
Journal of Symbolic Computation 41 (2006) 697–707
www.elsevier.com/locate/jsc

Validated numerical computation of the L∞-norm for
linear dynamical systems✩

Masaaki Kannoa, Malcolm C. Smithb,∗
a CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama, 332-0012, Japan

b Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

Received 26 August 2004; accepted 20 November 2005
Available online 10 January 2006

Abstract

This paper develops a validated numerical algorithm to compute the L∞-norm, a norm which plays
an important role in modern control. The method reduces the L∞-norm computation problem to real root
localization of polynomials and some Sturm chain tests, both of which can be executed in a manner which
guarantees accuracy. A computational complexity estimate is also given.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The most important characteristic of a control system is stability. Nevertheless this is by no
means the only objective and a system may be expected to satisfy several additional performance
criteria. In modern control it has become common practice to use norms of signals and systems to
evaluate a performance level. The H2-norm and the H∞-norm in particular have become popular
since they arise naturally in engineering problems and also these norms are comparatively easy to
calculate in an analytical sense. Furthermore, explicit solutions for controller synthesis problems
involving these norms have been derived; see Zhou et al. (1996).

Computer aided design tools are pervasive in modern control. Current approaches for
computation are based almost exclusively on standard linear algebra routines and high speed
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floating point arithmetic. While the search for numerically reliable routines has made good
progress (e.g., Golub and Van Loan, 1996), the problem remains that numerical difficulties such
as ill-conditioning may arise in some cases (Higham et al., 2004) and the development of routines
with a guarantee is desired (Kanno and Smith, 2003).

The idea of validated numerical methods has become established in the computer science field
(Krandick and Rump, 1997a) and has also found its way in some application areas in science and
engineering (Adams and Kulisch, 1993). In the systems and control area, the use of interval
methods in order to improve the reliability of the results is seen (Jaulin et al., 2001; Weinhofer
and Haas, 1997). However, it appears that little has been done in this area to achieve the property
of guaranteed accuracy defined in the next section.

It is not usually straightforward to adapt an existing algorithm to give a validated numerical
one (Corliss, 1990). The purpose of this paper is to develop a validated numerical L∞-norm
computation algorithm for the transfer function matrix of a linear dynamical system.

The paper is organized as follows. The meaning of guaranteed accuracy is formally defined
in Section 2 and the definitions of the L∞ and H∞ spaces and their corresponding norms, the
L∞ and H∞-norms, are reviewed in Section 3. Section 4 develops the guaranteed accuracy
algorithm for the L∞-norm computation and Section 5 provides a computational complexity
estimation of the determinant of a polynomial matrix required in the guaranteed accuracy
L∞-norm computation. Two numerical examples are presented in Section 6. Some concluding
remarks are made in Section 7.

2. The meaning of guaranteed accuracy

Krandick and Rump (1997b) elucidate the idea of validated numerical methods as a search for
algorithms with a rigorous specification, e.g., methods that can never produce an answer which
deviates from the true solution by more than a pre-specified tolerance. When solving a problem
which finds a single real number, such an algorithm has to use a computer representable number
system and also produce an interval, which is a pair of elements in the number system used, to
bound the true answer. The following formal definition for guaranteed accuracy is thus suggested.

Definition 1. Let f : Rn → R be well-defined (not necessarily continuous). Let A be some
given algorithm taking the form of an executable procedure, which generates a well-defined
function A : (Fn, F>0) → F2, where F ⊂ R is a set of computer representable numbers, F>0 is
a set of strictly positive elements in F and A(P, ε) = ( f�, fr ) where f� ≤ fr . Then, A is said to
be a guaranteed accuracy algorithm for f over F if, for any P ∈ Fn and any ε ∈ F>0, (the true)
f (P) is contained in the closed interval [ f�, fr ] and fr − f� ≤ ε.

Floating point arithmetic is unsuitable as the choice for F in the above definition partly
because of its lack of closure under ordinary arithmetic operations. Following the practice in
many computer algebra packages, we choose to employ the rational number system in the present
work, i.e., F in the definition will be taken to be Q.

