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Abstract

In this paper we introduce a new algorithm called Equality Set Projection (ESP)
for computing the orthogonal projection of bounded, convex polytopes. Our solution
addresses the case where the input polytope is represented as the intersection of a finite
number of halfplanes and its projection is given in an irredundant halfspace form. Unlike
many existing approaches, the key advantage offered by ESP is its output sensitivity, i.e.,
its complexity is a function of the number of facets in the projection of the polytope.
This feature makes it particularly suited for many problems of theoretical and practical
importance in which the number of vertices far exceeds the number of facets. Further, it
is shown that for non-degenerate polytopes of fixed size (dimension and number of facets)
the complexity is linear in the number of facets in the projection. Numerical results are
presented that demonstrate that high dimensional polytopes can be projected efficiently.

1 Introduction

Polytopes provide a useful representation for the linear constraints that appear in diverse
fields such as control, finance and optimisation. The calculation of the orthogonal projection
of a polytope is a fundamental operation that arises in many applications. For example, in
control theory, projection is required for reachability analysis [6] and in decision theory for the
elimination of existential quantifiers [17]. It can be shown that the calculation of affine maps
or Minkowski sums of polytopes are both equivalent to orthogonal projection [11], making a
projection algorithm a necessary tool for working with polytopes.

It is well known that polytopes can be represented in two forms: as the convex combination
of a finite number of vertices and as the intersection of a finite number of halfspaces. For
any d-dimensional polytope, represented as the intersection of q halfspaces, the number of

1



vertices required to describe the same polytope is O(qb d
2c) in the worst case. Polytopes that

exhibit an exponential relationship are common in various fields. For example, a hypercube
in d-dimensions can be described by 2d halfspaces or 2d vertices.

Vertex representation is appropriate in some applications, while in others halfspace is
preferred. In this paper, we are interested in polytopes that are in halfspace representation
and whose projection should also be given in halfspace form. As the vertex representation
of the given polytope can be exponentially more complex than the halfspace representation,
we ideally want the complexity of the projection algorithm to depend only on the number of
halfspaces, and never to compute the vertices. As the effects of this exponential behaviour
do not become significant until the dimensionality of the problem is large, this algorithm is
most suited to the projection of high dimensional polytopes.

In this paper we give a new algorithm, dubbed Equality Set Projection (ESP), for the
computation of the projection of a bounded polytope described as the intersection of a finite
number of halfspaces in arbitrary dimension. We do not make the assumption that the
polytope is in general position or that the description is irredundant, although the description
of the projection returned by the algorithm is irredundant. It will be shown that for a polytope
of fixed size (dimension and number of halfspaces), ESP computes the projection using a
number of linear programs that is linear in the number of halfspaces in the projection.

1.1 Related Work

We briefly review the literature on projection methods and examine its relation to our work.
Current projection methods that can operate in general dimensions can be grouped into
three classes: Fourier elimination, block elimination and vertex based approaches. While
each approach can be effective for a particular class of polytopes, there is as yet no algorithm
whose complexity is a function of the number of halfspaces required to describe the projection.
Here, we give a brief overview of these approaches and their derivatives.

Fourier-Motzkin elimination was originally described by Fourier in 1824 and has been
improved many times since. This approach can be thought of as the analogue of Gaussian
elimination for linear inequalities. At each iteration of the algorithm the polytope is re-
cursively projected by one dimension until the desired dimension is reached. The primary
limitation of Fourier-Motzkin elimination is that it generates many redundant constraints at
each iteration. It is not practical to remove the redundancies at each step, although mod-
ifications of the algorithm due to Černikov [16] in 1963 greatly improved the efficiency by
identifying many redundant constraints with very little added work. For some polytopes,
algorithms based on Fourier elimination can be efficient and recent work [10] has improved
the average case complexity for very sparse constraints. However, for a polytope described
by q halfspaces that is to be projected down by k dimensions, the time complexity of Fourier
elimination is O(q2k

), often making it unusable even for small problems.
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In [13], a modification of Fourier’s method is proposed in which a set of k+1 constraints is
selected and all k dimensions of this set that are to be projected are removed using Gaussian
elimination. There are, however,

(
q

k + 1

)
sets of constraints that must be considered making

this algorithm only suitable for very specific applications.
The second well known approach is block elimination. In this method a polyhedron is

defined called the projection cone. The extreme rays of this cone can then be used to find the
defining halfspaces of the projection. Methods available for computing the extreme rays, such
as the double description algorithm [8] or the reverse search approach [2], are exponential in
the worst case and as with Fourier elimination, this approach may generate a large number
of redundant inequalities that need to be removed.

Recent work by Balas [3] has shown that if certain invertibility conditions are satisfied,
then every extreme ray of the projection cone generates an irredundant constraint of the
projection. This observation has been extended to polytopes that do not satisfy these condi-
tions by the introduction of a transformation of the cone such that each ray of the projection
of the transformed cone corresponds to a constraint of the projection of the polytope. The
limitation of this approach is that the calculation of the extreme rays of the projection of
the transformed cone may be very difficult, although it offers an important insight into the
structure of projection.

The final class of approaches covers a variety of methods that compute vertices of the
projection. While these approaches are suitable for a certain class of polytopes, we are
interested here in polytopes in which the vertices greatly outnumber the inequalities. As a
result, any approach that requires the enumeration of the vertices of either the polytope or
its projection can be as much as exponentially slower for this class than an approach that
considers only inequalities.

All vertices of the polytope can be computed using a vertex enumeration algorithm, each
vertex can then be trivially projected, before a convex hull algorithm is used to calculate
the inequality constraints of the projection. Vertex enumeration and convex hulls can be
computed using the same algorithms (for example, [2, 8]). This approach can be efficient for
polytopes with large numbers of redundant inequalities or a small number of vertices. How-
ever, as there can be exponentially more vertices than there are inequalities, the applicability
is limited to polytopes with a small vertex count.

A contour-tracking approach is proposed in [13] in which the skeleton of the projection
is traced. The skeleton is formed from the vertices and the one-dimensional lines that join
them. The complexity is a linear function of the number of vertices of the projection and as
a result is suitable only when the number of vertices is small when compared to the number
of inequalities.

An approach, similar to that developed in this paper, was outlined in [1]. The purpose
was to compute both the vertex and half-space representation of the projection, although
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the algorithm can be adapted to compute only the inequalities if desired. Three restrictive
assumptions are made, which we relax in this paper. First, in [1] it is assumed that the
polytope is in general position; while there exist standard techniques to ensure that this is
the case for general polytopes [7], these techniques can cause the description of the projection
to increase significantly in size. Second, it is implicitly assumed in [1] that the description
of the polytope is irredundant. While this requirement is not necessarily prohibitive and can
be satisfied by running as many linear programs as there are constraints, it will greatly slow
the algorithm if the dimension is large, or if there are many redundant inequalities. Finally,
the assumption is made in [1] that every face of the polytope that projects to a facet of the
projection is of dimension d− 1. While there is a class of polytopes for which this is the case,
it is not true in general and we remove this assumption in this paper.

The remainder of this paper is organised as follows. Section 2 provides an introduction
to polytopes and their projections and introduces the notion of an equality set. Section 3
gives an outline of the ESP algorithm while Sections 4 through 6 provide the details. The
complexity of the algorithm is investigated in Section 7 and numerical simulation results are
reported in Section 8. Concluding remarks are made in Section 9. Appendix A details a
well-known algorithm for the calculation of the affine hull of a polytope. Appendices B and C
show how to modify polytopes that do not contain the origin or are not full dimensional so
that their projections can be computed via ESP.

Notation

If A ∈ R
m×n is a matrix, then null (A) , {x ∈ R

n | Ax = 0} and range (A) , {y ∈ R
m | ∃x ∈

R
n, y = Ax} are the nullspace and columnspace of A respectively. N(A) and R(A) are defined

as matrices whose columns form an orthonormal basis for null (A) and range (A) respectively.
Note that in general N(A) and R(A) are not unique. In order to ensure uniqueness, if the rank
of A is r and UΣV T is the singular value decomposition of A, then we define R(A) to be the
first r columns of U and N(A) to be the last n−r columns of V . The symbol † will be used to
define the Moore-Penrose pseudo-inverse. If S and U are sets, then S\U = {x | x ∈ S, x 6∈ U}
is the difference operator and |S| is the cardinality of S.

2 Polytopes and Projections

This section provides an overview of projections of polytopes. The notion of an equality set
will be introduced and the properties relevant to projection will be demonstrated.
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2.1 Affine Sets and Polytopes

Vector spaces and the related notions of subspaces and affine sets are fundamental to any
discussion of polytopes and therefore we begin this introduction with a brief review of these
concepts.

A vector space V over the reals is a set of vectors z ∈ R
n that contains the origin and

is closed under vector addition and scalar multiplication. A subspace of a vector space V

is any subset of L ⊆ V that is itself also a vector space. Recall that L can be represented
in two common forms: as the set of all vectors satisfying a finite set of homogeneous linear
equations:

L = {z ∈ R
n | Az = 0} , for some A ∈ R

q×n (1)

or in terms of the span of a finite set of vectors vi ∈ R
n:

L = span {v1, . . . , vp} =

{
z ∈ R

n

∣∣∣∣∣ z =
p∑

i=1

λivi, λi ∈ R

}
. (2)

If the vectors vi are linearly independent, then the set {v1, . . . , vp} forms a basis for L.
The dimension of a subspace L ⊆ R

n, denoted dimL, is defined as the smallest number
of vectors whose span is L. Note that if the subspace is defined as in (1), then the dimension
can be calculated as dimL = n− rankA. If it is represented as in (2), then its dimension is
the number of linearly independent vectors vi.

A subset M ⊆ R
n is called an affine set if (1 − λ)x + λy ∈ M for every x, y ∈ M and

λ ∈ R. Two affine sets M1 and M2 are said to be parallel if they can be written as

M1 = M2 + a, for some a ∈ R
n. (3)

Theorem 1. [14, Thm 1.2] Each non-empty affine set M is parallel to a unique subspace
L. This L is given by

L = M −M = {x− y | x, y ∈M} .

