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SUMMARY

Laguerre Functional Model has many advantages such as good approximation capability for the variances
of system time-delay, order and other structural parameters, low computational complexity, and the
facility of online parameter identification, etc., so this model is suitable for complex industrial process
control. A series of successful applications have been gained in linear and non-linear predictive control
fields by the control algorithm based on Laguerre Functional Model, however, former researchers have not
systemically brought forward the theoretical analyses of the stability, robustness, and steady-state
performance of this algorithm, which are the keys to guarantee the feasibility of the control algorithm
fundamentally. Aimed at this problem, we introduce the principles of the Incremental Mode Linear
Laguerre Predictive Control (IMLLPC) algorithm, and then systemically propose the theoretical analyses
and proofs of the stability and robustness of the algorithm, in addition, we also put forward the steady-
state performance analysis. At last, the control performances of this algorithm on two different physical
industrial plants are presented in detail, and a number of experimental results validate the feasibility and
superiority of IMLLPC algorithm. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to its similarity to Padé approximate, Orthonormal Functional Series (OFS) Model has
some advantages such as good approximation capability for the variances of control plant’s
input time-delay, order and other structural parameters [1]. Moreover, combined with Volterra
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Series, this model can be easily extended to the field of non-linear predictive control. Therefore,
it is more applicable to process control than other traditional linear models such as Controlled
Auto-Regressive Integrated Moving Average (CARIMA) model [2], and pure data-driven
models including Artificial Neural Network (ANN), Supporting Vector Machine (SVM), etc.

Laguerre series is one of the most elegant techniques [3] of OFS. It can date back to Lee (1931
[4] and 1961 [5]) and Wiener (1956 [6]). They found that the Laplace transforms of the classical
orthonormal Laguerre functions, introduced in 1879 by the French mathematician}Laguerre,
are very useful for approximating linear dynamic systems. In 1965 [7], another elegant technique
of OFS, Kautz series, was described by Horowitz, who explained how to apply it to
approximation methods in feedback system design. Owing to the attractive advantages of OFS,
recently, there has been considerable interest in using OFS to design effective adaptive
controllers. In 1995, Heuberger [8] and Wahlberg [7] proposed summaries on approximating
dynamic linear systems by OFS in Z-domain and S-domain, respectively, which established the
modelling foundation of the adaptive OFS control.

In 1988 [9], Zervos and Dumont proposed a novel linear MPC algorithm based on Laguerre
series in which the control horizon equals one. The original analyses of robust stability and
steady-state performance were given in their paper as well. In 1990 [1], they applied this scheme
to pH control in an industrial bleach plant extraction stage, which was the first successful
industrial application of OFS based control algorithms. The results were well received by the
mill’s personnel, because they gained a better closed-loop performance than the traditional
algorithms with substantial savings on the operational costs to the management. Furthermore,
based on Samll Gain Theorem, they gave a robust stability theorem for this algorithm. From
2000 to 2004, Zhang presented a lot of successful industrial applications of Laguerre functional
series based control algorithm on high temperature semiconductor diffusion furnace [10], double
water tanks [11], distillation columns [12] and water recycling irrigation system [13], etc.
Meanwhile, he has also made some theoretical progresses for this algorithm [10–13]. In 2000 [9],
Olivera et al. extended the Laguerre functional series based control algorithm to a robust one
for systems with hard input constraints. Processes including integral action and hard input
signal can also be considered in this strategy. In 2004 [3], Wang extended the design
methodology from a continuous-time frame to a discrete-time one, of which the closed-loop
stability was proved by imposing terminal states constraints.

However, most of the former OFS based control algorithms are MPC ones, so it is hard to
analyse their closed-loop stability and robustness [2]. In order to guarantee the stability, several
strict conditions must be imposed first, which inevitably adds conservativeness of these
promising algorithms. For instance, the assumptions of Dumont’s robust theorem [1] based on
Small Gain Theorem are so rigid that the theorem is hard to use; Wang [3] imposed strict
terminal states constraints; Olivera [14] required a very long predictive horizon; Agamennoni
[15] required a series of different frequency response, which are hard to obtain in large-scale
industrial processes; Jordán [16] proposed strict preconditions to ensure the existence of
Kharitonov hypercube in the space of controller coefficients. In addition, when these conditions
are applied to constrained plants, an optimization problem with a large amount of constraints
must be solved in each sampling period, which imposes heavy computational loads on these
methods and greatly limits their applications.