3. L∞/H∞-norm

Two classes of complex matrix valued functions bounded on the imaginary axis, namely, the
L∞ and H∞ spaces, are reviewed. In the following, σ {·} denotes the largest singular value of a
matrix.
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Definition 2. L∞ is the Lebesgue space of matrix valued functions G that are (essentially)
bounded on the imaginary axis, with norm defined by

‖G‖∞ := ess sup
ω∈R

σ {G( jω)}. (1)

Definition 3. H∞ is the space of matrix valued functions G that are analytic and bounded in the
open right half plane. The corresponding norm is defined by

‖G‖∞ := sup
Re(s)>0

σ {G(s)}. (2)

It can be shown that, for G ∈ H∞, there is an analytic continuation of G onto the imaginary
axis which provides a boundary value function G( jω) ∈ L∞. Moreover, the right-hand side of
(2) agrees with the right-hand side of (1). Thus, H∞ can be considered to be a subspace of L∞.
Hence, in this paper, the same notation ‖·‖∞ is used for both the L∞ and H∞-norms.

The prefix R is used to denote a subspace consisting of real rational functions. For example,
RL∞ (resp.,RH∞) is the subspace of L∞ (resp.,H∞) consisting of all matrices whose elements
are rational functions with real coefficients and no poles on the imaginary axis or at infinity.

4. Guaranteed accuracy L∞-norm computation algorithm

Current approaches for the computation of the L∞-norm using ordinary numerical methods
involve an existence test for imaginary axis eigenvalues of a Hamiltonian matrix (Boyd and
Balakrishnan, 1990; Boyd et al., 1989; Bruinsma and Steinbuch, 1990; Robel, 1989). In the
context of floating point arithmetic, this step is particularly prone to numerical difficulties since
it essentially tries to compute nearly multiple eigenvalues near the imaginary axis. Although the
possibility of using Sturm chains (an algebraic means to count the number of real roots of a real
polynomial in an interval; see Gantmacher (1960)) for this eigenvalue test has been mentioned
in the literature (Boyd et al., 1989), there does not seem to have been any attempt to exploit this
idea in a practical algorithm.

In this paper we will develop a method for guaranteed accuracy computation of the L∞-norm
which requires a finite number of real roots of certain polynomials to be localized plus (possibly)
some additional Sturm chain tests. We note here that, for polynomials with rational coefficients,
the Sturm chain test allows a validated numerical algorithm to be established and that real root
localization can be implemented in a guaranteed accuracy manner by means of Descartes’ rule
of signs (Collins and Akritas, 1976). We further note that validated numerical algorithms for the
Sturm chain test and real root localization are readily available, for instance, in Maple, under the
names of sturm and realroot, respectively.

Our method will be derived by a series of propositions leading to the main result in Theorem 8.
In contrast to Boyd and Balakrishnan (1990), Boyd et al. (1989), Bruinsma and Steinbuch (1990)
and Robel (1989) where a state space technique is used, our method uses only the transfer
function matrix, i.e., we will assume that a G ∈ RL∞ is given. The derivation begins with a
characterization of the L∞-norm in terms of the existence of zeros on the imaginary axis. This
is a standard result (see Zhou et al. (1996, Section 4.7) and the references therein). We define the
conjugate system G∼(s) of G(s) as G∼(s) := GT (−s).

Proposition 4. Let γ > 0, G ∈ RL∞ and Φγ (s) := γ 2 I − G∼(s)G(s). Then, γ > ‖G‖∞ if
and only if γ > σ {G( j∞)} and det Φγ ( jω) �= 0 for all ω ∈ R.
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Note that det Φγ (s) is a real rational function in s2 since

det Φγ (−s) = det(γ 2 I − G∼(−s)G(−s)) = det(γ 2 I − G∼(−s)G(−s))T

= det(γ 2 I − GT (−s)(G∼(−s))T ) = det(γ 2 I − G∼(s)G(s))

= det Φγ (s).

We now substitute x for s2 in det Φγ (s) and write as gγ (x), i.e., gγ (s2) = det Φγ (s).

