
SVD-based Identification Algorithm for Hammerstein-
typed Nonlinear Systems 

 

Haitao Zhang and Yongji Wang Wei Xiang and Ming Li 
Department of Control Science and Engineering Department of Automation 
Huazhong University of Science and Technology University of Science and Technology of China 

Wuhan, Hubei Province, 430074, P.R.China Hefei, Anhui Province, 230027, P.R.China 
{zht & wangyjch}@mail.hust.edu.cn way_xiang@263.net, ,mingli4@mail.ustc.edu.cn 

 
Abstract - Hammerstein-typed nonlinear models can be used 

to represent nonlinear systems in the areas of chemical processes, 
biological processes, signal processing, etc. Firstly a novel multi-
channel algorithm for the identification of Hammerstein-typed 
nonlinear systems is presented, in which the coefficient 
parameters of the dynamic linear block and memoryless 
nonlinear block are identified by least squares estimation (LSE) 
combined with singular value decomposition (SVD). This 
identification algorithm can eliminate any needs for the 
mechanism or prior knowledge of the nonlinear or linear block. 
Furthermore, in comparison with traditional single-channel 
identification algorithm, this multi-channel one can increase the 
approximate accuracy remarkably. In addition, under weak 
assumptions on the persistency of excitation (PE) of the inputs, 
the algorithm provides consistent estimates in the presence of 
white output noise, moreover, its convergence can also be 
theoretically proved. At last, the performances of the 
identification algorithm are illustrated through simulations on a 
benchmark problem, a pH neutralization process, which validate 
the feasibility and superiority of these proposed algorithms. 
 
 Index Terms –SVD, Hammerstein-typed nonlinear system, 
LSE, PE 
 

I.  INTRODUCTION 

One of the most frequently studied classes of nonlinear 
models is Hammerstein-typed model [3], which consists of the 
cascade connection of a static (memoryless) nonlinear block 
followed by a dynamic linear block. This nonlinear system 
model structure have been successfully used to chemical 
processes (pH neuralization[4], distillation[5], etc), biological 
processes[1,6], signal processing[6], and communications[1], 
etc. Therefore, in recent years, the identification of 
Hammerstein-typed nonlinear systems has become one of the 
most urgent and difficult tasks in the fields of process control 
engineering, signal processing, etc. 

Several techniques have been proposed in the references 
[1,2,7,8,9] for the identification of Hammerstein-typed 
nonlinearity. Of them, one of the most efficient methods, 
which is based on LSE, was introduced by Bai [7]. However, 
it can only deal with SISO (Single Input/ Single Output) 
system with output white noise. Inspired by Bai’s work, 
Gómez and Baeyens[1,2] proposed a non-iterative 
identification, which can be applied to MIMO (Multi-Input/ 
Multi-Output) system and can guarantee consistent estimation 
even in the present of coloured output noise. Nevertheless, 
both of works of Gómez and Bai[1,2] use just one channel to 
identify the system, therefore, take the intrinsic of SVD into 

consideration, the identification error of these algorithms 
inevitably can not be minimized (or adjustable). The reason is 
that the identification error is determined by the 2nd largest 
singular value (for SISO system) or the ( )1n+ th largest 
singular value (for MIMO system with n  inputs).  

Take the SISO system for instance, if the 2nd largest 
singular value is not small enough in comparison with the 
largest singular value the identification accuracy would be not 
satisfying, or even degrade to unacceptable level.  

On the other hand, the achievements on the control of 
Hammerstein-typed nonlinearity are very limited. Most of the 
former related algorithms[10,11] rely on the mechanism or 
prior knowledge of the memoryless nonlinear block more or 
less. The precision of the mechanism or prior knowledge 
determines the performance of these algorithms, which limits 
the applications of them greatly. 