In a word, these theoretical works about stability, robustness, and steady-state performance
are the foundation to guarantee the feasibility and superiority of the algorithms based on
Laguerre Model. However, till now, there is no systematical theory for them.
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The contributions of this papers are: (1) propose an effective adaptive predictive control
algorithm}IMLLPC; (2) systematically present the theory on the stability, robustness and
steady-state performance of this IMLLPC algorithm, and relax the sufficient conditions of
former theorems [1, 14, 16]; (3) validate the feasibility and superiority of our IMLLPC algorithm
by using successful applications on two different industrial plants.

The paper is organized as follows: The principles of IMLLPC are introduced in the next
section. In Section 3, the stability proofs are given, while the robustness analyses are
demonstrated in Section 4. Then, the theoretical analysis and proof of steady-state performance
and some issues for unstable plants are presented in Section 5. The results of this algorithm’s
applications in semiconductor diffusion furnace’s temperature control system and double tanks’
water level control system are shown in Section 6. Finally, conclusion remarks are made in
Section 7.

2. IMLLPC ALGORITHM

Definition 1 (Wahlberg and Mäkilä [7], Heuberger et al. [8])
Laguerre Function is defined as a functional series

FiðtÞ ¼
ffiffiffiffiffi
2p

p ept

ði � 1Þ!
�
di�1

dti�1
½ti�1 � e2pt�; i ¼ 1; 2; . . . ;1 ð1Þ

where p is a constant called time scaling factor [17], and t 2 ½0;1Þ is a time variable.

Theorem 1 (Wahlberg and Mäkilä [7], Heuberger et al. [8])
Laguerre Function series constructs a group of complete orthonormal bases in the function
space L2ðRþÞ (square integrable function space in ½0;1Þ).

The Laplace transformation of Laguerre function is

FiðsÞ ¼ L½FiðtÞ� ¼
ffiffiffiffiffi
2p

p ðs� pÞi�1

ðsþ pÞi
; i ¼ 1; 2; . . . ;1 ð2Þ

From Theorem 1 any open-loop stable system can be approximated by N order Laguerre
series as shown in Figure 1

YmðsÞ ¼
XN
i¼1

CiFiðsÞUðsÞ ¼
XN
i¼1

CiliðsÞ ð3Þ

The state space expression of Incremental Mode Laguerre Functional Model after discretiza-
tion is

DLðkþ 1Þ ¼ ADLðkÞ þ bDuðkÞ ð4Þ

DymðkÞ ¼ CTDLðkÞ ð5Þ

where DLðkÞ ¼ LðkÞ � Lðk� 1Þ ¼ ½Dl1ðkÞ Dl2ðkÞ � � � DlNðkÞ�T is the state vector of the
Incremental Mode Laguerre Functional Model; DymðkÞ ¼ ymðkÞ � ymðk� 1Þ; DuðkÞ ¼ uðkÞ �
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uðk� 1Þ are the input and output of this model in the kth sampling period, respectively;
CT ¼ ½c1 c2 � � � cN � is the Laguerre coefficients vector.

A ¼

t1 0 � � � 0

�t1t2 � t3
T

t1 � � � 0

..

. ..
. ..

. ..
.

ð�1ÞN�1tN�22 ðt1t2 þ t3Þ
T

� � �
�ðt1t2 þ t3Þ

T
t1

2
6666666664

3
7777777775

bT ¼ ½t4; ð�t2=TÞt4; . . . ; ð�t2=TÞ
N�1t4�; t1 ¼ e�pT ; t2 ¼ T þ

2

p
ðe�pT � 1Þ

t3 ¼ � Te�pT �
2

p
ðe�pT � 1Þ; t4 ¼

ffiffiffiffiffi
2p

p ð1� t1Þ
p

; T : sampling period ð6Þ

We calculate Du instead of u in the controller, because this method can import integral
mechanism, which can guarantee zero steady-state error in the closed-loop system [18, 19]. This
fact will be proved in Section 5. Choosing p according to the theoretical method [17], combined
with the known sampling period T ; we can compute the above matrices A; b offline, which can
reduce the online computational burden greatly.

Equations (4) and (5) yield

DLðkþ 2Þ ¼ A2DLðkÞ þ AbDuðkÞ þ bDuðkþ 1Þ

..

.

DLðkþMÞ ¼ AMDLðkÞ þ
PM�1
i¼0

AM�ibDuðkþ iÞ

..

.

DLðkþ PÞ ¼ APDLðkÞ þ
PM�1
i¼0

AP�1�ibDuðkþ iÞ

ð7Þ

ps

p2

1C NC2C

)(sU )(1 sl )(2 sl )(slN

)(sYm

+ ps

ps

+

−

ps

ps

+

−

Σ

· ·

· ·

Figure 1. Laguerre series model structure.
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and

Dymðkþ 1Þ ¼ CTADLðkÞ þ CTbDuðkÞ

..

.