Proposition 5. Let γ > 0, G ∈ RL∞ and Φγ (s), gγ (x) be defined as above. Write gγ (x) =
nγ (x)

dγ (x)
, where nγ (x) and dγ (x) are polynomials in x whose coefficients are polynomials in γ (γ 2,

in fact) and, when seen as polynomials in x and γ , are coprime over R[x, γ ]. Then, γ > ‖G‖∞
if and only if γ > σ {G( j∞)} and nγ (x) does not have roots in −∞ < x ≤ 0.

Proof. It is immediate that det Φγ ( jω) �= 0 for all ω ∈ R is equivalent to gγ (x) does not have
zeros in −∞ < x ≤ 0.

The denominator of each element in Φγ (s) can be written as a polynomial in s only. Let �(s)
be the least common multiple of all the denominators in Φγ (s), which is still a polynomial in s
only and in fact a polynomial in s2. We substitute x for s2 and write as �′(x), i.e., �′(s2) = �(s).
Also, since G ∈ RL∞, �(s) has no imaginary axis root and hence there is no root of �′(x) in
−∞ < x ≤ 0. Suppose that the size of Φγ (s) is k × k. Then we can check that, since nγ (x)

and dγ (x) are coprime, dγ (x) divides
{
�′(x)

}k over R[x, γ ] (in fact over R[x]). Since there is
no root of �′(x) in −∞ < x ≤ 0, then dγ (x) �= 0 for −∞ < x ≤ 0. Therefore, gγ (x) �= 0 for
−∞ < x ≤ 0 is equivalent to nγ (x) �= 0 for −∞ < x ≤ 0. �

We point out that, since nγ (x) is a real polynomial (for real γ ), the question of whether
nγ (x) �= 0 for −∞ < x ≤ 0 can be examined using Sturm chains. Hence bisection search in
γ using Sturm chains is now directly applicable to calculate the L∞-norm. However, it will be
advantageous to develop the condition further. Firstly, we give a condition that gγ (x) exhibits
when γ = ‖G‖∞.

Proposition 6. Let G ∈ RL∞ and gγ (x), nγ (x), dγ (x) be defined as previously. Suppose that
γ∞ := ‖G‖∞ is not achieved at s = j∞ (ω = ∞), i.e., γ∞ > σ {G( j∞)}. Then either

(i) gγ∞(0) = 0, or

(ii) gγ∞(x0) = d
dx gγ∞(x0) = 0 for some x0, −∞ < x0 < 0.

Equivalently, either

(i′) nγ∞(0) = 0, or
(ii′) nγ∞(x) has a root of multiplicity at least two in −∞ < x < 0.

Proof. From the assumption that γ∞ > σ {G( j∞)}, the L∞-norm is achieved for some
s = jω,ω ∈ [0, ∞). If γ∞ = σ {G(0)}, then det Φγ∞(0) = 0, thus (i) holds. Otherwise let
ω0 ∈ (0, ∞) be the frequency where the L∞-norm is achieved, i.e., γ∞ = σ {G( jω0)}, and
write x0 = − ω2

0. Then, det Φγ∞( jω0) = 0, which implies that gγ∞(x0) = 0. However, for
any real ω and, in particular, in the vicinity of ω0, Φγ∞( jω) is a positive semi-definite matrix
and, thus, det Φγ∞( jω) ≥ 0, that is, gγ∞(x) ≥ 0 for −∞ < x ≤ 0. Since gγ∞(x) is a rational
function, it follows that d

dx gγ∞(x0) = 0. Hence, (ii) holds.
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Since dγ (x) �= 0 for any γ > 0 and −∞ < x ≤ 0, as is shown in the proof of Proposition 5, it
is immediate that (i) is equivalent to (i′). In the case of (ii), it is also immediate that gγ∞(x0) = 0
if and only if nγ∞(x0) = 0. Since

d

dx
gγ∞(x) =

d
dx nγ∞(x)dγ∞(x) − nγ∞(x) d

dx dγ∞(x)

{dγ∞(x)}2 ,

if d
dx gγ∞(x0) = 0 in addition, then d

dx nγ∞(x0) = 0, noting that dγ∞(x0) �= 0. Conversely,
nγ∞(x0) = d

dx nγ∞(x0) = 0 implies that gγ∞(x0) = d
dx gγ∞(x0) = 0. Thus, (ii) is equivalent to