Theorem 1 and (3) allow us to write every affine set M as a translate of a unique subspace
L

M = L + a, for some a ∈ R
n. (4)

The two representations of subspaces defined above give rise to two representations of
affine sets. Equation 1 gives the representation in terms of all solutions of a finite set of linear
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equations:

M = L + a, for some a ∈ R
n

= {z ∈ R
n | Az = 0}+ a

= {z ∈ R
n | A(z − a) = 0}

= {z ∈ R
n | Az = b} , b , Aa. (5)

Affine sets of the form
{
z | aT z = b

}
, a ∈ R

n, b ∈ R are called hyperplanes. Equation 5
shows that all affine sets can be written as the intersection of a finite number of hyperplanes.

Given a set S ⊆ R
n, the affine hull of S, denoted aff S, is the intersection of all affine

sets containing S. Clearly, the affine hull of an affine set is itself. It can be shown that the
affine hull of S consists of all the vectors y of the form y =

∑p
i=1 λivi, such that vi ∈ S and∑p

i=1 λi = 1 [14]. Equation 2 allows us to write any affine set as the affine hull of a finite
number of vectors:

M = L + a, for some a ∈ R
n

=

{
z ∈ R

n

∣∣∣∣∣ z =
p∑

i=1

λivi, λi ∈ R

}
+ a

=

{
z ∈ R

n

∣∣∣∣∣ z = a +
p∑

i=1

λivi, λi ∈ R

}

=

{
z ∈ R

n

∣∣∣∣∣ z = λp+1a +
p∑

i=1

λi(vi + a),
p+1∑
i=1

λi = 1, λi ∈ R

}

=

{
z ∈ R

n

∣∣∣∣∣ z =
p+1∑
i=1

λiµi,

p+1∑
i=1

λi = 1, λi ∈ R

}
= aff {µ1, . . . , µp+1} ,

where µi , vi + a, i = 1, . . . , p, µp+1 , a.
If z1, z2 ∈M , where M = L + a is an affine set, L is a subspace and a is a vector then z1

and z2 are called affinely independent if and only if z1−a and z2−a are linearly independent.
This allows the notion of dimension to be extended to affine sets as follows: the dimension of
an affine set M , denoted dimM , is defined as the dimension of the subspace which is parallel
to it, dim M , dim L if M = L + a, where L is a subspace.

A subset C ⊆ R
n is convex if (1 − λ)x + λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Clearly, all affine sets are convex. The convex hull of a set S ⊆ R
n is the intersection of

all the convex sets containing S and is denoted conv S. The convex combination of a set of
vectors {v1, . . . , vp} is all points

∑p
i=1 λivi,

∑p
i=1 λi = 1, λi ≥ 0.

Theorem 2. [14, Thm 2.3] For any S ⊂ R
n, conv S consists of all convex combinations of
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the elements of S.

Corollary 3. [14, Cor. 2.4] The convex hull of a finite subset {v1, . . . , vp} of R
n consists of

all vectors of the form
∑p

i=1 λivi, with λi ≥ 0,
∑p

i=1 λi = 1.

A closed halfspace is a convex set of the form
{
z ∈ R

n | aT z ≤ b
}

, a ∈ R
n, b ∈ R. Any

set that can be expressed as the intersection of a finite number of closed halfspaces is called
a polyhedral (convex) set:

P , {z ∈ R
n | Az ≤ b} , A ∈ R

q×n, b ∈ R
q.

The dimension of a polyhedron P is the dimension of its affine hull:

dim P , dim aff P.

If a halfspace constraint can be removed from the description of P without changing the poly-
hedron, then it is called redundant. If the description of P contains no redundant constraints,
then it is called irredundant.

Note that while the convex hull of a set of points is always bounded, polyhedra may not
be. If a polyhedra is bounded, then it is called a polytope. Throughout the remainder of this
paper, we shall assume that all polyhedra are bounded.

The Minkowski-Weyl Theorem (Theorem 4 below) is fundamental as it allows a polytope
to be expressed in two forms: as the intersection of a finite number of halfspaces or as the
convex hull of a finite number of vectors.

Theorem 4. (Minkowski-Weyl) A subset P ⊂ R
n is the convex hull of a finite set of vectors

P = conv {v1, . . . , vp} , where each vi ∈ R
n,

if and only if it is a bounded intersection of halfspaces

P = {z ∈ R
n | Az ≤ b} , for some A ∈ R

q×n, b ∈ R
q.

Efficient methods exist for converting between one representation and the other [2,8]. How-
ever, there can be an exponential relationship between the representations: if a n−dimensional
polytope can be described by the intersection of q halfspaces, it may take up to O(qbn

2 c) ver-
tices to formulate the convex hull. Similarly, if a polytope is given as the convex hull of
m vertices, an exponential number of halfspaces may be needed to describe the same ob-
ject. Many applications produce polytopes that exhibit this exponential relationship. The
projection method presented here operates only on the polytope in halfspace form without
computing the vertex representation and so is particularly suited to polytopes that require a
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Table 1: Face names of an n-dimensional polytope
Dimension Name
(n − 1)-face Facet
(n − 2)-face Ridge
1-face Edge
0-face Vertex

small number of halfspaces to describe them but a very large number of points to formulate
as a convex hull.

2.2 Face Lattice

In this section we recall a natural decomposition of polytopes: the face lattice.

Definition 5. (Face) [19, Def. 2.1] F is a face of the polytope P ⊂ R
n if there exists a

hyperplane
{
z ∈ R

n | aT z = b
}
, where a ∈ R

n, b ∈ R, such that

F = P ∩ {
z ∈ R

n | aT z = b
}

and aT z ≤ b for all z ∈ P .

Note that ∅ and P are both faces of P (consider the hyperplanes{
z | 0T z = 1

}
and

{
z | 0T z = 0

}
, respectively); all other faces are called proper faces.

Theorem 6. [19, Prop. 2.2] Let P ⊂ R
n be a polytope and let F be a face of P :

1. The face F is a polytope.

2. Every intersection of faces of P is a face of P .

3. The faces of F are exactly the faces of P that are contained in F .

4. F = P ∩ aff F .

Note that as each face of a polytope is itself a polytope, the notion of dimensionality applies
to faces. If a face is of dimension p, then it is called a p-face. Faces of particular dimensions
have explicit names as shown in Table 1. Note that for a polytope in R

n, the word face refers
to a face of arbitrary dimension, while facet refers specifically to the (n− 1)-faces.

Theorem 6 allows a natural partial ordering over the faces of a polytope based on inclusion.
If P is a polytope, then each face of P is itself a polytope whose faces are a subset of P ’s
faces. This allows us to draw a face lattice where each node represents a face of the polytope
and two nodes are connected if one is a subset of the other. The lattice is organized vertically,
such that faces of the same dimension appear at the same level and the dimension increases
up the diagram. An example lattice of a cube is shown in Figure 1.
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Facet

Edge

Vertex

Facets

Edges/Ridges

Vertices

P

∅

Figure 1: Face lattice of a cube

F

G

H1H2

Figure 2: Illustration of “Diamond Property”

A property of the face lattice that is key to the projection method developed here is the
so-called diamond property :

Theorem 7. (Diamond property) [19, Thm 2.7(iii)] If G and F are faces of a polytope P

and G ⊂ F with dimF −dimG = 2, then there are exactly two faces H1, H2 with the property
G ⊂ H1 ⊂ F and G ⊂ H2 ⊂ F .

Note that, as the name of the proposition implies, the four faces in Theorem 7 will “look
like” a diamond, as shown in Figure 2.

The immediate implication of Theorem 7 is that any two facets ((n−1)-faces) of a polytope
are either not joined in the face lattice or are connected by the inclusion of exactly one ridge.

Two faces F1 and F2 of P are said to be adjacent if the intersection F1 ∩ F2 is a facet of
both.

2.3 Equality Sets of a Polytope

We now introduce the notion of the equality set, which is the method that will be used in this
paper for defining faces.

If P , {z ∈ R
n | Az ≤ b} is a polytope defined by the intersection of q halfspaces and

E ⊆ {1, . . . , q}, then AE is a matrix whose rows are the rows of A whose indices are in E.
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v

3

4

1 2

Figure 3: Illustration of equality sets

Similarly, bE is the vector formed by the rows of b whose indices are in E. The relevant rows
of AE are taken in the same order as those of the matrix A. If E = {i} is a singleton, then we
write Ai for A{i}. The notation PE refers to the set PE , P ∩ {z | AEz = bE}.

Definition 8. (Equality Set) Let P , {z | Az ≤ b} be a polytope defined by the intersection
of q halfspaces, E ⊆ {1, . . . , q} and

G(E) , {i ∈ {1, . . . , q} | Aiz = bi, ∀z ∈ PE} .

The set E is an equality set of P if and only if E = G(E).

Remark 9. Note that this definition of an equality set is similar to the notion of an equality
subsystem used in [4]. Whereas equality subsystems generally refer to any description of
the affine set that describes the affine hull of the face, equality sets describe this affine set
specifically in terms of all of the inequalities of P that are met with equality at all points in
the face.

To illustrate the idea of an equality set, consider the pyramid shown in Figure 3. Notice
that the set P{1,2,3} is the face, or more specifically, the vertex v, but that {1, 2, 3} is not an
equality set, since G({1, 2, 3}) = {1, 2, 3, 4}. There is only one equality set that defines the
face v, and that is {1, 2, 3, 4}.

The goal is to re-write the face lattice in terms of equality sets. First, the relationship
between equality sets and faces must be made explicit: there is a one-to-one mapping between
faces and equality sets.

We begin with the following well-known result: equality sets define affine hulls.
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Lemma 10. If E is an equality set of the polytope P , {z ∈ R
n | Az ≤ b}, then aff PE =

{z ∈ R
n | AEz = bE} and dim PE = n− rankAE.

Proof. The first result follows directly from Definition 8. The second result follows from
dim PE = dimaff PE = n− rankAE.

Lemma 11. (Uniqueness of Equality Sets) If E and B are equality sets of a polytope P ,
{z ∈ R

n | Az ≤ b}, then E = B if and only if PE = PB.

Proof. Clearly, if E = B, then PE = PB.
Assume that PE = PB. Since E and B are equality sets, E = G(E) and B = G(B) and

because PE = PB we have

E = G(E) = {i | Aiz = bi, ∀z ∈ PE}
= {i | Aiz = bi, ∀z ∈ PB}
= G(B) = B.

Theorem 12 proves the assertion that there is a one-to-one mapping between equality sets
and faces.

