
through D/A transmission, to the Siemens frequency converter

to control the rotation frequency of the Grundfos centrifugal .
d y 9 and LNMPC are almost the same, except for the difference

ump. As shown in Figure 5, there is a strong nonlinearit ; Lo
getwr()een the output pregssure and water currenthoreover tﬁevalues of the control horizokl, which is intended to show the
nonlinear dynamics change along with the variations of the merits of multistep control. To further examine the capability

rotation frequency of the pump. There is a time delay in the of the proposed algorithm, statistical experiments are conducted

water supply system; this delay is influenced by the variations to track the double-step 45:60.0 KPa.

of the flux velocity. Fortunately, experiments verify that this (1) For CNMPC, we seP = 8 andM = 1, and we select the
plant is a FMNS, according to the definition in Boyd and CAua; input and output memories from the s¢t 5, ..., § and{3,
thus, the current problem becomes the task of controlling a high- 4. 5, &, respectively. We also conduct 24 experiments.
order FMNS plant with uncertainty and variational time delay, (2) For LNMPC, we sefy = 0.98 and seled andM from

as shown in Figure 3. According to sections 1 and 2, this the set{5, 6, ..., 1§ and{2, 3, 4, respectively. The parameters
problem can be expected to be solved by our proposedp and r are adjusted according to Theorem 1, with 18
algorithm. experiments being conducted.

Note that, in LNMPCp is optimized according to Campello
and co-workerdZ13N andr then are selected to guarantee the
stability based on Theorem 1. The other parameters of CNMPC
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Figure 8. Control performances of tracking 45:60.0 KPa.
Table 1. Statistical Comparison of CNMPC and LNMPC Tracking linearities. However, this extension is not easy to realize, because
45.0-50.0 KPa the online minimization of the objective function always leads
settling overshoot  steady-state to a set of complex polynomial equations, including the input
time (s) (KPa) error (KPa) of coupling items. The receding horizon optimization also causes
CNMPC Control Index (24 Experiments) extra difficulties for the closed-loop stability analysis. With these
optimal input memory, 6,4 two problems in mind, we present a general method to extend
output memory the control horizon with the help of the Groebner basis
expected value 165 +8.8 +2.7 . - ” . L
optimal value 136 163 103 technlqug. Suff|C|ent conditions for |t§ closed-loop stab|I|ty are
LNMPC Control Index (18 Experiments) also provided, in the sense that the input and output series are
optimalN, M, p 7.3,0.68 both mean_—squar(_a-bounded. The control horizon extension
expected value 23 +1.7 40.8 developed is applicable to a wide range of NMPCs based on
optimal value 18 +1.5 +0.5 open-loop stable discrete empirical models (NARMAX, NARX

models, etc.). Finally, the proposed multistep control algorithm
is demonstrated on an industrial water supply system with
significant improvements in the transient performance and
robustness to the system uncertainties.

The statistical results, such as the expected and optimal
settling time, overshoot, and steady-state errors are shown in
Table 1, with optimal parameters setlds= 7, M = 3,p =
0.68, and their corresponding performances in Figure 6.

Experimental results in Figures® show the advantages of
LNMPC over CNMPC, such as better transient performance,
smaller steady-state errors, and robustness to the externa
disturbance. The underlying reasons are given as follows: First, because its definition is not straightforward, we

(1) With a multistep control horizon, the inner model of the introduce some preliminary conceptions of the Groebner basis.
LNMPC can predict the dynamics of the controlled plant more  Definition 2 (Polynomial Ring).28 The set of all polynomials
accurately, and it can enlarge the closed-loop region accordingf = 3 , a.x* with coefficients in a fielK is denoted a&[x, ...,
to Theorem 1. Xn], which is a polynomial ring. In addition, the-dimensional

(2) The plant is a FMNS with variational time delay and affine space oveK is defined to be the s&" = {(a, ..., an):
uncertainty, which is very suitable to be approached via the a,, ..., an € K}.