(ii′). �

We can factorize nγ (x) over R[x, γ ] as

nγ (x) =
∏

i

{
n p

i (x, γ )
}i ∏

k

{
nc

k(γ )
}k

,

where n p
i (x, γ ) are real polynomials in x and γ , nc

k(γ ) are real polynomials in γ and free of x ,
n p

i (x, γ ), nc
k(γ ) are relatively prime, and each n p

i (x, γ ), nc
k(γ ) is free of multiple factors. The

square-free part hγ (x) of nγ (x) is

hγ (x) :=
∏

i

n p
i (x, γ )

∏
k

nc
k(γ ).

We have the formula (Cox et al., 1996)

hγ (x) = nγ (x)

GCD
(

nγ (x), ∂
∂x nγ (x), ∂

∂γ
nγ (x)

) .

For our purposes we introduce the following notation for a square-free divisor of hγ (x):

hs
γ (x) :=

∏
i

n p
i (x, γ ) = nγ (x)

GCD
(
nγ (x), ∂

∂x nγ (x)
) ,

where the greatest common divisor is that of the polynomials in x and γ . The above proposition
is now stated in a stronger way in terms of hs

γ (x).

Proposition 7. Let G ∈ RL∞ and nγ (x), hs
γ (x), γ∞ be defined as above. Then, γ > γ∞ if and

only if γ > σ {G( j∞)} and hs
γ (x) has no roots in −∞ < x ≤ 0. Further, if γ∞ is achieved in

0 < ω < ∞, then hs
γ∞(x) has a multiple root in −∞ < x < 0.

Proof. The roots of
∏

k

{
nc

k(γ )
}k are singular values of G( jω) independent of frequency ω and

naturally these roots are singular values of G( j∞). Therefore, nc
k(γ ) �= 0 for γ > σ {G( j∞)}

(and naturally for γ > γ∞). When
∏

k

{
nc

k(γ )
}k �= 0, because of the Nullstellensatz (Cox et al.,

1996), nγ (x) �= 0 for −∞ < x ≤ 0 is equivalent to hs
γ (x) �= 0 for −∞ < x ≤ 0. Hence the first

claim follows from Proposition 5.
We now consider the case where γ∞ is achieved in 0 < ω < ∞. The assumption, nγ∞(x) has

a root at some −∞ < x0 < 0, along with the Nullstellensatz, implies that

hs
γ∞(x0) = 0. (3)

We then observe that, if hs
γ (x) > 0 (resp., hs

γ (x) < 0) for some −∞ < x < 0 and some
γ > γ∞, then hs

γ (x) > 0 (resp., hs
γ (x) < 0) for all −∞ < x < 0 and all γ > γ∞. To see
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this, suppose that hs
γ1

(x1) > 0 for some pair (x1, γ1) and hs
γ2

(x2) < 0 for another pair (x2, γ2).
Taking a continuous path within the admissible region from (x1, γ1) to (x2, γ2), we will have a
point (x0, γ0) such that hs

γ0
(x0) = 0 for some γ0 > γ∞. This is a contradiction to the first claim

of this proposition, which establishes the claim.
Now we prove that, if hs

γ (x) > 0 (resp., hs
γ (x) < 0) for all −∞ < x < 0 and all γ > γ∞,

then

hs
γ∞(x) ≥ 0 (resp., hs

γ∞(x) ≤ 0) for all −∞ < x < 0. (4)

Suppose that hs
γ (x) > 0 but hs

γ∞(x1) < 0 for some −∞ < x1 < 0. By continuity, hs
γ (x1) tends

to hs
γ∞(x1) as γ tends to γ∞, which contradicts hs

γ (x) > 0. Hence, hs
γ∞(x) ≥ 0. Similarly we

can deduce that, if hs
γ (x) < 0, then hs

γ∞(x) ≤ 0.
From (3) and (4) and analyticity of hs

γ (x), it is concluded that

hs
γ∞(x0) = d

dx
hs

γ∞(x0) = 0,

that is, hs
γ∞(x) has a multiple root at x = x0. �

Finally, the following theorem provides a way of constructing real polynomials one of which
contains the L∞-norm as a real root.