DymðkþMÞ ¼ CTAMDLðkÞ þ
PM�1
i¼0

CTAM�ibDuðkþ iÞ

..

.

Dymðkþ PÞ ¼ CTAPDLðkÞ þ
PM�1
i¼0

CTAP�1�i bDuðkþ iÞ

ð8Þ

Consider that
ymðkþ 1Þ ¼ ymðkÞ þ Dymðkþ 1Þ

ymðkþ 2Þ ¼ ymðkÞ þ Dymðkþ 1Þ þ Dymðkþ 2Þ

..

.

ymðkþ PÞ ¼ ymðkÞ þ Dymðkþ 1Þ þ � � � þ Dymðkþ PÞ

ð9Þ

Then, let Ymðkþ 1Þ ¼ ½ymðkþ 1Þ; . . . ; ymðkþ PÞ�T be the system output vector of future P steps,
and let DUMðkÞ ¼ ½DuðkÞ; . . . ;DuðkþM � 1Þ�T be the system input vector of future M steps,
where P is prediction horizon, M is control horizon, and P5M: We have

Ymðkþ 1Þ ¼ SHlDLðkÞ þ SHuDUMðkÞ þ FymðkÞ ð10Þ

where

S ¼

1 0 � � � 0

1 1

..

. . .
.

1 1 � � � 1

2
6666664

3
7777775
P�P

; F ¼

1

..

.

1

2
6664
3
7775
P�1

Hl ¼

CTA

CTA2

..

.

CTAP

2
6666664

3
7777775
P�N

; Hu ¼

CTb 0 � � � 0

CTAb CTb

. .
.

CTAM�1b � � � � � � CTb

..

. ..
.

CTAP�1b � � � � � � CTAP�Mb

2
66666666666664

3
77777777777775
P�M

ð11Þ
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After feedback rectification [2] K½yðkÞ � ymðkÞ�; the future P steps of output vector of Laguerre
Model is

#Ymðkþ 1Þ ¼ SHlDLðkÞ þ SHuDUMðkÞ þ FymðkÞ þ K ½yðkÞ � ymðkÞ� ð12Þ

Where, yðkÞ is plant’s output in the kth sampling period. K is rectification gain vector, in
general, K ¼ ½1; . . . ; 1�TP�1:

The quadratic control cost function is

J ¼
��Yrðkþ 1Þ � #Ymðkþ 1Þ

��2
Q
þ
��DUMðkÞ

��2
R

ð13Þ

where Yrðkþ 1Þ ¼ ½yrðkþ 1Þ � � � yrðkþ PÞ�T is system’s future P steps of output reference
vector and

yrðkþ iÞ ¼ aiyðkÞ þ ð1� aiÞw; i ¼ 1; 2; . . . ;P ð14Þ

w is set point. Q;R are diagonal weighted matrices, Q ¼ diagfq1; . . . ; qPg; R ¼ r � IM�M where
qi ð14i4PÞ and r are weighted factors, IM�M is a unit matrix, 05a51; a is the soften factor.

Use @J=@DUMðkÞ ¼ 0 to minimize the cost function (13), then the control law is

DUMðkÞ ¼ ðHT
u S

TQSHu þ RÞ�1HT
u S

TQ½Yrðkþ 1Þ � #Ypðkþ 1Þ� ð15Þ

where

#Ypðkþ 1Þ ¼ SHlDLðkÞ þ FymðkÞ þ K ½yðkÞ � ymðkÞ� ð16Þ

the first element of the control vector is selected as current control signal

DuðkÞ ¼ DDUMðkÞ ð17Þ

where D ¼ ½1; 0; . . . ; 0�1�M :
CT can be identified online by RLS (recursive least square) [20] algorithm with a forgetting

factor

#CðkÞ ¼ #Cðk� 1Þ þ
Pðk� 1ÞDLðkÞ

lþ DLTðkÞPðk� 1ÞDLðkÞ
� ½DyðkÞ � #CTðkÞDLðk� 1Þ� ð18Þ

PðkÞ ¼
1

l
Pðk� 1Þ �

Pðk� 1ÞDLðkÞDLTðkÞPðk� 1Þ
lþ DLTðkÞPðk� 1ÞDLðkÞ

� �
ð19Þ

where 05l51; l is the forgetting factor.