Theorem 12. If E is an equality set of the polytope P , {z ∈ R
n | Az ≤ b}, then PE is a

face of P . Furthermore, if F is a face of P , then there exists a unique equality set E such
that F = PE.

Proof. If i ∈ E, then Aiz ≤ bi is true for all z ∈ P and therefore P ∩ {z ∈ R
n | Aiz = bi}

is a face by Definition 5. By Proposition 6(2), all intersections of faces are faces and thus
PE = P ∩i∈E {z ∈ R

n | Aiz = bi} is a face of P .
Recall from Proposition 6(1) that every face F of P is a polytope. The affine hull of a

polytope can be represented by the intersection of all halfspaces that are satisfied with equality
at all points in the polytope. Let the indices of those halfspaces be E; clearly E = G(E) and
E is an equality set. By Proposition 6(4) and using Lemma 10, F can be written as

F = P ∩ aff F

= P ∩ aff {z | AEz = bE}
= P ∩ aff PE

= PE.
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Theorem 13 allows the ordering of the face lattice to be written as set inclusion on equality
sets.

Theorem 13. Let E and B be equality sets of P . The inclusion PE ⊂ PB holds if and only if
E ⊃ B.

Proof. Let the polytope be defined by the matrix A ∈ R
q×n and the vector b ∈ R

q: P ,
{x |Ax ≤ b}.

If E ⊃ B, we can write E = B ∪X for some X ⊆ {1, . . . , q} with X ∩ B = ∅ and therefore

PE = PB∪X

= PB ∩ PX

⊆ PB.

We now show that there exists an i in X that is not in B and therefore we have strict inclusion.
If i is in X then it is not in B because X ∩ B = ∅ and therefore by the definition of equality
set, there exists a z ∈ PB such that Aiz 6= bi, which implies that z 6∈ PX and hence we have
strict inclusion, i.e. PE ⊂ PB.

Assume that PE ⊂ PB. If i is in the equality set B, then for all z in PE, we have that
Aiz = bi because every point in PE must satisfy all constraints in PB. By definition, an equality
set contains all constraints that are satisfied with equality at all points in the polytope and
therefore i must be in the equality set E. It follows directly that E ⊃ B.

Theorems 12 and 13 allow the face lattice to be written in terms of equality sets. The
example of the cube lattice is shown again in Figure 4, but now in terms of equality sets.

2.4 Projection of a Polytope

We now turn our attention to the main topic of this paper: projection.

Definition 14. If P ⊂ R
d × R

k is a polytope then the projection of P onto R
d is πd (P ) ,{

x ∈ R
d | ∃y ∈ R

k, (x, y) ∈ P
}
.

Note that this definition of projection is also referred to as “projection along the coordinate
axes” or “orthogonal projection” in the literature.

The inputs to the algorithm presented in this report are the matrices C ∈ R
q×d and

D ∈ R
q×k and the vector b ∈ R

q, which define the polytope
P ,

{
(x, y) ∈ R

d ×R
k | Cx + Dy ≤ b

}
. The goal is to compute a matrix G ∈ R

p×d and
a vector g ∈ R

p that define the projection of P onto R
d, πd (P ) =

{
x ∈ R

d | Gx ≤ g
}
.

Proposition 15 states that the projection of a polytope is a polytope, and hence can be
expressed in the required form, as the intersection of a finite number of halfspaces.
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∅

Facets

P

Edges/Ridges

Vertices

{1, 3} {1, 2} {2, 3} {1, 5} {3, 5} {4, 5} {1, 4} {2, 4} {3, 6} {2, 6} {5, 6} {4, 6}

{1} {2} {3} {4} {5} {6}

2
1

3

4

5

6

∅

{1, 2, 3} {1, 3, 5} {1, 4, 5} {1, 2, 4} {2, 3, 6} {3, 5, 6} {4, 5, 6} {2, 4, 6}

{1, 2, 3, 4, 5, 6}

Figure 4: Equality set lattice of a cube

Proposition 15. [19] If P ⊂ R
d × R

k is a polytope, then the projection of P onto R
d is a

polytope.

Proposition 16 allows the calculation of the dimension of a face of P , given its defining
equality set.

Proposition 16. [4] If E is an equality set of the polytope
P =

{
(x, y) ∈ R

d ×R
k | Cx + Dy ≤ b

}
, then

dim πd (PE) = dim PE − k + rankDE

= d + rankDE − rank
[
CE DE

]
Proposition 17 implies that if the affine hulls of each of the facets of the projection can be

found, and expressed in the form of linear equations, then we can directly find an appropriate
matrix G and a vector g such that πd (P ) =

{
x ∈ R

d | Gx ≤ g
}
.

Proposition 17. [18, Theorem 3.2.1] If F1, . . . , Ft are the facets of a polytope P ∈ R
n,

0 ∈ P and aff Fi =
{
x ∈ R

n | aT
i x = bi

}
, where each ai ∈ R

n, bi ∈ R, then

P = aff P ∩

x ∈ R
n

∣∣∣∣∣∣∣∣


aT
1
...

aT
t

 x ≤


b1

...
bt


 ,
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where the sign of bi is chosen so that bi ≥ 0 for all i.

We now develop the theory required to compute the affine hulls of the facets of the
projection as a function of the polytope P . Proposition 18 and the related Corollary 19, show
that the faces of the projection πd (P ) are projections of faces of the polytope P , which can
be expressed in terms of the equality sets of P .

Proposition 18. [19, Lem. 7.10] If P ⊂ R
d × R

k is a polytope, then for every face F of
πd (P ), the preimage π−1

d (F ) = {y ∈ P | πd (y) ∈ F} is a face of P .
Furthermore, if F and G are faces of πd (P ), then F ⊂ G holds if and only if π−1

d (F ) ⊂
π−1

d (G).

Corollary 19. If P ⊂ R
d ×R

k is a polytope defined by the intersection of q halfspaces, then
for every face F of πd (P ), there exists a unique equality set E ⊆ {1, . . . , q} of P such that the
preimage π−1

d (F ) = PE.
Furthermore, if F and G are faces of πd (P ) such that π−1

d (F ) = PE and π−1
d (G) = PB,

where E and B are equality sets of P , then F ⊂ G holds if and only if E ⊃ B.

Proof. Proposition 12 states that every face can be expressed as PE for a unique equality set
and therefore the first result follows from Proposition 18. The second result follows directly
from Theorem 13 and Proposition 18.

Proposition 20 shows that the projection of an affine hull is the affine hull of the projection.

Proposition 20. If P ⊂ R
d × R

k is a polytope then aff πd (P ) = πd (aff P ).

Proof. We first show the inclusion aff πd (P ) ⊆ πd (aff P ). If dimπd (P ) = n, then aff πd (P ) =
aff {x1, . . . , xn+1}, for some n+1 affinely independent points, xi ∈ πd (P ). Since πd (P ) is the
projection of P , for each xi, there exists a yi ∈ R

k such that (xi, yi) ∈ P , and therefore xi ∈
{x | ∃y, (x, y) ∈ aff P} = πd (aff P ). It follows directly that the affine hull of {x1, . . . , xn+1}
is a subset of the projection of the affine hull of P ,

aff πd (P ) ⊆ πd (aff P ) .

We now show the inclusion aff πd (P ) ⊇ πd (aff P ). If dim P = m, then
aff P = aff {(ξ1, υ1), . . . , (ξm+1, υm+1)}, for some m + 1 affinely independent points (ξi, υi) ∈
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P . Hence,

πd (aff P ) = πd (aff {(ξ1, υ1), . . . , (ξm+1, υm+1)})

= aff

{
x

∣∣∣∣∣ ∃y,

[
x

y

]
=

m+1∑
i=1

λi

[
ξi

υi

]
,

m+1∑
i=1

λi = 1

}

= aff

{
x

∣∣∣∣∣ x =
m+1∑
i=1

λiξi,

m+1∑
i=1

λi = 1, ∃y, y =
m+1∑
i=1

λiυi

}
= aff {ξ1, . . . , ξm+1}
⊆ aff πd (P ) ,

where the inclusion follows because ξi ∈ πd (P ) for all i.

Recall from Lemma 10 that equality sets define affine hulls, i.e.,
aff PE = {(x, y) | CEx + DEy = bE}, if P , {(x, y) | Cx + Dy ≤ b} and E is an equality set.
If E also has the property that πd (PE) is a facet of πd (P ), then Proposition 20 allows the
affine hull of the facet to be written as

aff πd (PE) = πd (aff PE)

= πd (aff {(x, y) | CEx + DEy = bE})

Proposition 21 then provides a row of the matrix G and an element of the vector g:

aff πd (PE) =
{
x

∣∣∣N(
DE

T
)T

CEx = N
(
DE

T
)T

bE

}
.

Proposition 21. If M ,
{
(x, y) ∈ R

d × R
k |CEx + DEy = bE

}
is an affine set, then the

projection of M onto R
d is

πd (M) =
{

x ∈ R
d

∣∣∣ N
(
DE

T
)T

CEx = N
(
DE

T
)T

bE

}
.

Proof. This statement can be derived directly as follows:

πd (M) =
{

x ∈ R
d

∣∣∣ ∃y ∈ R
k, CEx + DEy = bE

}
=

{
x ∈ R

d |CEx− bE ∈ range (DE)
}

=
{

x ∈ R
d

∣∣∣ N
(
DE

T
)T

(CEx− bE) = 0
}

(6)

=
{

x ∈ R
d

∣∣∣ N
(
DE

T
)T

CEx = N
(
DE

T
)T

bE

}
,

where (6) follows because the column space of DE is orthogonal to the left nullspace of DE.
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The tools are now all in place to compute a matrix G and a vector g such that πd (P ) ={
x ∈ R

d | Gx ≤ g
}
, if all of the equality sets of the polytope P , which define faces PE that

project to facets of πd (P ), can be found. The algorithm that is presented in the remainder
of this report is a search method that will find precisely these sets.

3 Algorithm Outline

The Equality Set Projection (ESP) algorithm computes the projection of polytopes that are
described in halfspace form and also expresses the projection in the same form. It is an
output sensitive algorithm, with a constant number of linear programs required per facet of
the projection in the absence of degeneracy. It is therefore most suited for low facet-count,
high vertex-count polytopes. This section will outline the basic procedure for computing the
projection, while those following will present the details.