Theorem 8. Suppose that G ∈ RL∞ and let hs
γ (x), γ∞ be defined as previously. Then, γ∞ is

one of the following quantities:

(i) σ {G(0)},
(ii) σ {G( j∞)},

(iii) a real root of the discriminant of hs
γ (x).

Moreover, each of the above quantities is a (real) root of a real polynomial.

Proof. When γ∞ is achieved at ω = 0 (s = 0) (resp., ω = ∞ (s = j∞)), then γ∞ = σ {G(0)}
(resp., γ∞ = σ {G( j∞)}), which corresponds to case (i) (resp., (ii)). Furthermore, γ∞ is then
the largest (real) root of det(λ2 I − G∗(0)G(0)) = 0 (resp., det(λ2 I − G∗( j∞)G( j∞)) = 0).

Now suppose that γ∞ is achieved in 0 < ω < ∞. Notice that hs
γ (x) is square-free and its

discriminant with respect to x is not identically zero, and Proposition 7 says that hs
γ∞(x) has a

multiple root when seen as a polynomial in x . Hence, γ∞ is a root of the discriminant of hs
γ (x).

We note that hs
γ (x) is a real polynomial and therefore the discriminant is a real polynomial as

well. This concludes the proof. �

Theorem 8 provides a finite set of candidate real numbers, one of which is the L∞-norm of
G. If either σ {G(0)} or σ {G( j∞)} is the maximum in this set, then this is obviously equal to
‖G‖∞. Otherwise we need to test the candidate real numbers to determine which is the true L∞-
norm. This can be achieved by using the first claim in Proposition 7, which can be implemented
using Sturm chains.

This approach allows the L∞-norm to be calculated with guaranteed accuracy in the sense
of Definition 1. If the coefficients in the transfer function matrix G are rational numbers, then
hs

γ (x) is a polynomial in x and γ with rational number coefficients. Moreover the discriminant

of hs
γ (x) is a polynomial in γ with rational coefficients. Also, det(λ2 I − G∗(0)G(0)) = 0 and

det(λ2 I − G∗( j∞)G( j∞)) = 0 yield polynomials in λ2 with rational coefficients. The problem
is thus reduced to real root localization and some Sturm chain tests of polynomials with rational
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coefficients, both of which can be carried out with guaranteed accuracy, as is mentioned at the
beginning of the section.

We can summarize the whole procedure to compute the L∞-norm with guaranteed accuracy.
Let ε be a pre-specified tolerance.

(1) Create a set of intervals of width ε/2 which contain σ {G(0)}, σ {G( j∞)} and real roots of
the discriminant of hs

γ (x).
(2) If the maximum of the lower bounds for σ {G(0)} and σ {G( j∞)} is larger than the upper

bound of any candidate from the discriminant of hs
γ (x), then the L∞-norm is achieved at

ω = 0 or ∞. In this case, let the lower (resp., upper) bound for ‖G‖∞ be the maximum of
the lower (resp., upper) bounds for σ {G(0)} and σ {G( j∞)} and the algorithm is terminated.

(3) Select a candidate from the set defined in Step (1), let its lower bound be γ and check if
γ ≤ ‖G‖∞ < γ + ε using σ {G( j∞)}, hs

γ (x) and Sturm chains. If so, set the bound to
[γ, γ + ε] and terminate the algorithm. Otherwise discard the candidate from the list and
repeat this step for another candidate.

5. Complexity of the determinant computation

Empirical data show that the computation of det Φγ (s) is potentially the most time-consuming
part of the whole L∞-norm computation. Elements of Φγ (s) are rational functions, but, by
clearing denominators, we can compute det Φγ (s) via computation of the determinant of a
(bivariate) polynomial matrix.