3. NOMINAL STABILITY ANALYSIS OF IMLLPC

3.1. IMAC (Incremental Model Algorithm Control) algorithm [18,19]

Let fhi; 14i51g be the impulse response series of controlled plant, then the output of plant’s
model described by the impulse response is

ymðkÞ ¼
X1
i¼1

hiuðk� iÞ ð20Þ
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When the controlled plant is asymptotically stable, we can conclude limi!1 hi ¼ 0: So, let the
truncation length of impulse response be N 0; in other words, hi ¼ 0 for 8i > N 0; then

ymðkÞ ¼
XN 0
i¼1

hiuðk� iÞ ð21Þ

and

ymðk� 1Þ ¼
XN 0
i¼1

hiuðk� i � 1Þ ð22Þ

Subtract (22) from (21), we have

DymðkÞ ¼
XN 0
i¼1

hiDuðk� iÞ ð23Þ

(23) yields that

Dymðkþ jÞ ¼Dymf ðkþ jÞ þ Dympðkþ jÞ

¼
Xj
i¼1

hiDuðkþ j � iÞ þ
XN 0
i¼jþ1

hiDuðkþ j � iÞ; ðj ¼ 1; 2; . . . ;PÞ ð24Þ

where Dymp and Dymf are the parts inspired by the system’s past input and future input,
respectively.

ymðkþ jÞ ¼ ymðkÞ þ Dymðkþ 1Þ þ � � � þ Dymðkþ jÞ ð25Þ

After output feedback rectification, system’s future output is

#ymðkþ jÞ ¼ ymðkÞ þ Dymðkþ 1Þ þ � � � þ Dymðkþ jÞ þ ½yðkÞ � ymðkÞ� ð26Þ

Let eðkÞ ¼ yðkÞ � ymðkÞ; then

#Ymðkþ 1Þ ¼ FymðkÞ þ SðHufDUM þHupDUpÞ þ KeðkÞ ð27Þ

where

#Ymðkþ 1Þ ¼ ½#ymðkþ 1Þ #ymðkþ 2Þ � � � #ymðkþ PÞ�T; F ¼ K ¼ ½1 � � � 1�TP�1

Huf ¼

h1

h2 h1

. .
.

hM hM�1 � � � h1

� � � � � �

hP hP�1 � � � hP�Mþ1

2
6666666666664

3
7777777777775
P�M

ð28Þ
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Hup ¼

h2 h3 hN 0

h3 h4 hN 0

..

.
c

hPþ1 � � � hN 0

2
6666664

3
7777775
P�ðN 0�1Þ

ð29Þ

DUM ¼

DuðkÞ

..

.

DuðkþM � 1Þ

2
6664

3
7775; DUp ¼

Duðk� 1Þ

..

.

Duðk�N 0 þ 1Þ

2
6664

3
7775

The quadratic control cost function is set as

J ¼
��Yrðkþ 1Þ � #Ymðkþ 1Þ

��2
Q
þ
��DUMðkÞ

��2
R

ð30Þ

Let @J=@DUMðkÞ ¼ 0; then

DUMðkÞ ¼ ðHT
uf S

TQSHuf þ RÞ�1HT
uf S

TQ½Yrðkþ 1Þ � #Ypðkþ 1Þ� ð31Þ

where

#Ypðkþ 1Þ ¼ SHupDUp þ FymðkÞ þ KeðkÞ ð32Þ

This is the IMAC algorithm based on plant’s impulse response series.

3.2. IMLLPC’s equivalence

Now, we analyse IMLLPC algorithm as follows.
From (4) and (5), we have

DLðkÞ ¼ ðzI � AÞ�1bDuðk� 1Þ ¼
X1
i¼1

Ai�1bDuðk� iÞ ð33Þ

DymðkÞ ¼ CTðzI � AÞ�1buðk� 1Þ ¼
X1
i¼1

CTAi�1bDuðk� iÞ ð34Þ

Because CTAi�1b ði ¼ 1; 2; . . .Þ are Markov series of Incremental Mode Laguerre Functional
Model, if the model is matching, these series are exactly the impulse response series of controlled
plant, say,

hi ¼ CTAi�1b ði ¼ 1; 2; . . .Þ ð35Þ
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For asymptotically stable system, let the truncation length of impulse response be N 0; then

DLðkÞ ¼
XN 0
i¼1

Ai�1bDuðk� iÞ ð36Þ

and

DymðkÞ ¼
XN 0
i¼1

hiDuðk� iÞ ð37Þ

Then, combined with (36), (16) yields that

#YPðkþ 1Þ ¼SHlDLðkÞ þ KeðkÞ þ FymðkÞ

¼SHl

XN�1
i¼1

Ai�1bDuðk� iÞ þ KeðkÞ þ FymðkÞ

¼S

CTA

..

.

CTAP

2
6664

3
7775
XN�1
i¼1

Ai�1bDuðk� iÞ þ KeðkÞ þ FymðkÞ

¼S

CTAb CTA2b � � � CTAN 0�1b

CTA2b CTA3b � � � CTAN 0b

..

. ..
. . .