Volterra—Laguerre model; [ |

(3) The CNMPC uses nonlinear programming to handle input  Definition 3 (Ideal).?8 A subsetl C K[xy,***,X4] is an ideal
constraints, which cannot guarantee convergence to the objectivef it satisfies the following criteria:
function global optimum for non-convex problems, whereasthe (a) O¢ I,
current analytic solution controller ensures convergence to the (b) If f, g € I, thenf + g € |, and
global minimum objective function value. (c)If f el andh € K[x, ..., X, thenh - € I.

In regard to the computational complexity, although its [ |
Buchberger Algorithm, which calculates the Groebner bases, If fi € K[xy, ..., x)J(i = 1, ..., ), we denote that
will require some time, it is not necessary for LNMPC to use
nonlinear programming, which is an even more time-consuming M f Dé{z_s_ hf:h,...h, € K[Xy, ... %]}
method, to determine the global optimum. In addition, the bt =L b
present model can decrease both the number of model coef- . . . .
ficients and the noise-induced parameter variation. Therefore,then a ‘?f,uc'a' fact IS thally, .. st.'S an ideal. .
LNMPC is more efficient than CNMPC when applied to FMNSs Definition 4 (Leading Term). Given a nonzero polynomial

= -1 4 ... i
with uncertainty and variational time delay (such as the examplef C K[, letf = ao_xm + anx” . +oee tam, W|th_a0 ¢_0_ we
considered in this section). then say thaegx™ is the leading term of and is written as

LT(f) = agx™

Appendix A. Calculation of the Groebner Basis Using the
|3uchberger Algorithm

|
Lexicographic Order. The order of relative importance that
The extension of the control horizon can help nonlinear model should be used to illustrated Definition 4, e.gxif “is more
predictive control (NMPC) algorithms address complex non- important than™;, thenLT(x;2%® + X25) = x12x2°.

6. Summary and Conclusions



Definition 5 (Groebner Basis)?® Fix a monomial order. A
finite subset{ g, ..., g of an ideall is said to be a Groebner
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Appendix B. Derivation of the Key Polynomial (eq 27)
for Stability Analysis

basis if(LT(g), ..., LT(gyO= MLT(I)O
u According to Lemma 1, the transformation of the closed-
The Groebner basis technique can be applied to determineloop system to the polynomial form of eq 22 is fairly important
all common solutions ilK" of a system of polynomial equations  for stability analysis; thus, we will show the deviation of eq 27
fi(Xa, o Xn) = 000 = 1xq, ., X0) = 0. Letx = Au(t + i —1|t) as follows.
ands = M; the set of equations in eq 18 then can be solved by  Note that each eigenvalue &fis p € (0, 1); thus, lim—., A
this technique. Buchberger’s algoritifyhich is described in =1, wherednxn IS a zero matrix, and it is reasonable to assume
detail below, is used to determine the Groebner basis from athat
set of polynomial equations.
Definition 6. (S-polynomial) 28 Let f, g € K[x, ..., Xi; the

S-polynomial off andg then is given as the combination (32)

N
(1—AzH 1= Z) Az
£

LCM(LT(0).LT() , . _ LCM(LT(H).LT(Q)) whereN, is a positive integer that is sufficiently large.

Sf,9) = g (31)

LT(f) LT(g) Substituting eq 32 into eq 8 yields
. N,
where LCM denotes the least common multiple. S
P u L(tit) = 2 X0 — AZ Y~ Bu(tt) = Z Az~ (+1)Bu(t]t)
_ =
Definition 7.28 The termf” is the remainder, upon division (33)
of f by the ordered s-tuple = (fy, ..., 3. . Define
Bearing in mind Definitions 7, it is natural to introduce N,
Burchberger's algorithm, as described below. L@ i) = A+ Z) ATz 08 (34)
Buchberger's Algorithm.27 Let | = [y, ,f{0= {0} be a =
polynomial ideal. A Groebner basis fbothen can be constructed
in a finite number of steps using the following algorithm: then
Input: F = (f,, ..., ) Lt +i[t) = Iz Liu(tit),( = 1),...P (35)
and