Aimed at these two problems, we propose a SVD-based 
multi-channel identification algorithm in this paper, which can 
preserve all of the advantages of Gómez’s algorithm, and 
minimize the identification error. More important is that it can 
also eliminate the reliance of the mechanism or prior 
knowledge of the memoryless nonlinear block. In addition, 
Due to its similarity to Padé Approximate[12], Lagurerre 
Functional Series has some advantages such as excellent 
capability to approximate the variances of control plant’s input 
time-delay, order and other structural parameters[12-15], 
which are very common in real industrial productions. Thus, 
we take Laguerre Functional Series Model for example to 
approximate the dynamic linear block of each channel of our 
proposed multi-channel model, and then give the convergence 
theorem for this multi-channel model. At last, we presented 
the detailed identification performances of our proposed multi-
channel algorithm in contrast with the performances of 
Gómez’s single-channel identification algorithm[1]. 

The rest of the paper is organized as follows. In Section 
Ⅱ, the Hammerstein-typed system model is introduced, and 
the identification problem is formulated. Then, the multi-
channel identification and modeling algorithm is derived and 
theoretically analyzed. Case studies are presented in Section 
III, which illustrate the performances of the modeling 
algorithms on a benchmark problem. Finally, conclusion 
remarks are made in Section IV. 
 

II.  IDENTIFICATION ALGORITHM 



 
Fig. 1 Hammerstein-typed nonlinear system 

A multivariable Hammerstein-typed nonlinear system is 

schematically represented in figure1. The model consists of 

memoryless nonlinear block ( )N ⋅ in cascade with a dynamic 

linear block ( ) ( )1
2
m nG z− ×∈H T (Hardy space of ( )m n×  

transfer matrices). The measured output ( )y k contains an 

unknown additive noise ( )kγ .  

The input/output relationship is then given by 

( ) ( ) ( )( ) ( )kkuNzGky γ+= −1                         (1) 

where  ( ) nku ℜ∈ , ( ) nkv ℜ∈ , ( ) mky ℜ∈  , 

( ) mk ℜ∈γ are the system input, mid output, system output 

and output noise vectors at time k , respectively. ( ){ }kγ is a 

stochastic series defined in the probability space ( ), ,Ω PF . 

Then the output can be rewritten as 
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where ( ) nn
ig ℜ→ℜ⋅ : , ( )ri ,,1L= are known nonlinear 

bases, and nn
ia ×ℜ∈ are unknown matrix parameters. 

nm
lc ×ℜ∈ are unknown matrix parameters, and ( ){ }∞=⋅ 1llL  

can be any rational orthonormal bases on the space ( )ΤH 2 , 

N is the truncation length. 

In order to make the parametrization unique, we 

normalize the parameter matrices ia (or lc ), say 

1
2
=ia ( )1, ,i r= L                              (3) 

and define                
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Then (2) can be rewritten in linear regressor form [16] as 

( ) ( ) ( )Ty k k kθ φ γ= + .                         (6) 

Considering the S -point data set, we define 

[ ]1, , T
S SY y y

∆
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S Sγ γ
∆
=γ L , [ ]1, , T

S Sφ φ
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(7) 
then, we can obtain  

T
S S SY θ= Φ + γ                                  (8) 

Thus, provided the indicated inverse exists, it is well known 

that the estimate θ̂  of θ that minimize the prediction errors 

θε T
SSS Y Φ−= , which is the least square estimation [16] is 

given by              ( ) SS
T
SS YΦΦΦ=

−1θ̂                            (9) 

The problem is how to estimate the parameter matrices 

( )riai ,,1L= and ( )Nlcl ,,1L= from the estimate θ̂ . 

We define   
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with the following definitions of matrices ca, , 

[ ]1 2, , , T
ra a a a

∆
= L , 1 , ,
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Nc c c

∆
 =  L .  

From the definition of θ , we can get that  

( )acblockvec Θ=θ                            (11) 

where ( )acblockvec Θ is the block column matrix obtained 

by stacking the block columns of acΘ on the top of each 

other[1]. Then the estimate acΘ̂ of acΘ  can be obtained from 

the estimate θ̂  in (11). The problem now is how to estimate 

the parameter matrices a and c from the estimate acΘ̂ . It is 

clear that the closest, in the 2-norm sense 3, estimates â and 

ĉ are the solutions of the optimization problem 
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Gómez [1] has given a technique which use SVD method 

to obtain the parameters matrices ( )1, ,ia i r= L  and 

( ), 1, ,lc l N= L . However, the approximation error of his 

algorithm is not small enough for most Hammerstein-typed 
nonlinear systems. So, an improved identification algorithm to 
minimize the approximation error must be proposed in this 
section.  