. ..
.

CTAPb CTAPþ1b � � � CTAPþN 0�2b

2
66666664

3
77777775
�

Duðk� 1Þ

Duðk� 2Þ

..

.

Duðk�N 0 þ 1Þ

2
6666664

3
7777775

þ KeðkÞ þ FymðkÞ

¼S

h2 h3 � � � hN 0

h3 h4 � � � hN 0þ1

..

. ..
. ..

. ..
.

hPþ1 hPþ2 � � � hN 0þP�1

2
6666664

3
7777775

Duðk� 1Þ

Duðk� 2Þ

..

.

Duðk�N 0 þ 1Þ

2
6666664

3
7777775

þ KeðkÞ þ FymðkÞ
ð38Þ

Consider that, when i > N 0; hi ¼ 0; so

#YPðkþ 1Þ ¼ SHpDUpðkÞ þ KeðkÞ þ FymðkÞ ð39Þ

Copyright # 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2006; 20:53–76

ADAPTIVE PREDICTIVE CONTROL ALGORITHM 61



where

Hp ¼

h2 h3 hN 0

h3 h4 hN 0

..

.
c

hPþ1 � � � hN 0

2
6666664

3
7777775
P�ðN 0�1Þ

DUpðkÞ ¼

Duðk� 1Þ

Duðk� 2Þ

..

.

Duðk�N 0 þ 1Þ

2
6666664

3
7777775

ð40Þ

thus

#Ymðkþ 1Þ ¼ SHpDUpðkÞ þ SHuDUmðkÞ þ KeðkÞ þ FymðkÞ ð41Þ

where

Hu ¼

h1

h2 h1

. .
.

hM hM�1 � � � h1

� � � � � �

hP hP�1 � � � hP�Mþ1

2
6666666666664

3
7777777777775
P�M

ð42Þ

Consequently, Equation (41) is equivalent to IMAC’s Equation (27), and the control law

DUMðkÞ ¼ ðHT
u S

TQSHu þ RÞ�1HT
u S

TQ½Yrðkþ 1Þ � #Ypðkþ 1Þ� ð43Þ

is equivalent to IMAC’s control law (31). Therefore, IMLLPC is equivalent to IMAC, and all
the stability theorems of IMAC can be imported to IMLLPC algorithm.

3.3. The stability theorems of IMAC

Based on the theory on polynomial roots’ location, Shu [18] systematically gave stability
theorems for IMAC.

Lemma 1 (Shu [18])
For the closed-loop system determined by IMAC control law (31), if the parameters are set as
Q ¼ IP�P (a unit matrix), r ¼ 0;M ¼ 1; then there exists an long enough predictive time horizon
P which can make system asymptotically stable.
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Proof
Refer to Reference [18]. &

Lemma 2 (Shu [18])
For the closed-loop system determined by IMAC control law (31), let the r > 0 in weighted
matrix R ¼ rIM�M ; then the sufficient and necessary condition which guarantees closed-loop
asymptotically stability only by increasing r is

XP
i¼1

Xi
j¼1

hj

 !
qi �
XN 0
l¼1

hl > 0 ð44Þ

where qi; i ¼ 1; 2; . . . ;P are diagonal elements of weighted matrix Q:

Proof
Refer to Reference [18]. &

Use the equivalence of IMAC and IMLLPC algorithms, we can get the following two theorems.

Theorem 2
For the closed-loop system determined by IMLLPC control law (15) and (17), if the model
determined by (4) and (5) is matching, and the parameters are set as Q ¼ I ; r ¼ 0; M ¼ 1; then
there exists an enough long predictive time horizon P which can make system asymptotically
stable.

Theorem 3
For the closed-loop system determined by IMLLPC control law (15) and (17), if the model
determined by (4) and (5) is matching, let r > 0 in weighted matrix R ¼ rI ; then the sufficient and
necessary condition which guarantees closed-loop asymptotically stability only by increasing r isXP

i¼1

biqi � C
TðI � AÞ�1b > 0 ð45Þ

where bi ¼ CTðAi�1 þ Ai�2 þ � � � þ IÞb is the sum of front i elements of the Markov series of the
Incremental Mode Laguerre Functional Model; qi ði ¼ 1; 2; . . . ;PÞ are the diagonal elements of
the weighted matrix Q:

Proof
Because

bi ¼
Xi
j¼1

CTAj�1b ¼
Xi
j¼1

hj ð46Þ

and each of the eigenvalues of A is inside the unit circle of Z-plane, say, jliðAÞj51;
i ¼ 1; 2; . . . ;N; then we can get

lim
N 0!1

XN 0
l¼1

hl ¼
X1
l¼1

CTAlb ¼ lim
N 0!1

CTðI � AN 0 ÞðI � AÞ�1b ¼ CTðI � AÞ�1b ð47Þ

Then (45) is equivalent to (44), therefore Theorem 3 can be deduced from Lemma 2. &
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4. ROBUSTNESS ANALYSES OF IMLLPC