For the case of matrices with integer elements it is a relatively straightforward fact that
the determinant may be computed in polynomial time in arithmetic operations. It is also true
that determinant computation is possible which is polynomial in terms of word operations,
although this is more difficult to prove. An expression is provided for the required number of
word operations in, e.g., von zur Gathen and Gerhard (2003). For determinants of matrices
with univariate entries, sophisticated methods, e.g., Giorgi et al. (2003), are available whose
computational complexity is bounded by polynomials in arithmetic operations. For multivariate
polynomial matrix determinants, the computation cost is shown to be polynomial in terms of
arithmetic operations in Marco and Martı́nez (2004). A result in terms of word operations for
(bivariate) polynomial matrices, namely, that the determinant computation cost is polynomial in
terms of word operations, does not seem to be readily available in the literature. A proof of this
fact, in a form relevant for the present algorithm, has been provided in Kanno (2004). Below we
briefly summarize this result.

After clearing denominators in rational number coefficients, we may assume G(s) =(
gi j (s)

) ∈ Z(s)m×n . Since ‖G‖∞ = ∥∥GT
∥∥∞ (here, assuming that G ∈ L∞), we can assume that

m ≤ n without loss of generality. Write gi j (s) = ni j (s)
di j (s)

, where ni j (s), di j (s) ∈ Z[s]. Suppose that

deg ni j (s), deg di j (s) ≤ d . Further suppose that
∥∥ni j

∥∥∞,
∥∥di j

∥∥∞ ≤ A, where ‖·‖∞ is the max-
norm of a polynomial, namely, if f (x) = ∑

0≤i≤n ai x i ∈ Z[x], then ‖ f ‖∞ := max0≤i≤n |ai |.
Define

Φ(γ, s) := γ 2 I − G∼(s)G(s) ∈ Z(γ, s)n×n .

We actually consider the computation cost of the determinant of

Φ′(γ, s) := T ∼(s)Φ(γ, s)T (s) ∈ Z[γ, s]n×n
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where

T (s) = diag

( ∏
1≤k≤m

dk1(s),
∏

1≤k≤m

dk2(s), . . . ,
∏

1≤k≤m

dkn(s)

)
∈ Z[s]n×n .

In Kanno (2004), it is shown that the computation of det Φ′(γ, s) requires at most

O∼(m2n5d
{

m2d3 + nd + n log A + m2d log2 A
})

word operations where the ‘soft Oh’ notation is used to ‘swallow’ all the log-factors (von
zur Gathen and Gerhard, 2003). In the case of a square system, namely, when m = n, the
computation cost of det Φ′(γ, s) is bounded by

O∼(n9d2
(

d2 + log2 A
))

word operations.
The approach makes naı̈ve use of multivariate Lagrange polynomial interpolation. It is

believed that the upper bound can be improved by means of the upper bound of the coefficients
of the determinant (Lossers, 1974) and the Chinese remainder algorithm (von zur Gathen and
Gerhard, 2003), since all the numbers appearing in the calculation are integers. Nevertheless the
analysis seems fairly complicated and it is not attempted here.

6. Numerical examples for guaranteed accuracy L∞-norm computation

Two numerical examples are used to demonstrate the algorithm developed in Section 4. In the
following, numbers are displayed as finite decimals for convenience, but rational numbers are
used in the actual algorithm. The first example is

G(s) =

⎡
⎢⎢⎢⎣

s2+s+1
s2+0.1s+1

0 0 0

0 4s
s2−1

0 0

0 0 4s
s2−1

0
0 0 0 1

⎤
⎥⎥⎥⎦ .

A straightforward hand computation is possible here which shows that the exact L∞-norm is

‖G‖∞ = 10.

Following the algorithm in Section 4, we first compute the largest singular values at ω = 0,∞:

σ {G(0)} = σ {G( j∞)} = 1.

Again these are written down exactly in this case, but in general we would only expect to bound
them to arbitrary (but guaranteed) accuracy. Other candidates for the L∞-norm are found from
the discriminant of hs

γ (x). We compute det Φγ (s) = det
(
γ 2 I − G∼(s)G(s)

)
, take its numerator

and then substitute s2 with x to get

nγ (x) = (γ 8 − 2γ 6 + γ 4)x6 + (−2.01γ 8 + 37.01γ 6 − 67γ 4 + 32γ 2)x5

+ (−0.96γ 8 − 2.36γ 6 + 291.32γ 4 − 544γ 2 + 256)x4

+ (3.94γ 8 − 65.3γ 6 + 570.8γ 4 − 765.44γ 2 + 256)x3

+ (−0.96γ 8 − 2.36γ 6 + 291.32γ 4 − 544γ 2 + 256)x2

+ (−2.01γ 8 + 37.01γ 6 − 67γ 4 + 32γ 2)x + γ 8 − 2γ 6 + γ 4
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= (γ 2 − 1)
{
(γ 2 − 1)x2 + (1.99γ 2 − 1)x + γ 2 − 1

}
×
{
γ 2x2 + (16 − 2γ 2)x + γ 2

}2
.