The input to the algorithm is the (bounded) polytope P , which is described by the inter-
section of q halfspaces. The data given to the algorithm are the matrices C ∈ R

q×d, D ∈ R
q×k

and b ∈ R
q that describe P as follows:

P ,
{
(x, y) ∈ R

d × R
k | Cx + Dy ≤ b

}
.

The assumption is not made that P is irredundant, although the algorithm will proceed
faster if it is. The goal is to compute the matrix G and the vector g such that the axis-aligned
projection of P onto the first d coordinates is given by the irredundant description

πd (P ) ,
{
x ∈ R

d | ∃y, (x, y) ∈ P
}

=
{
x ∈ R

d | Gx ≤ g
}

.

The assumption is made that πd (P ) is full-dimensional in R
d and that the origin is in

its interior. Note that this is guaranteed to be true if P is full-dimensional in R
d × R

k and
the origin is interior to it. The remainder of this section discusses the algorithm under these
assumptions and Appendices B and C show how to apply the algorithm when a polytope does
not satisfy these requirements.

As discussed in Section 2, the matrix G and the vector g are formed from the affine hulls
of the facets of the projection. Each facet F of the projection πd (P ) is defined by a unique
equality set E of P such that F = πd (PE). Therefore, the algorithm is a search procedure for
finding these unique equality sets.

The ESP search procedure exploits the relationship between facets and ridges that is
captured by the Diamond Property (Theorem 7). The algorithm is initialized by discovering
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a random facet F of πd (P ) (Shooting Oracle). The equality sets that define faces of P that
project to the ridges of πd (P ) that are subsets of F can then be computed (Ridge Oracle).

A list is maintained that has one element for every ridge discovered. This element consists
of two equality sets of P that define a ridge of the projection and one of its containing facets.
In each iteration, a ridge is selected from the list, along with its containing facet. Recall that
by the Diamond Property, each ridge is contained in exactly two facets. Therefore, given
the selected ridge-facet list element, the equality set of the second containing facet can be
computed (Adjacency Oracle). As before, the equality sets of all ridges of this new facet are
computed and inserted into the list.

Note that because of the Diamond Property, each ridge is visited exactly twice. Therefore,
by removing every ridge that appears in the list twice at the end of each iteration, we can
guarantee that the algorithm has no cycles and has a finite execution time. The iterative step
is repeated until the list is empty, at which time all facets will have been found.

Once all of the equality sets that define faces of P that project to facets of πd (P ) have
been collected, the matrix G and the vector g can be computed as shown in Propositions 17
and 21. Theorem 22 proves that this procedure finds all facets of the projection and that it
terminates in finite time. It will be seen in the following sections that this statement can be
strengthened to polynomial time in the absence of degeneracy.

Theorem 22. The ESP algorithm returns all facets of the projection and terminates in finite
time.

Proof. Beginning from a random facet F of πd (P ), the ESP algorithm iteratively computes
all adjacent facets without re-visiting any facet. Every polytope has a finite number of
faces [14, Thm. 19.1] and therefore ESP terminates in finite time.

It remains to be shown that all facets are visited. Given a facet F0, we define the set
F(F0) to be all facets Fn such that there exists a sequence of facets from F0 to Fn and Fi

is adjacent to Fi+1, i = 0, . . . , n − 1. Given an initial starting facet F0, the ESP algorithm
clearly computes F(F0). Therefore, if F(F0) covers all facets for any choice of F0, then the
ESP algorithm will return all facets of the projection.

We define a graph H(F(F0)) whose vertices represent the facets of F(F0) and two vertices
of the graph are connected by an edge if the corresponding facets are adjacent. [19, Cor. 2.14]
states that there exists a polytope P̃ such that H(F(F0)) is combinatorially equivalent to
the graph G(P̃ ) formed from the vertices and edges of P̃ . Balinski’s Theorem [5] states that
G(P̃ ) is connected and therefore it follows that H(F(F0)) is connected and the ESP algorithm
returns all facets of the projection.

Three oracles are needed for this search procedure:
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{2, 4, 6}

{1, 2, 4}

{2, 4}
{6}

3

5

4

2

6

1

{1}
{3, 5}

{3, 5, 6}

{1, 3, 5}

Figure 5: Example projection of a cube

Adjacency Oracle (Eadj, aadj, badj) = ADJ((Er , ar, br), (E, af , bf )) This oracle takes two equal-
ity sets Er and E of P where πd (PE) =

{
x

∣∣∣ aT
f x = bf

}
∩ πd (P ) is a facet of πd (P ) and

πd (PEr) =
{
x

∣∣ aT
r x = br

} ∩ πd (PE) is a ridge with πd (PE) ⊃ πd (PEr). The oracle
returns the unique equality set Eadj such that πd (PEadj) ⊃ πd (PEr) , Eadj 6= E.

Ridge Oracle (E1
r , . . . ,E

m
r ) = RDG(E, af , bf ) This oracle takes an equality set E of P where

πd (PE) =
{

x
∣∣∣ aT

f x = bf

}
∩ πd (P ) is a facet of πd (P ) and returns all equality sets Ei

r

of P such that πd

(
PEi

r

)
is a ridge of πd (P ) and πd

(
PEi

r

) ⊂ πd (PE).

Ray-shooting Oracle (E0, af , bf ) = SHOOT (P ) This oracle returns a random equality set
E0 of P such that πd (PE0) =

{
x

∣∣∣ aT
f x = bf

}
∩ πd (P ) is a facet of the projection.

These oracles are discussed in Sections 4, 5 and 6 respectively. ESP is described in
procedural form in Algorithm 3.1.

The algorithm is illustrated by the example of a cube in R
3 being projected to R

2 as shown
in Figure 5. The sequence shown in Figure 6 demonstrates the construction of the top two
levels of the lattice of the projection as the algorithm proceeds. The path that the algorithm
takes through the 3D cube lattice is shown in Figure 7.
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πd (P )

{3, 5}

πd (P )

{3, 5}

{3, 5, 6} {1, 3, 5}

Step 1: {3, 5} = SHOOT Step 2: ({3, 5, 6} , {1, 3, 5}) = RDG({3, 5})
List : L = (({3, 5, 6} , {3, 5}), ({1, 3, 5} , {3, 5}))

πd (P )

{3, 5} {1}

{3, 5, 6} {1, 3, 5}

πd (P )

{3, 5} {1}

{3, 5, 6} {1, 3, 5} {1, 2, 4}

Step 3: {1} = ADJ({1, 3, 5} , {3, 5}) Step 4: ({1, 3, 5} , (1, 2, 4)) = RDG({1})
List : L = (({3, 5, 6} , {3, 5}), ({1, 3, 5} , {3, 5}), ({1, 3, 5} , {1}), ({1, 2, 4} , {1}))

πd (P )

{3, 5} {1} {6}

{3, 5, 6} {1, 3, 5} {1, 2, 4}

πd (P )

{3, 5} {1} {6}

{3, 5, 6} {1, 3, 5} {1, 2, 4} {2, 4, 6}

Step 5: {6} = ADJ({3, 5} , {3, 5, 6}) Step 6: ({3, 5, 6} , {2, 4, 6}) = RDG({6})
List : L = (({3, 5, 6} , {3, 5}), ({1, 2, 4} , {1}), ({3, 5, 6} , {6}), ({2, 4, 6} , {6})),

πd (P )

{3, 5} {1} {6} {2, 4}

{3, 5, 6} {1, 3, 5} {1, 2, 4} {2, 4, 6}

πd (P )

{3, 5} {1} {6} {2, 4}

{3, 5, 6} {1, 3, 5} {1, 2, 4} {2, 4, 6}

Step 7: {2, 4} = ADJ({2, 4, 6} , {6}) Step 8: ({1, 2, 4} , {2, 4, 6}) = RDG({2, 4})
List : L = (({1, 2, 4} , {1}), ({2, 4, 6} , {6}), ({1, 2, 4} , {2, 4}), ({2, 4, 6} , {2, 4})) = ∅

Figure 6: ESP procedure: Projection of a cube
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Algorithm 3.1 Equality Set Projection ESP
Input: Polytope P ,

{
(x, y) ∈ R

d × R
k
∣∣ Cx + Dy ≤ b

}
whose projection is full-

dimensional and contains the origin in its interior.
Output: Matrix G and vector g such that

{
x ∈ R

d | Gx ≤ g
}

is an irredundant description
of πd (P ).
List E of all equality sets E of P such that πd (PE) is a facet of πd (P ).

Initialize ridge-facet list L with random facet.
1: L←− ∅
2: (E0, af , bf ) = SHOOT (P ) Section 6
3: Er = RDG(E0, af , bf ) Section 5
4: for each element (Er, ar, br) in list Er do
5: Add element ((Er, ar, br), (E0, af , bf )) to list L
6: end for

Initialize matrix G, vector g and list E.
7: G←− aT

f , g ←− bf

8: E←− E0

Search for adjacent facets until the list L is empty.
9: while L 6= ∅ do

10: Choose an element ((Er, ar, br), (E, af , bf )) from list L
11: (Eadj, aadj, badj)←− ADJ((Er, ar, br), (E, af , bf )) Section 4
12: Er ←− RDG(Eadj, aadj, badj) Section 5
13: for each element (Er, ar, br) in list Er do
14: if there exists an element ((Ar, a1, b1), (A, a2, b2)) in list L such that Ar = Er then
15: Remove element ((Ar, a1, b1), (A, a2, b2)) from list L
16: else
17: Add element ((Er, ar, br), (Eadj, aadj, badj)) to list L
18: end if
19: end for

20: G←−
[

G
aT

adj

]
, g ←−

[
g

badj

]
21: E←− (

E,Eadj
)

22: end while

Report projection.
23: Report G, g and E
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{1, 3} {1, 2} {2, 3} {1, 5} {3, 5} {4, 5} {1, 4} {2, 4} {3, 6} {2, 6} {5, 6} {4, 6}

{1} {2} {3} {4} {5} {6}

∅

{1, 2, 3} {1, 3, 5} {1, 4, 5} {1, 2, 4} {2, 3, 6} {3, 5, 6} {4, 5, 6} {2, 4, 6}

{1, 2, 3, 4, 5, 6}

Figure 7: Example projection of a cube: Search path in cube face lattice

4 Adjacency Oracle

The goal of this section is to build the adjacency oracle
(Eadj, aadj, badj) = ADJ((Er , ar, br), (E, af , bf )) introduced in Section 3. The oracle takes two
equality sets E and Er ⊃ E that define a facet πd (PE) and a ridge πd (PEr) of the projection
πd (P ). The unit normals ar and af are orthogonal and have the property that:

πd (PE) =
{
x

∣∣ aT
f x = bf

} ∩ πd (P ) ,

πd (PEr) =
{
x

∣∣ aT
r x = br

} ∩ πd (PE) .