Assume the controlled plant is open-loop asymptotically stable and can be described as the
following equations:

DXðkþ 1Þ ¼ A0DXðkÞ þ b0DuðkÞ ð48Þ

DyðkÞ ¼ CT
0DXðkÞ ð49Þ

Let

dT ¼ DðHT
u S

TQSHu þ RÞ�1HT
u S

TQ ð50Þ

and ignore the output feedback rectification, the control law (15) and (17) can be rewritten as

DuðkÞ ¼ dT½Yrðkþ 1Þ � SHlDLðkÞ � KymðkÞ� ð51Þ

Theorem 4
Consider an open-loop asymptotically stable system expressed by (48) and (49), if the last step’s
output yðk� 1Þ ¼ xk is identically bounded and the Incremental Mode Laguerre Functional
Model determined by (4) and (5) is mismatching. Then, the closed-loop system determined by
control law (51) is asymptotically stable if and only if each eigenvalue of ðAþC1 þC2Þ is inside
the unit circle of Z-plane, where

C1 ¼ bdTðKa � KÞCT; C2 ¼ �bdTSHl

Ka ¼ ½a � � � aP�T ð52Þ

Proof
Let K1�a ¼ ½ð1� aÞ � � � ð1� aPÞ�T:

Then from Equations (4), (5), (48) and (49), we have

ymðkÞ ¼ yðk� 1Þ þ DymðkÞ ¼ xk þ CTDLðkÞ ð53Þ

yðkÞ ¼ yðk� 1Þ þ DyðkÞ ¼ xk þ CT
0 DXðkÞ ð54Þ

and

DXðkþ 1Þ ¼A0DXðkÞ þ b0d
T½Kaðxk þ CTDLðkÞÞ þ K1�awðkÞ

� SHlDLðkÞ � Kðxk þ CTDLðkÞÞ� ð55Þ

DLðkþ 1Þ ¼ADLðkÞ þ bdT½Kaðxk þ CTDLðkÞÞ þ K1�awðkÞ

� SHlDLðkÞ � Kðxk þ CTDLðkÞÞ� ð56Þ
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(55) and (56) can be rewritten as

DXðkþ 1Þ

DLðkþ 1Þ

" #
¼

A0 b0d
T½ðKa � KÞCT � SHl�

0 Aþ bdT½ðKa � KÞCT � SHl �

" #
�

DXðkÞ

DLðkÞ

" #

þ
b0

b

" #
dT½ðKa � KÞxk þ K1�aw�

¼
A0 b0d

T½ðKa � KÞCT � SHl�

0 AþC1 þC2

" #
�

DXðkÞ

DLðkÞ

" #

þ
b0

b

" #
dT½ðKa � KÞxk þ K1�aw� ð57Þ

Then the eigenvalues of this system’s closed-loop state matrix are composed of the eigenvalues
of A0 and ðAþC1 þC2Þ: The controlled plant is open-loop asymptotically stable, each
eigenvalue of A0 is inside the unit circle, say, jlðA0Þj51; consider that the output of the last step
xk is identically bounded, therefore, the necessary and sufficient condition is that each eigenvlaue
of ðAþC1 þC2Þ is inside the unit circle. &

Remark 1
Because

HT
u S

TSHu ¼
XP�1
j¼0

Xj
i¼0

CTAib

 !2

ð58Þ

Let

d ¼
1PP�1

j¼0

Pj
i¼0 C

TAib
� �2 ¼ 1PP�1

j¼0

Pj
i¼0 hi

� �2 ð59Þ

where hi ¼ CTAib; ð04i4PÞ are the Markov series of Incremental Mode Laguerre Model.
Consider

C1 ¼ bdTðKa � KÞCT ¼ bDðHT
u S

TQSHu þ RÞ�1HT
u S

TQðKa � KÞCT ð60Þ

When Q ¼ I ; r ¼ 0; M ¼ 1; we have

C1 ¼ bðHT
u S

TSHuÞ
�1HT

u S
TðKa � KÞCT ¼ d

XP�1
j¼0

Xj
i¼0

CTAib � ðai � 1ÞbCT

¼ d
XP�1
j¼0

Xj
i¼0

½hiðai � 1Þ� � bCT ð61Þ

and

C1b ¼ d
XP�1
j¼0

Xj
i¼0

½hiðai � 1Þ� � bCTb ¼ d
XP�1
j¼0

Xj
i¼0

½hiðai � 1Þh0� � b ð62Þ
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C1 can be expressed as the product of a column vector and a row vector, so C1 have only one
non-zero eigenvalue, which is assumed to be lðC1Þ: Then, from the changeability of column
vector b; we conclude that