Output: a Groebner bas@= (g,, ...,g,) for |, withF C G

REPEAT
G:=0G
FOR each paifp,q}, p= qin G' DO
S:=9pa°
IFS=0, THENG:=GU{S
UNTILG=G

|
With the lexicographic ordex; “is more important than

Yt + i]t) = ¢, + C'T(Z Li)u(t|t) +
'z LDz Li)u(tt) (36)
Define
W2 [Cyr oer Colpnn (37)
Thus,
v,z P) £ [C'T(z11),..CTE P, (39)

w,(z 1 P) £ [z L 1)Dr(z L 1),...,

“is more important than™-- “is more important than,, the
resulting Groebner basis polynomials have a equation that
contains onlyx,; thus, the equation set can be easily solved. _ ~1 ~1 by, 2
(For more details, please refer to the functi®roebner(-:-) of Yt + 1) = Wo+ Wy(z 7 Pu(tit) + Wz “P)ur(tlt) - (40)
MATHEMATICA). Note that the Groebner basis generated by Assume that
Buchberger’s algorithm is neither a minimal nor unique Groeb-
ner basis; some additional operations should be implemented
to obtain the reduced Groebner basis that is minimal and unique.
For example, the equations® + X2 + X2 = 1, X2 + X2 =
X2, X1 = X3 With lexicographic ordexk; “is more important than”
X2 “is more important thanks; can be computed by Buchberger's
algorithm, combined with additional operations to get the
minimal and unique Groebner bagigi, g2, gz}, which can be
easily solved as described below:

Iz, P)DI(E P}, (39)

Y(t) = Ym(®) = (1) (41)

Then, dJ/oAU(t|t) = 0 (see eq 17) yields

2wz LP)W,(z 1 P)AUY(t) +
3W(z LP)W,(z 1 P)AU(t) +
2[—2W(Z LP)Y,(t + 1) + 2W,(z L P)W, +
Wiz LP)W,(z 1P) + r]Au(t) +
[(1 - Z )Wz PQw() —
Wiz P (L -z Y[z Y,
21]'y(t+ P) — W) =0 (42)

9 =X —X%=0
9= _X2+2X32=O
O3 = X' + 0.5> — 0.25=0
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Substituting our proposed multistep NMPC control law (eq 20)
into eq 42 yields eq 27 with

TZYH=- Z—Z - Wi P)Wy(Z P) (43a)
Hoz ) =-wi(z'PA-zYHz®..z21 (43b)
Doz ) =[(1 — 2 )¥](z "P)Q (43c)

The counterparts of the traditional single-step control algorithm
(eq 19) are

T Y =3W)(z ' P)W,(Z ' P)s; — 2¥L(Z L P)W,(z ' P)s,
Hoz ") = —WiZ P -z Yz ®Y,...21]'s,

Doz ) = [(1 — 2 )W1(z PO (44)
Because of their complexities, the detailed expressiofgoft)
(fori=1,..,u — 1), Do(z'), andHo(z 1) are omitted.
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Nomenclature

Lo(R4+) = square integrable space in [®)

| = identity matrix

u(t) = system input

y(t) = system output

w(t) = external noise

z1 = one-step-backward shifting operator

P = prediction horizon

M = control horizon

Au(t + i|t) = predicted incremental control signal series

y(t + i|t) = predicted output signal series

e(t) = modeling error

o. = softening parameter

N = Laguerre series truncation length

Ny = Volterra series truncation length

L(t) = Laguerre functional bases vector

A,B = Laguerre system state matrices

p = Laguerre filter pole

hm(ty,to,...&m) = mth-order Volterra kernel

C = first order coefficients matrix of VolterraLaguerre Model

D = second order coefficients matrix of Volterrhaguerre
Model

Q,R = positive-definite symmetric weighting matrices

Greek Symbols

6 = extended coefficient vector of the Volterrhaguerre Model
d(t) = extended state vector of the Volterrhaguerre Model
A(t) = forgetting factor

Q = output rectifying vector

w(t) = modeling error

Superscripts

T = transpose
as= asymptotically

Subscripts

r = reference

m = model

¢ = continuous time
v = Volterra series

Abbreviations

MPC = model predictive control

CNMPC = conventional nonlinear MPC

LNMPC = multistep Volterra-Laguerre model-based nonlinear
MPC

FMNS = fading memory nonlinear system

NARMAX = nonlinear auto-regressive moving average with
exogenous inputs

OFS = orthonormal functional series
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