The goal is to compute an equality set Eadj ⊂ Er such that πd (PEadj) is the facet of the projec-
tion that is adjacent to the given facet πd (PE) and that contains the given ridge πd (PEr). Note
that this facet is guaranteed to exist and to be unique by the Diamond Property (Theorem 7).

In this section we will show that the equality set of the adjacent facet is given by Eadj ,
{i ∈ Er | Cix

? + Diy
? = bi}, where (x?, y?) is the optimum of the LP

(x?, y?) = arg max
x,y

aT
r x

subject to CErx + DEry ≤ bEr

aT
f x = bf (1− ε),
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πd (PEr)πd (PE)
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Facet

ρ(aff πd (PEadj))

ar

(α, β)

ρ

af

Figure 8: Map ρ

where ε is a small positive number. The remainder of this section is dedicated to proving this
claim.

We will first show that as the adjacent facet must contain the given ridge, its affine hull
can differ in only one degree of freedom from that of the given facet. We will introduce a
linear mapping that will allow us to formulate the search over this degree of freedom as a
linear program in order to determine a point on the affine hull of the adjacent facet. From
this point we will then compute the equality set of the adjacent facet.

Similarly to [9], we define an affine transformation ρ that maps R
d to R

2:

ρ : R
d −→ R

2, x 7−→
[

aT
r

−aT
f

]
(x− x0), (7)

where x0 is any point in the affine hull of the given ridge aff πd (PEr).
The mapping ρ takes every point in the polytope πd (P ) to a two dimensional space such

that all points in the affine hull of the facet πd (PE) are mapped to the first axis and all points
in the affine hull of the ridge aff πd (PEr) are mapped to the origin. The map is depicted in
Figure 8 for a polytope that is projected to R

3. For convenience, we will refer to the first axis
as α and the second as β.

Remark 23. It is assumed that the normal af is given such that the ray λaf will intersect
the affine hull of πd (PE) for a positive value of λ and ar is outward facing from the facet
πd (PE). These requirements are satisfied if af and ar are obtained from the ESP algorithm.
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Under these assumptions, the facet πd (PE) is mapped to the negative α-axis and the inte-
rior of the polytope is strictly above the α-axis as shown in Figure 8. Note that because the
polytope πd (P ) is convex, the angle that the adjacent facet makes with πd (PE) must be less
than 180◦, or equivalently all points (α, β) ∈ ρ(πd (PEadj)) must have β ≥ 0.

We will now show that the affine hull of the adjacent facet aff πd (PEadj) will form a line
going through the origin under the mapping ρ and furthermore, all points in the polytope are
mapped to the left of this line. First, the following lemma is needed.

Lemma 24. If R is a ridge, F ⊃ R is a facet and aff R =
{

x

∣∣∣∣ [
af ar

]T
(x− x0) = 0

}
,

then there exists a γ ∈ R such that aff F =

{
x

∣∣∣∣∣ [
1 γ

] [
aT

r

−aT
f

]
(x− x0) = 0

}
.

Proof. F is a facet and therefore only one equality is needed to describe its affine hull:

aff F =
{
x | aT (x− x0) = 0

}
, for some a ∈ R

d.

The ridge R is a subset of F and therefore for every x in the affine hull of R, x must be
in the affine hull of F : [

af ar

]T
(x− x0) = 0 ⇒ aT (x− x0) = 0.

This is equivalent to x being in the affine hull of the facet if x− x0 is in the left-nullspace of[
af ar

]
:

x− x0 ∈ N

([
af ar

]T
)
⇒ aT (x− x0) = 0.

Finally, we can see that a must be perpendicular to the left-nullspace of
[
af ar

]
, or equiva-

lently, in its rowspace:

a = ar − γaf .

From Lemma 24 and (7) we can see that

ρ(aff F ) =
{
ρ(x)

∣∣∣ [
1 γ

]
ρ(x) = 0

}
= {(α, β) |α + γβ = 0}

and therefore under the mapping ρ, all points on the affine hull of the adjacent facet will
be mapped to a line through the origin. The goal is now to determine which equality set
Eadj ⊂ Er defines this line.

23



Interior
of

Polytope

θ

Adjacent
Facet

ρ(aff πd (PEadj))

af
ar

(α, β)

πd (PB)

Figure 9: Subsets of Er under the map ρ

Each subset B of Er defines a polytope πd (PB) that, by Corollary 19, is a superset of the
given ridge πd (PB) ⊇ πd (PEr) and correspondingly, the affine hull contains the affine hull of
the given ridge aff πd (PB) ⊇ aff πd (PEr). Therefore, under ρ, the affine hull of πd (PB) will
either map to the origin, or to a line through the origin. Each of these lines forms an angle
with the negative α−axis as shown in Figure 9. Since the portion of each of these lines that
lies above the α−axis must be internal to the projection of the polytope, the largest angle θ

made with the negative α−axis must define the adjacent facet.

Remark 25. The simplest (and worst) approach to finding the adjacent facet would be to
compute the projection πd (aff PB) for each B ⊂ Er and then calculate the angle that it makes
with πd (aff PE). This would, of course, require a combinatorial number of calculations.

Remark 26. The adjacent facet can now be described in terms of the angle θ ∈ (0, π) between
the adjacent facet and the given facet πd (PE) or by a point (α, β) ∈ R×R>0 on the adjacent
facet under the mapping ρ. Note that the affine mapping ρ is conformal and therefore the
angle θ defined under the mapping ρ is the true angle between the two facets.

The search for the largest angle is formulated as a maximisation over α while fixing β to be
a positive value; for convenience, we here choose β = εbf , where ε is a small positive number.
From Figure 10 this is clearly equivalent to maximizing θ. In the following linear program we
search for a point (x, y) in the polytope P and define the projection of this point (which is
just x) under the mapping ρ as (α, β) , ρ(x). We can then maximize α and constrain β to
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Figure 10: Linear optimisation under the wrapping map

be εbf . The appropriate maximization is:

max
x,y

α

subject to (x, y) ∈ P[
α

β

]
= ρ(x)

β = εbf .

(8)

From the definition of the mapping ρ (7) and recalling that aT
f x0 = bf we can re-write LP (8)

as follows:

J? = max
x,y

aT
r x

subject to CErx + DEry ≤ bEr

aT
f x = bf (1− ε).

(9)

Remark 27. Notice that in LP (9) only the constraints Er are used to represent (x, y) ∈ P .
From Corollary 19 we know that the adjacent facet must be a subset of Er and therefore for
efficiency we include only these constraints.

We now show how to compute the equality set of the adjacent facet from the optimizer of
LP (9). First, the following lemma is needed.

Lemma 28. If (x?, y?) is an optimizer of LP (9) and E? = {i ∈ Er | Cix
? + Diy

? = bi}, then
E? is an equality set of P , πd (PE?) ⊃ πd (PEr) and dim πd (PE?) = d− 1.

Proof. E? is clearly an equality set by Definition 8.

25



We first show that E? ⊂ Er. Since LP (9) contains only the constraints Er, we have E? ⊆ Er.
To show proper inclusion we recall that the ridge πd (PEr) is mapped to the origin under the
map ρ, however the constraint β > 0 implies that (x?, y?) is not zero and therefore not on
the affine hull of PEr . It follows that Er 6= E?.

From Theorem 13, E? ⊂ Er implies that PE? ⊃ PEr and therefore πd (PE?) ⊇ πd (PEr). By
construction, x? ∈ aff πd (PE?) and x? 6∈ πd (PEr) and therefore πd (PE?) ⊃ πd (PEr).

It follows that dimπd (PE?) > πd (PEr) = d − 2. dim πd (PE?) is d if and only if E? = ∅.
From the constraints in LP (9), we can see that this is the case only if x? =∞. However, the
polytope P is bounded and the angle between any two faces is less that 180◦ by convexity,
and therefore x? <∞ and πd (PE?) = d− 1.

Recall that P is bounded, and therefore the primal optimizer exists and is finite, although
it may be non-unique. If the optimizer of LP (9) is unique, then we can compute the equal-
ity set of the adjacent facet directly using the following proposition. Note that a primal
degenerate solution still provides a unique optimizer.

Proposition 29. If (x?, y?) is a unique optimal point of LP (9) and
E? = {i ∈ Er | Cix

? + Diy
? = bi}, then E? is an equality set, dim PE? = d− 1 and πd (PE?) ⊃

πd (PEr) is a facet of πd (P ).

Proof. By construction, the affine hull of πd (PE?) is the affine hull of the adjacent facet.
We now have that the adjacent facet is given by F = (aff πd (PE?)) ∩ πd (P ). Clearly, if
F = πd (PE?), then πd (PE?) is a facet.

By construction, the point x? is in the interior of F . Since the optimal point is unique,
there is only one y = y? such that (x?, y) is in the interior of π−1

d (F ) and therefore the equality
set of π−1

d (F ) is given by B = {i |Cix
? + Diy

? = bi } = E?. It follows that F = πd (PB) =
πd (PE?) and πd (PE?) is a facet of πd (P ).

The solution is said to be dual-degenerate if there are multiple optimizers. In this situation
Proposition 29 does not apply and more work is needed to compute the equality set of the
adjacent facet. Recall that by construction, the projection of any point (x?, y?) that is an
optimizer of LP (9) is on the affine hull of the adjacent facet, x? ∈ aff πd (PEadj). Therefore,
given any optimizer (x?, y?) we can compute the affine hull of the adjacent facet aff πd (PEadj)
from Lemma 24, which states that it has the form:

aff πd (PEadj) =
{
x

∣∣ (af + γar)T (x− x0) = 0
}

=
{
x

∣∣ (af + γar)T x = bf + γbr)
}

,

for some γ ∈ R. The optimal point x? is on the affine hull of the adjacent facet and therefore
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we can compute γ from the above equation as:

γ = −aT
r x? − br

aT
f x? − bf

. (10)

Remark 30. Note that most commercial LP solvers will return an arbitrary optimizer (x?, y?)
in the case of dual-degeneracy.