Firstly, we will introduce a lemma proposed by Golub. 

Lemma 1 [17] 

Let ( ) qrank ac =Θ̂ , then the SVD of acΘ̂ is  
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where the singular matrix { }q jdiag σΣ =  fulfills that  
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and                              0=lσ  ( )ql >                                 (15)                                     
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and the approximation error is given by 
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where the superscript ( )j indicate the j th identification pair.                            
█ 

Based on Lemma 1, we can construct a multi-channel 

model, which is consisted by 1N parallel channels (or 

submodels) and can remarkably increase the approximation 

accuracy, rather than a single-channel model [1] to identify the 

Hammerstein-typed system. Each channel is consists of the 

cascade connection of a static (memoryless) nonlinear block, 

which is represent by nonlinear bases, followed by a dynamic 

linear block.  
In the following statement, without losing of generality, 

we choose ( ){ }∞=⋅ 1llL (see (2)) as Laguerre Functional 

Series[17,18], which has excellent parameter robustness[14] 

and good capability to approximate the variance of the linear 

system’s time-delay and orders[12], which are very common 

in modern industrial plants. In order to simplify the solution 

description of this identification problem, we will take SISO 

system, say, ( ) 1u k ∈ℜ , ( ) 1y k ∈ℜ , for instance to discuss. 

The results of MIMO system can be easily derived from the 

counterparts of SISO system. The details of Laguerre 

Functional Series Model can be seen in reference [13,15,19]. 
Now we will construct the multi-channel model, in which 

each channel’s dynamic linear block is modeled by Laguerre 
Functional Series, to identify Hammerstein-typed systems. 
Multi-channel Model: 

 
Fig. 2 Multi-channel nonlinear Laguerre model structure 

 
Fig. 3 Linear Laguerre model of the j th channel, ( )1,,1 Nj L=  

Define        ( ) ( ) ( )
1 , ,

Tj j j
ra a a

∆
 =  L , 

( ) ( ) ( )
1 , ,

Tj j j
Nc c c

∆
 =  L ( )1,,1 Nj L=              (18) 

where the superscript ( )j indicate the j th identification 
channel, which can be represented by a Laguerre Series Model 
as  
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where 
( )( )ky j
m , ( ) ( ) ( ) ( ) ( )[ ]Tj

N
jjj kLkLkLkL )()()( 21 L= are 

the output, and the state vector of the j th identification 

channel in the k th sampling period, respectively. ( )ku  is the 

input of the multi-channel model in the k th sampling period. 

The expressions of BA, can be seen in reference [13,15,19]. 
Thus, the out put of the multi-channel model is  

( ) ( ) ( )
1

1

N
j

m m
j

y k y k
=

=∑                           (21) 

The multi-channel model is shown in figure 2. In each 

channel, the linear block is represented by Laguerre 

Functional Series Model which is shown in figure 3. Thus, the 

multi-channel Laguerre Model for Hammerstein-typed 



nonlinear system is constituted by the equations (18-21), 

whose convergence analysis will be given in the following 

theorem. 

Theorem 2: 

For the Hammerstein-typed nonlinear system 
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where 1
2
=ia , )(i kδ is the unmodeled part in the k th 

sampling period; ( ) ( ) ( ) ( )1 1 1 1
1 2, , , NL z L z L z L z− − − − =  L  

is the Laguerre state vector in Z-domain. The unmodeled part 

|| iδ and the nonlinear bases )(⋅ig ( )ri ,,1L= are both 

bounded.  If the input ( )ku  is PE (persistence exiting), and is 

uncorrelated with the output white noise ( )kγ , then for 

0>∀ε ， 11 ≥∃N and 0>εN which make the output of 

the multi-channel Laguerre Model (18-21) satisfy that  

[ ] ε≤− 2)()( kykym , ( )εNk >∀             (23) 

Proof：Firstly, apply (9) to identify the system (2) to get the 

LSE matrix θ̂  of θ , and then compute the matrix acΘ̂ . 