lðC1Þ ¼ d
XP�1
j¼0

Xj
i¼0

½hiðai � 1Þh0� ð63Þ

Because h0 � 0; and jai � 1j51; when P is big enough, we have

lðC1Þ ! 0 ð64Þ

Consider

C2 ¼ �bdTSHl ¼ �bDðHT
u S

TQSHu þ RÞ�1HT
u S

TQSHl ð65Þ

When Q ¼ I ; r ¼ 0; M ¼ 1; we have

C2 ¼ �bðHT
u S

TSHuÞ
�1HT

u S
TSHl ð66Þ

¼ �db CTb;CTbþ CTAb; . . . ;
XP�1
i¼0

CTAib

" # CTA

..

.

PP
i¼1 C

TAi

2
66664

3
77775 ð67Þ

and

C2b ¼ � db CTb;CTbþ CTAb; . . . ;
XP�1
i¼0

CTAib

" # CTAb

..

.

PP
i¼1 CTAib

2
66664

3
77775

¼ � db
XP
i¼1

Xi�1
j¼0

CTAjb �
Xi
j¼1

CTAjb

 !

¼ � db
XP
i¼1

Xi�1
j¼0

hj �
Xi
j¼1

hj

 !
¼ �d

XP�1
i¼0

Xi
j¼0

hj �
Xi
j¼0

hjþ1

 !
b ð68Þ

C2 can be expressed as the product of a column vector and a row vector, so C2 have only one
non-zero eigenvalue, which is assumed to be lðC2Þ: Then, from the changeability of column
vector b; we can conclude that

lðC2Þ ¼ �d
XP�1
i¼0

Xi
j¼0

hj �
Xi
j¼0

hjþ1

 !
ð69Þ

Because fhig are the Markov series of Incremental Mode Laguerre Model which is open-loop
stable, when i is big enough, hi > hiþ1 we have

�15lðC2Þ50 ð70Þ
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Therefore, the eigenvalues of A;C1;C2 can be thoroughly analysed, respectively, however, the
eigenvalues of ðAþC1 þC2Þ can only be gained by matrix perturbation theory [21].

Lemma 3 (Generalized Bauer–Fike Theorem, Kahan et al. [21])
Consider matrices A;B;E; where B ¼ Aþ E 2 Cn�n; if A ¼ Q�1JQ; where J is the Jordan
standard canonical of A; then for any eigenvalue l of matrix B; there must exist an eigenvalue m
of matrix A; which satisfies the following inequality:

jm� ljm

ð1þ jm� ljÞm�1
4jjQ�1EQjj2 ð71Þ

where m is the order of the maximal Jordan block which belongs to eigenvalue m in matrix J:

Proof
Refer to Reference [21]. &

Corollary 1
The conditions are the same as Theorem 4, besides, assume Laguerre series order N52; then,
a sufficient condition of system closed-loop asymptotically stable is

jjQ�1EQjj25
ð1� e�pT ÞN

ð2� e�pT ÞN�1
ð72Þ

where

A ¼ Q�1JQ; E ¼ C1 þC2

J ¼

e�pT 1 � � � 0

0 e�pT . .
.

0

..

. . .
. . .

.
1

0 � � � 0 e�pT

2
66666664

3
77777775

ð73Þ

Proof
From Theorem 4, we have, if jlðBÞj51; where B ¼ Aþ E; then the closed-loop system expressed
by (4), (5), (48), (49) and (51) is asymptotically stable. From (6), A is a lower triangular matrix,
and the exclusive eigenvalue of A is e�pT : Besides, we can find that the maximal Jordan block
order which belongs to eigenvalue e�pT in matrix J is N: In addition, because pT > 0; we have
051� e�pT51:

For an arbitrary eigenvalue l of B; then, from Lemma 3 and inequality (72), we have

jl� e�pT jN

ð1þ jl� e�pT jÞN
4jjQ�1EQjj25

ð1� e�pT ÞN

ð2� e�pT ÞN�1
ð74Þ
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and so

jl� e�pT jN

ð1þ jl� e�pT jÞN�1
5

ð1� e�pT ÞN

ð1þ 1� e�pT ÞN�1
ð75Þ

Consider that the function f ðxÞ ¼ xN=ð1þ xÞN�1 is monotonously increasing when N52; thus
jl� e�pT j51� e�pT : As shown in Figure 2, each eigenvalue of closed-loop system matrix
ðAþ EÞ is inside the small circle, whose centre and radius are ðe�pT ; 0Þ and ð1� e�pT Þ;
respectively. This small circle is inside the unit circle, so each eigenvalue of closed-loop system
matrix ðAþ EÞ is inside the unit circle, too. Therefore, the closed-loop system is asymptotically
stable. &

Remark 2
Consider Corollary 1, the nearer the center ðe�pT ; 0Þ is to the origin, the closer the small circle is
to the unit circle, and thus, the stable region given by Corollary 1 becomes larger and more
applicable. In industrial applications, suitable p;T are always selected to satisfy e�pT 2
½0:03; 0:06�; which makes the stable region large enough.