Finally, the equality set that defines the adjacent facet must be derived from the equation
for its affine hull. The face PEadj can be written as the pre-image of πd (PEadj):

PEadj = π−1
d (πd (PEadj)) = P ∩ {

x
∣∣ (af + γar)T x = bf + γbr)

}
. (11)

By definition the constraints of P that are everywhere active in PEadj form the equality set
Eadj. A method for computing these constraints for a given polytope is given in Appendix A,
which will provide the desired set, Eadj.

Algorithm 4.1 summarizes the procedure discussed in this section.

5 Ridge Oracle

The oracle Er = RDG(E, af , bf ) introduced in Section 3 will be developed here. The oracle
takes as input an equality set E that defines a facet πd (PE) of the projection πd (P ). The unit
vector af and the scalar bf also define the facet as πd (PE) =

{
x

∣∣∣ aT
f x = bf

}
∩ πd (P ). The

oracle returns the equality sets of the ridges of the projection πd (P ) that are subsets of the
given facet πd (PE).

Recall that every face of a polytope is itself a polytope and therefore πd (PE) can be written
in the form πd (PE) =

{
x

∣∣∣ aT
f x = bf

}
∩ {x |Υx ≤ υ } for some Υ ∈ R

p×d and υ ∈ R
p. The

ridges of the projection that are subsets of the given facet πd (PE) are then given by the facets
of the polytope πd (PE), which can be written as πd (PE)∩ {x |Υix = υi }, for i = 1, . . . , p. In
this section we will show that if the dimension of the face PE is d− 1, then such an Υ and υ

can be found directly, otherwise a low-dimensional projection is required.
We begin by computing expressions for the given face of the polytope PE and its projection

πd (PE). In Section 5.1, we show how to compute the equality sets of the ridges directly if the
dimension of the face PE is d− 1 and then Section 5.2 handles the general case. The general
case requires a recursive call to the ESP algorithm that reduces the dimension to which we
are projecting at each step. Therefore in order to ensure that this recursion terminates, in
Section 5.2.1 we present a method of computing the ridges directly when projecting to 1D.

Lemma 31. If E is an equality set of P such that πd (PE) is a facet of πd (P ) and dim PE =
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Algorithm 4.1 Adjacency oracle
Input: Polytope P and equality sets Er and E such that πd (PEr) is a ridge and πd (PE) is

a facet of πd (PE) and Er ⊃ E.
Orthogonal unit vectors af and ar and scalars bf and br such that aff πd (PE) ={
x

∣∣∣ aT
f x = bf

}
and aff πd (PEr) =

{
x

∣∣ aT
r x = br

} ∩ aff πd (PE).

Output: Equality set Eadj such that πd (PEadj) is a facet of πd (P ) and πd (PEr) ⊂ πd (PEadj)

Compute a point on the affine hull of the adjacent facet.
1: Compute

(x?, y?) = arg max
x,y

aT
r x

subject to CErx + DEry ≤ bEr

aT
f x = bf (1− ε)

Compute the equality set of the adjacent facet.
2: if LP is not dual degenerate then
3: Eadj ←− {i ∈ Er | Cix

? + Diy
? = bi}

4: else
5: γ ←− − aT

r x?−br

aT
f x?−bf

(10)

6: Compute the equality set Eadj of Appendix A{
(x, y) | CErx + DEry ≤ bEr , (af + γar)T x = bf + γbr

}
.

7: end if

Compute affine hull of adjacent facet.

8:
[
aT

adj badj

]←− N
(
DEadj

T
)T [

CEadj bEadj

]
Proposition 21

Normalize and ensure halfspace contains origin.

9:
[
aT

adj badj

]←− sign badj‚
‚
‚aadj

‚
‚
‚
2

[
aT

adj badj

]
Report adjacent facet.
10: Report

(
Eadj, aadj, badj

)
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d− 1 + n, then the rank of DE is k − n and

PE =

(x, y)

∣∣∣∣∣∣∣
aT

f x = bf ,

Sx + Lỹ ≤ t,

y = N(DE)ỹ + DE
†(bE − CEx)

 ,

where Ec , {1, . . . , q} \E, and

S , CEc −DEcDE
†CE, L , DEcN(DE), t , bEc −DEcDE

†bE.

Proof. The definition of PE is

PE =

{
(x, y)

∣∣∣∣∣ CEx + DEy = bE,

CEcx + DEcy ≤ bEc

}
. (12)

Let
[
Û Ũ

] [
Σ 0
0 0

] [
V̂ Ṽ

]T
, DE be the singular value decomposition of DE and introduce

the change of variables V̂ ŷ + Ṽ ỹ , y. Multiplying by
[
Û Ũ

]T
, the affine hull of PE can be

written as the two equations:

ÛT CEx + Σŷ = ÛT bE (13)

ŨT CEx = ŨT bE (14)

Recalling that Ũ is equal to N
(
DE

T
)

we see from Proposition 21 that (14) defines the affine
hull of the projection: aT

f x = bf . Solving (13) for ŷ and substituting into (12) gives the
desired result:

PE =

(x, y)

∣∣∣∣∣∣∣
aT

f x = bf ,(
CEc −DEcDE

†CE

)
x + DEc Ṽ ỹ ≤ bEc −DEcDE

†bE,

y = Ṽ ỹ + DE
†(bE − CEx)

 ,

where we notice that the pseudo-inverse DE
† is given by V̂ Σ−1ÛT .

It remains to be shown that the rank of DE is k − n. Proposition 16 gives the dimension
of the projection πd (PE) as:

dim πd (PE) = dim PE − k + rankDE. (15)

πd (PE) is a facet and therefore the dimension of πd (PE) is d − 1 and the dimension of PE

has been assumed to be d − 1 + n, and therefore solving (15) provides the desired relation:
rankDE = k − n.
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Corollary 32. If E is an equality set of P such that πd (PE) is a facet of πd (P ) and dimPE =
d− 1 + n, then

πd (PE) =
{
x

∣∣∃ỹ ∈ R
n, Sx + Lỹ ≤ t, aT

f x = bf

}
,

where af , bf , S, L,and t are as defined in Lemma 31.

Proof. Follows directly from Lemma 31.

Note that if n = 0, Corollary 32 gives an explicit expression for πd (PE) since ỹ ∈ R
0.

We now distinguish two cases and the following sections present methods for computing the
ridges for n = 0 and n > 0 respectively.

Remark 33. From Proposition 29, the dimension of the face PE is d − 1 if and only if the
LP in (9) is not dual-degenerate.

5.1 Case 1: dim PE = d− 1

In this section the assumption is made that the dimension of the face PE is d − 1. From
Corollary 32 we can see that the facet is given by πd (PE) =

{
x

∣∣∣ Sx ≤ t, aT
f x = bf

}
. We

first prove that all facets of πd (PE) (ridges of πd (P )) can be written as πd

(
PE∪{i}

)
for some

i in Ec. We then show how to select only those indices i that correspond to facets of πd (PE)
(ridges of πd (P )) and finally, how to construct the equality sets for each.

Lemma 34. If E is an equality set of P such that πd (PE) is a facet of πd (P ) and dim PE =
d− 1, then for all i ∈ Ec,

πd

(
PE∪{i}

)
=

{
x

∣∣∣∣∣
[
aT

f

Si

]
x =

[
bf

ti

]
, Sx ≤ t

}
,

where af , bf , S and t are as defined in Lemma 31.

Proof. The result follows directly from Corollary 32 by noting that if n is zero then ỹ ∈ R
0.

From Corollary 32 and Lemma 34, we see that for each facet F of πd (PE), there exists
an i ∈ Ec such that F = πd

(
PE∪{i}

)
. It is clear from Lemma 34 and the definition of faces

(Definition 5) that πd

(
PE∪{i}

)
is a face of πd (PE) for all i ∈ Ec. Therefore, πd

(
PE∪{i}

)
is a facet of πd (PE) (a ridge of πd (P )) if and only if it is of the appropriate dimension:
dim πd

(
PE∪{i}

)
= dim πd (PE)− 1 = d− 2.
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The dimension of πd

(
PE∪{i}

)
is d− 2 if and only if the dimension of its affine hull is d− 2,

or equivalently the rank of

[
aT

f bf

SQ(i) tQ(i)

]
is two where Q(i) is the equality set of πd

(
PE∪{i}

)
.

Therefore, we can see that πd

(
PE∪{i}

)
is a ridge if and only if its equality set is given by:

Q(i) ,
{

j ∈ Ec

∣∣∣∣∣ rank

[
aT

f bf

S{i,j} t{i,j}

]
= 2

}
. (16)

This idea is formalized in Proposition 35 below.

Proposition 35. If E is an equality set of P such that πd (PE) is a facet of πd (P ) and

dim PE = d−1, then for all i ∈ Ec, πd

(
PE∪{i}

)
is a facet of πd (PE) if and only if rank

[
aT

f bf

Si ti

]
=

2 and there exists an x0 ∈ πd

(
PE∪{i}

)
such that Sjx0 < tj for all j ∈ Ec\Q(i), where

Q(i) ,
{

j ∈ Ec

∣∣∣∣∣ rank

[
aT

f bf

S{i,j} t{i,j}

]
= 2

}
.

Proof. Assume that πd

(
PE∪{i}

)
is a facet of πd (PE). We prove the existence of an x0 such

that Sjx0 < tj for all j ∈ Ec\Q(i) by contradiction. Assume such an x0 does not exist. Then
there exists a j ∈ Ec\Q(i) such that Sjx = tj for all x ∈ πd (PE). Since j 6∈ Ec\Q(i) we have
that

dimπd

(
PE∪{i}

)
= dim aff πd

(
PE∪{i}

)
≤ dim

{
x

∣∣∣∣∣
[

xT
f

S{i,j}

]
x =

[
bf

t{i,j}

]}
= d− 3

and therefore an appropriate x0 exists by contradiction.
Assume that there exists an x0 such that Sjx0 < tj for all j ∈ Ec\Q(i). We define the set

B(ε, x0) ,
{

x

∣∣∣∣∣ ‖x− x0‖2 < ε,

[
aT

f

Si

]
(x− x0) =

[
bf

ti

]}
.