The linear block is stable, and ( ) ( )( ) , , , ,ig u k i 1 2 rL＝ is 

bounded, so the model output ( )kym  is bounded. Take 

equations (18-21) and (5) into consideration, we have the 2-

norm of ( )kφ is bounded, in other words, 0>∃ LR which 

makes ( )kφ  satisfy that    
2
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For 0>∀ ε , 0, 21 >∃ εε , which fulfill that 21 εεε += , 

let )),/(max(13 LRNrεε = and LR/24 εε = . Because 

)(ku is PE and unrelated with ( )kγ , from reference [16], we 

have that for 04 >∀ε , 1>∃ εN , when the number of 

samples εNS > , the following inequality is satisfied 

4

2

2
ˆ εθθ ≤−                                  (25) 

 Use Lemma 1 to make SVD for the matrix acΘ̂ , then the 

influence of the unmodelled dynamics )(i kδ is contained in 

acΘ̂ . Assume ( ) qrank ac =Θ̂ where q is a finite integer, 

then from Lemma 1, we have that, for 03 >∀ ε , 

qN ≤∃ 1 which satisfies  3
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in other words        
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The theoretical foundation of our proposed multi-channel 
model is established by Theorem 2. 
 

III. CASE STUDIES 

Plant: simplified pH neutralization process model [20] 
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where, assume the input  

( ) ( ) ( ) ( )0.2cos 0.015k +1.3sin 0.005k +0.4sin 0.01ku k =       (31) 

the unmodelled nonlinear part 

( ) )(083.0)(2.0 6 kukuk +=δ          (32) 

Besides, the output white noise ( )kγ  fulfills that  

( ){ }
. .

2
1/ 0.083

a s

tkγ − =E F                           (33) 
The identification performances of the multi-channel 

Laguere model (see figure 2 and 3) are shown in figure 4 and 
5. In detail, in the left subfigures, the blue dashdot and the 

purple solid curves are the system’s input ( )ku and 

output ( )ky , respectively. The blue solid, black dot, and black 

solid curves represent the outputs ( )kym of the models with 1 

channel ( 1 1N = ), 2 channels ( 1 2N = ), and 3 channels 

( 1 3N = ) respectively. The parameters and the identification 

error characteristics are shown in table 1, in which, ( )acr Θ̂  is 

the rank of acΘ̂ . ( ){ }E e k and ( ){ }max e k  are the mean 

and the maximum of the identification error’s absolute value 
series, respectively. 

From the experiment results, we can see that Gomez’s 
single channel identification algorithm [1] has larger error, 
which may even degrade to unacceptable level (see table1 

for 1 1N = ). Our proposed multi-channel identification 



algorithm can greatly enhance the identification accuracy, 

especially in the case that ii σσ /1+ ( )( )ˆ1, , 1aci r= Θ −L are 

not small enough. Thus, the feasibility and superiority of this 
proposed algorithm are validated. 

 
Fig. 4 Identification errors 

 
Fig. 5 Identification performances 

 
TABLE I  Modeling parameters and identification error characteristics 

p  N  T  ( )ˆ
acr Θ  1N  ( ){ }keE  ( ){ }max e k  

1 2.1810 7.9684 
2 0.6313 5.5323 1.9 5 2 4 
3 0.0727 0.2183 

IV.  CONCLUSIONS 

In this paper, a SVD-based multi-channel algorithm for the 
identification of Hammerstein-typed nonlinear system has 
been proposed. The algorithm is numerically robust, since it 
relies only on LSE and SVD. Under the weak assumptions on 
the persistency of excitation of the input, the algorithm 
provides consistent estimates even in the presence of output 
noise. More important is that the algorithm can eliminate any 
needs for the mechanism or prior knowledge about the 
nonlinear block and can greatly reduce the identification error 
by using multi-channel model. The cost for the increase of 
accuracy is the moderate enhancement of the computational 
load. In addition, as the foundation of this multi-channel 
identification algorithm, we also give the convergence 
theorem. At last, a number of simulation experiment results on 

a benchmark problem, a pH neutralization process, validate 
the feasibility and superiority of the proposed multi-channel 
identification algorithm. 
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