The factor (γ 2 − 1) appears since γ = 1 is a singular value of G( jω) throughout the entire
frequency (because of the (4, 4)-element of G) and the power 2 of

{
γ 2x2 + (16 − 2γ 2)x + γ 2

}
arises since there is always a double singular value due to the (2, 2) and (3, 3)-elements of G.
Then,

GCD

(
nγ (x),

∂

∂x
nγ (x)

)
= (γ 2 − 1)

{
γ 2x2 + (16 − 2γ 2)x + γ 2

}
and we obtain

hs
γ (x) = nγ (x)

GCD
(
nγ (x), ∂

∂x nγ (x)
)

=
{
(γ 2 − 1)x2 + (1.99γ 2 − 1)x + γ 2 − 1

}{
γ 2x2 + (16 − 2γ 2)x + γ 2

}
.

Notice that the factor (γ 2 − 1) is removed and that the power 2 of
{
γ 2x2 + (16 − 2γ 2)x + γ 2

}
is reduced to 1. The discriminant of hs

γ (x) with respect to x is

3

15625000000
(γ 2 − 4)(γ 2 − 100)(133γ 2 − 100)(399γ 4 − 1900γ 2 + 1600)4.

In this case we can write down exact expressions for the positive real roots:

10, 2,
10√
133

(� 0.867110),
1

399

√
379050 + 3990

√
2641 (� 1.91545),

1

399

√
379050 − 3990

√
2641 (� 1.04545).

By Theorem 8, the actual L∞-norm is either 1 or one of the above. Using a guaranteed accuracy
polynomial real root computation algorithm and Sturm chains, we can choose the right one, i.e.,
10, from the candidates and thus find ‖G‖∞ with guaranteed accuracy.

We further illustrate the algorithm on the plant in Example 4.2 in Zhou and Doyle (1998):

G(s) =
⎡
⎣ s2+0.15 s+2.5

s4+0.35 s3+3.51 s2+0.45 s+2.0
0.1 s+0.5

s4+0.35 s3+3.51 s2+0.45 s+2.0

0.1 s+0.5
s4+0.35 s3+3.51 s2+0.45 s+2.0

0.5 s2+0.1 s+0.5
s4+0.35 s3+3.51 s2+0.45 s+2.0

⎤
⎦ .

The largest singular values at ω = 0,∞ are

σ {G(0)} � 1.3090169944, σ {G( j∞)} = 0.

The discriminant of hs
γ (x) yields the following 12th order polynomial in γ (or 6th order in γ 2):

15405834505989388373 γ 12 − 2070088084346678781094 γ 10

+ 5707237953777309755325 γ 8 − 4082948339683566097500 γ 6

+ 890200949929650000000 γ 4 − 26280511750000000000 γ 2

+ 3240000000000000000. (5)
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By Proposition 7, the L∞-norm of G is found to be one of the real roots of (5). This cannot be
expressed explicitly but, by specifying ε = 10−10, say, we can get the following bound for the
L∞-norm using Descartes’ rule of signs:

‖G‖∞ ∈ [11.47039654321, 11.47039654328] .

7. Conclusion

In this paper we have developed an algorithm for the computation of theL∞-norm of a rational
function matrix which is suitable for a computer algebra implementation. The motivation is to
provide an algorithm which can achieve the property of guaranteed accuracy. The coefficients
of the rational functions are assumed to be rational numbers and the algorithm provides an
interval of arbitrarily small width which contains the true L∞-norm. The method developed in
the paper reduces the problem to finding real roots of three (univariate) polynomials with rational
coefficients and (possibly) some additional Sturm chain tests.
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