Note that dimB(ε, x0) = d − 2 for all ε > 0 and all x0. Clearly, there exists an ε > 0 such
that (x0 − x) ∈ πd

(
PE∪{i}

)
for all x ∈ B(ε, x0). It follows that πd

(
PE∪{i}

)
has a subset of

dimension d − 2 and therefore dimπd

(
PE∪{i}

) ≥ d − 2. The rank of

[
aT

f bf

Si ti

]
is two and

therefore dimπd

(
PE∪{i}

) ≤ d− 2. It follows that πd

(
PE∪{i}

)
is a (d− 2)-face of πd (PE) and

is therefore a facet of πd (PE).
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We now propose a linear program that will test if Q(i) as defined in Proposition 35 is an
equality set of πd (P ):

minimize
(τ,x)

τ

subject to SQ(i)x ≤ tQ(i) + τ

aT
f x = bf

Six = ti

τ ≥ −c, for some c ∈ R>0

(17)

If there exists an x and a strictly negative τ that satisfies LP (17), then clearly we have
found an x such that Sjx < tj for all j ∈ Ec\Q(i) and the requirements of Proposition 35
are satisfied. Therefore πd

(
PE∪{i}

)
is a facet of πd (PE) if and only if there exists a feasible

solution to LP (17) such that τ is strictly less than zero. Note that x is bounded in LP (17)
because the polytope P is assumed bounded and the cost is bounded below. The equality set
of the ridge πd

(
PE∪{i}

)
is then given by the set Q(i).

5.2 Case 2: dim PE = d− 1 + n, n > 0

Here we make the assumption that the dimension of the face PE is larger than d − 1. As
a result, n is strictly greater than zero and, from Corollary 32, we can write πd (PE) as a
projection from R

d × R
n to R

d. Recall that each facet of πd (PE) is a ridge of πd (P ) and
therefore computing this projection is equivalent to finding all the ridges that are subsets of
πd (PE). In this section we show how to compute this projection using ESP, which requires
some slight work as it does not contain the origin and is not full-dimensional.

The polytope πd (PE) can be written as the projection from R
d × R

n to R
d:

πd (PE) = πd

({
(x, ỹ) ∈ R

d × R
n

∣∣Sx + Lỹ ≤ t, aT
f x = bf

})
, (18)

where S, L and t are as defined in Corollary 32. Recall from Corollary 19 that every facet F

of πd (PE) can be written as

F = (πd (PE))R

= πd

({
(x, ỹ) ∈ R

d × R
n

∣∣SRx + LRỹ = tR, aT
f x = bf , Sx + Lỹ ≤ t

})
,

for some equality set R of πd (PE). From Lemma 31 and Corollary 32 we can see that
πd (PE∪R) = (πd (PE))R and therefore E ∪ R is a ridge-defining equality set of P . All such
facet-defining equality sets R of πd (PE) can be computed via a call to the ESP algorithm,
which therefore also gives all of the ridge-defining equality sets Er = E ∪ R of P such that
πd (PEr) ⊂ πd (PE).

Note that (18) does not satisfy the assumptions that its projection is full dimensional
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or that the origin is contained in its interior, which is required if this projection is to be
computed via ESP. Taking the singular value decomposition aT

f =
[
σ 0 · · · 0

]
V T , we

can re-write (18) as:

πd (PE) =

{
x ∈ R

d

∣∣∣∣∣∃ỹ ∈ R
n, x̃ ∈ R

d−1, Sx + Lỹ ≤ t, x = V

[
bf/σ

x̃

]}

=

{
x ∈ R

d

∣∣∣∣∣x = V

[
bf/σ

x̃

]
, x̃ ∈ πd−1

(
P̃

)}
, (19)

where

P̃ =
{

(x̃, ỹ) ∈ R
d−1 × R

n
∣∣∣ SṼ x̃ + Lỹ ≤ t− SV̂ bf/σ

}
. (20)

and V is partitioned appropriately as V =
[
V̂ Ṽ

]
.

Note that as the dimension of πd (PE) is d − 1, P̃ is guaranteed to be full-dimensional.
The reader is referred to Appendix C for a simple procedure to ensure that the origin is
interior to P̃ . The projection πd−1

(
P̃

)
can now be computed using a recursive call to the

ESP algorithm.
Finally, for each facet

{
x̃

∣∣∣ ãf x̃ = b̃f

}
∩ πd−1

(
P̃

)
of πd−1

(
P̃

)
, the corresponding ridge

of πd (P ) can be computed from (19) as:{
x

∣∣∣ ãf Ṽ T x = b̃f

}
∩ πd (PE) (21)

Remark 36. The adjacency oracle requires that the equation describing each ridge has a
unit normal and is orthogonal to the facet. Once the ridge

{
x

∣∣ aT
r x = br

}∩ πd (PE) has been
computed, an equivalent representation that has the required properties can be computed as:[

aT
r br

]
←−

[
aT

r br

]
− aT

f ar

[
af bf

]
(22)[

aT
r br

]
←− sign br∥∥∥ar

∥∥∥
2

[
aT

r br

]

5.2.1 Projection to 1D

This section is included in order to guarantee that the recursion introduced when the dimen-
sion of PE is larger than d− 1 terminates.

If d is one, then the facets of the projection are vertices and there are clearly only two of
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them. They can be computed by maximizing and minimizing along the x−axis as follows

(x?
min, y

?
min)/(x

?
max, y

?
max) , min/max

(x,y)

x

subject to Cx + Dy ≤ b
(23)

If LP (23) is not dual degenerate, then the equality sets of the ridges are given by

Emin , {i | Cx?
min + Dy?

min = b} ,

Emax , {i | Cx?
max + Dy?

max = b} .

If LP (23) is dual degenerate, then the equality sets must be computed as in Section 4.
The pre-image of the facets x?

min and x?
max are given by

π−1
d (x?

min) = π−1
d (PEmin

) = P ∩ {(x?
min, y)} ,

π−1
d (x?

max) = π−1
d (PEmax) = P ∩ {(x?

max, y)} ,

where the equality sets Emin and Emax can be computed as in Appendix A.
Algorithm 5.1 describes the procedures developed in this section in algorithmic form.

6 Shooting Oracle

This section discusses the oracle (E0, af , bf ) = SHOOT (P ) introduced in Section 3. The goal
of the oracle is to initialize the ESP algorithm by finding a random equality set E0 such that
πd (PE0) is a facet of the projection πd (P ).

This oracle operates by randomly choosing a direction γ ∈ R
d and then solving an LP in

order to move along the ray γr, r ≥ 0 until a point is found on the boundary of πd (P ). If the
point is not on a facet of πd (P ) then the ray is randomly perturbed until it is. The active
constraints that define the facet can then be calculated from the constraints of P that are
satisfied with equality at this point.

The following LP will be used to search in the direction of the ray γr until a facet of the
projection is found:

(r?, y?) , arg max
(r,y)∈R×Rk

r

subject to Cγr + Dy ≤ b
(24)

The point (γr?, y?) will be on the face of P that projects to the face of πd (P ) intersecting
the ray γr, where r is a positive real number. This is equivalent to LP (9) where a point was
computed on the adjacent facet. The method of computing the equality set of the face of P

that contains (γr?, y?) is the same as that presented in Section 4. Namely, if the optimizer
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Algorithm 5.1 Ridge oracle: Er = RDG(E, af , bf )
Input: Polytope P and equality set E such that πd (PE) is a facet of πd (P ).
Output: List Er whose elements are all equality sets Er such that πd (PEr) is a facet of

πd (PE).

Initialize variables.
1: Er ←− ∅
2: Compute S, L and t as in Lemma 31

Compute the dimension of PE.
3: if rank

[
CE DE

]
< k + 1 then

Call ESP recursively to compute the ridges.
4: Ẽr ←− ESP(P̃ ) (19)
5: Convert the facets of πd−1

(
P̃

)
into ridges of πd (P ) and add to Er. (21)

6: else

Test each i ∈ Ec to see if E ∪ {i} defines a ridge.
7: for each i in Ec do
8: Compute τ? from LP (17)
9: if τ? < 0 then Proposition 35

10: Compute equality set Q(i)
11:

[
aT

r br

]←− [
Si ti

]
12: Er ←− ((Q(i), ar , br),Er)
13: end if
14: end for
15: end if
16: Normalize all equations and make orthogonal to the facet πd (PE) Remark 36
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of the LP is unique, then the equality set is given by E0 , {i | Ciγr? + Diy
? = bi}. However,

if the LP is dual-degenerate, then the equality set can be computed by calculating the affine
hull of the pre-image:

PE0 = π−1
d (πd (PE0)) = P ∩ {

x
∣∣ aT

f x = bf

}
,

where af and bf are given by Proposition 21.

Remark 37. The ESP algorithm assumes that the polytope P contains the origin. This
ensures that the ray γr will intersect the polytope for some value of r ≥ 0. If an initial
equality set is already known, then the interiority assumption can be relaxed.

Algorithm 6.1 Shooting oracle: Calculation of a random facet of πd (P )
Input: Polytope P =

{
(x, y) ∈ R

d × R
k | Cx + Dy ≤ b

}
, which contains the origin in its

interior and whose projection is full-dimensional.
Output: A randomly selected equality set E0 of P such that

πd (PE0) ,
{

x
∣∣∣ aT

f x = bf

}
∩ πd (P ) is a facet of πd (P ).

Find a face of P that projects to a facet of πd (P )
1: repeat
2: Choose a random vector γ ∈ R

d

3: Compute

(r?, y?) , arg max
(r,y)∈R×Rk

r

subject to Cγr + Dy ≤ b

4: E0 ←− {i | Ciγr? + Diy
? = bi}

5: until dim πd (PE0) = d− rankN
(
DE0

T
)T

CE0 = d− 1

Compute affine hull of facet

6:
[
aT

f bf

]←− N
(
DE0

T
)T [

CE0 bE0

]
Proposition 21

7:
[
aT

f bf

]←− sign bf‚
‚
‚af

‚
‚
‚
2

[
aT

f bf

]
Remark 36

Handle dual-degeneracy in LP Section 4
8: if LP is dual-degenerate in 3 then
9: Compute equality set E0 such that PE0 =

{
(x, y)

∣∣∣ aT
f x = bf

}
∩ P Appendix A

10: end if

Report facet
11: Report (E0, af , bf ).
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7 Complexity Analysis

The complexity of the ESP algorithm is best described in terms of the number of linear
programs needed. Let LP (n, q) be the time complexity of an LP of dimension n with q

constraints. For the simplex approach, the average complexity is linear in q and polynomial
(approximately to the power three) in n, while the worst case is exponential. For interior point
methods the worst case is polynomial to within a given ε-bound of the optimum, however,
there is a large constant multiplier on the interior point approach and as a result it can often
be slower for ‘small’ problems (less than a few hundred dimensions).

First, assume that none of the linear programs computed during the adjacency oracle
are dual-degenerate. If the polytope P is in R

d × R
k and has q constraints, then one LP in

d + k dimensions with q constraints must be solved per output facet in order to compute its
equality set. Computing the ridges of each facet requires a redundancy removal operation.
This can be done in q− |Er|, d-dimensional LPs with q− |Er| constraints. If nf is the number
of inequalities in the projection πd (P ), then the worst-case time complexity is

O(nf (LP (d + k, q) + (q − |Er|)LP (d, q − |Er|))).

If the polytope is in general position, then |Er| is k for all facets and the complexity becomes:

O(nf (LP (d + k, q) + (q − k)LP (d, q − k))). (25)

Clearly, the complexity is linear in the number of output facets.
It is interesting to note that if the dimension that we are projecting to and the number

of constraints are held constant, then the complexity becomes O(nfLP (k, q)). Finally, if the
size of the polytope P is fixed, then the complexity is linear is the number of output facets,
O(nf ).

If degeneracy is encountered, then ESP may need to be called recursively. The number of
calls can be significant depending on the polytope and for certain polytopes, other projection
algorithms may well be more efficient.

8 Numerical Simulations

This section shows comparative simulations of ESP against other commonly used projec-
tion algorithms. Each algorithm is presented with an irredundant halfspace description of
a polytope P ,

{
(x, y) ∈ R

d ×R
k | Cx + Dy ≤ b

}
and the output of the algorithm is an

irredundant halfspace description of the projection πd (P ) =
{
x ∈ R

d
∣∣ ∃y ∈ R

k (x, y) ∈ P
}
.

Four algorithms have been compared:

• Fourier Elimination: This algorithm was implemented in C as described in [15].
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• Projection Cone: If the projection cone is defined as W , {v | vD = 0, v ≥ 0}, then the
projection is given by πd (P ) = {x | (vC)x ≤ vb, ∀v ∈ extr W }. The extreme rays of W

were computed via the double description method CDD, which is implemented in C [8].

• Vertex Enumeration: In this approach, the vertices of the polytope P are enumerated,
projected and then the convex hull of the projection is calculated. All computations are
done via the double description method CDD [8].

• ESP: The ESP algorithm is implemented in Matlabr and all linear programs are com-
puted via the Stanford Systems Optimization Laboratory (SOL) toolbox [12].

As we require the output to be irredundant, each inequality generated by the first two ap-
proaches is tested for redundancy by a call to a linear program. The LP code used is the
Stanford Systems Optimization Laboratory (SOL) toolbox [12].

The polytopes that are used in this comparison are randomly generated, bounded by a
hypersphere of radius 10 and all inequalities in their description are irredundant. Figure 11
shows the results of the simulations where the y−axis is a logarithmic scale of the time taken
per facet of the projection and the x−axis is the variable ξ, which is defined in the following
list. Let q be the number of halfspaces in the description of P and we define four scenarios:

a. R
10 −→ R

4, q = ξ, ξ = 10, . . . , 100
This test demonstrates the complexity of the algorithms as a function of the number of
halfspaces in the polytope. From (25) and recalling that an LP has linear complexity
for fixed dimension, the complexity per facet of the projection of ESP is O(

q2
)
; this

tendency can be seen in Figure 11(a).

b. R
ξ −→ R

4, q = 3ξ, ξ = 5, . . . , 30
In this test we project to a fixed dimension while increasing the dimension of the poly-
tope P . From (25), the complexity of ESP should increase as O(LP (k, 3k)). It is clear
from Figure 11(b) that for these polytopes, ESP is capable of projecting from much
higher dimensions than the other approaches. The main limitation as the dimension
increases is the rapid growth of the number of facets in the projection.

c. R
ξ −→ R

4, q = 2ξ, ξ = 5, . . . , 70 P is a hypercube
This scenario computes the projection of rotated hypercubes to R

4. Note that while
a n−dimensional hypercube has 2n facets, it contains 2n vertices. Therefore, the pro-
jection cone and vertex enumeration approaches are ill-suited in this case. However, as
can be seen from Figure 11(c), ESP can handle very high dimensions.

d. R
ξ −→ R

2, q = 3ξ, ξ = 5, . . . , 50
The final test shows the projection of randomly generated polytopes from high dimen-
sions to R

2. The procedure described in Section 5.2.1 for the calculation of ridges in 1D
makes ESP particularly suited to this task, as can be readily seen from Figure 11(d).
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Remark 38. Note that difference in speed between ESP and the other algorithms for small
problems is likely to be due in large part to the overhead involved in the implementation of
ESP in Matlabr.

All code presented in this report can be found online at
http://www-control.eng.cam.ac.uk/~cnj22/projection.html

9 Conclusion

This paper has presented the ESP algorithm, which is a new approach for the projection
of polytopes in halfspace form. The proposed algorithm requires a linear number of linear
programs per output facet in order to compute the projection. If the size of the polytope is
kept constant, it has been shown that the complexity becomes linear in the number of facets
of the projection.

The algorithm has been implemented and some comparative simulations were given in
Section 8. These simulations use a sample of a few classes of polytopes and we do not claim
that ESP is the fastest approach in every case. For example, there is a large class of polytopes
for which the projection cone has a very small number of extreme rays or the number of
vertices of the polytope is small, such as in a simplex. However, the simulations presented here
demonstrate that there is a large class of polytopes for which ESP is particularly suited and
is able to calculate projections of polytopes in significantly higher dimensions than existing
methods. Of particular note are high dimensional polytopes that are to be projected to a low
dimension, polytopes represented by a small number of inequalities and hypercubes.
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A Calculation of the Affine Hull

This section presents a well known algorithm for the computation of the equality set E of a
polytope P such that PE = P . The input to the algorithm is the matrix A ∈ R

q×n and the
vector b ∈ R

q that defines the polytope P , {z ∈ R
n | Az ≤ b}. The output is an equality

set E such that PE = P and the affine hull is given by aff P = {z | AEz = bE}.
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Figure 11: Comparative Simulation Results for Randomly Generated Polytopes
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Recall that the equality set of P consists of all constraints that are active at every point in
the polytope. Therefore, if a point can be found in the polytope for which a given constraint
is not active, then that constraint is clearly not in the equality set. Given a constraint
i ∈ {1, . . . , q}, a point exists for which it is not active if Aiz − bi is strictly less than zero for
some z. We can search for such a point by minimizing the value of Aiz − bi:

J(i)? , min
z

Aiz − bi

subject to Az ≤ b.

If J(i)? is strictly negative, then constraint i is not in the equality set. If it is positive, then
the constraint is redundant and if it is equal to zero then it is in the equality set.

B Projection of non Full-Dimensional Polytopes

If πd (P ) is not full dimensional, then P must have a non-trivial affine hull and there exists an
equality set A such that PA = P . An algorithm for computing the affine hull of a polytope,
and the equality set of the constraints that determine it is given in Appendix A. If A is the
equality set of the affine hull, then from Proposition 21 we can write the projection πd (P ) as

πd (P ) = {x ∈ R
n | ∃y, Fx = f, Cx + Dy ≤ b} , (26)

where F , N
(
DA

T
)T

CA and f , N
(
DA

T
)T

bA. We now form a polytope P̃ that satisfies
the assumption that its projection is full-dimensional and from which we can recover the
projection πd (P ).

The equation Fx = f can be equivalently written as x = N(F )x̃+F †f , for x̃ ∈ R
dimπd(P ),

where we note that dimπd (P ) = n− rankF . The polytope πd (P ) then becomes

πd (P ) =
{

x ∈ R
n

∣∣∣∃y, x = N(F )x̃ + F †f, (x̃, y) ∈ P̃
}

=
{

x ∈ R
n

∣∣∣x = N(F )x̃ + F †f, x̃ ∈ πdim πd(P )

(
P̃

)}
where

P̃ ,
{

(x̃, y)
∣∣∣ CN(F )x̃ + Dy ≤ b− CF †f

}
.
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We now show that P̃ satisfies the assumption that πdimπd(P )

(
P̃

)
is full-dimensional.

πdimπd(P )

(
aff P̃

)
= πdim πd(P )

({
x̃

∣∣∣ ∃y, CAN(F )x̃ + DAy = bA − CAF †f
})

=
{

x̃
∣∣∣ N

(
DA

T
)T

CAN(F )x̃ = N
(
DA

T
)T

(
bA − CAF †f

)}
= R

dimπd(P ) (27)

where (27) follows because F is defined as N
(
DA

T
)T

CA.
Once the projection of P̃ is computed using ESP, an expression is needed to recover

πd (P ). x̃ can be written as a function of x as N(F )T x = x̃. If πdimπd(P )

(
P̃

)
is given by

{x̃ | Gx̃ ≤ g} then

πd (P ) =
{

x
∣∣∣x = N(F )x̃ + F †f, Gx̃ ≤ g

}
=

{
x

∣∣∣Fx = f, GN(F )T x ≤ g
}

.

C Projection of Polytopes that do not Contain the Origin

In this section we consider a polytope P that does not contain the origin in its interior. The
solution presented here is to compute a strictly interior point (x0, y0) and then translate the
polytope such that this point gets mapped to the origin. After running ESP on the translated
polytope, the projection is then translated back by −x0 to restore the origin placement.

The following linear program will compute an interior point of polytope P whose equality
set is A:

(x0, y0) , argmin
(τ,x,y)

τ

subject to CAcx + DAcy ≤ bAc + τ

CAx + DAy = bA

(28)

Translating P by (x0, y0) gives P̂ , {(x, y) | Cx + Dy ≤ b + Cx0 + Dy0}. If the projec-
tion of P̂ is πd

(
P̂

)
=

{
x

∣∣∣ Ĝx ≤ ĝ
}
, then πd (P ) =

{
x

∣∣∣ Ĝx ≤ ĝ − Ĝx0

}
.
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