Matrix perturbation theory, Theorem 4, Corollary 1, Remark 1 and Remark 2 can be used to
research further in the robustness of IMLLPC, and then, to discover more applicable robustness
theorems of IMLLPC.

5. STEADY-STATE PERFORMANCE ANALYSIS OF IMLLPC

Theorem 5
The control law determined by (15) and (17) can eliminate steady-state error under output
disturbance.

Figure 2. Illustration of Corollary 1 in Z-plane.
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Proof
Equations (4) and (5) yield that

DLðkÞ ¼ ðzI � AÞ�1bDuðk� 1Þ ð76Þ

ym ¼ CTðzI � AÞ�1bz�1uðkÞ ð77Þ

So the control law is

DuðkÞ ¼ dT½Yrðkþ 1Þ � Fðz�1ÞuðkÞ � FeðkÞ� ð78Þ

where

Fðz�1Þ ¼ ½SHlð1� z�1Þ þ FCT� � ðzI � AÞ�1bz�1 ð79Þ

The internal model control structure of IMLLPC can be seen in Figure 3. After unifying

uðkÞ ¼
1

*Fðz�1Þ
½Drðz�1Þyrðkþ PÞ � Kf eðkÞ� ð80Þ

where

*Fðz�1Þ ¼
1

ds
½1� z�1 þ dTFðz�1Þ�; ds ¼

XP
i¼1

di; Kf ¼
XP
i¼1

di

ds
¼ 1;

Dr ¼
1

ds

XP
i¼1

diz
�ðP�iÞ; d ¼ ½d1; d2; . . . ; dP�T

Without loss of generality, we ignore the soften mechanism, say, Gr ¼ 1:
Thus, system’s steady-state error is

Eð1Þ ¼ lim
k!1; z�1!1

*Fðz�1Þ � Gðz�1Þ þ Gf ðz�1ÞKf ðGðz�1Þ � #Gðz�1ÞÞ
*Fðz�1Þ þ Gf ðz�1ÞKf ðGðz�1Þ � #Gðz�1ÞÞ

W

"

�
KfGf ðz�1Þ #Gðz�1Þ � *Fðz�1Þ

½ #Gðz�1Þ � Gðz�1Þ�KfGf ðz�1Þ � *Fðz�1Þ
%d

#
ð81Þ

As shown in Figure 3, Gðz�1Þ and #Gðz�1Þ in (81) represent the plant’s and Laguerre mode’s
transfer functions, respectively, Gf ðz�1Þ is the feedback transfer function which satisfies limz�1!1

Gf ðz�1Þ ¼ 1; W is set point, and %dðkÞ is outside perturbation.

Figure 3. Internal model control structure of IMLLPC.
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In steady-state, we have

lim
z�1!1

#Gðz�1Þ ¼ CTðI � AÞ�1b ¼ lim
z�1!1

*Fðz�1Þ ð82Þ

and

lim
z�1!1

Gðz�1Þ ¼ lim
z�1!1

#Gðz�1Þ ð83Þ

Thus, substitute (82) and (83) into (81), we have Eð1Þ ¼ 0: &

Theorem 5 proves that IMLLPC can trace set point curves without error, which is an
excellent capability.

Remark 3
IMAC is based on the impulse response of the plant, so the feasible condition for IMAC is that
the controlled plant should be open-loop stable. Moreover, only open-loop stable plant which
belongs to the space L2ðRþÞ can be modelled by Laguerre Series. Consequently, these above
theoretical results for IMLLPC are suitable for open-loop stable plants. However, that does not
mean that IMLLPC cannot control open-loop unstable plants. Indeed, after some improve-
ments [13, 22], IMLLPC can be applied to some unstable plants including integral plants and
plants with unstable poles or zeros. Furthermore, the theoretical results for these improved
IMLLPC algorithms, such as closed-loop stability, robustness, etc. can also be obtained based
on the above theoretical results for standard IMLLPC.

6. APPLICATIONS OF IMLLPC

6.1. Water level control of double tanks

Double tanks water level control system can be seen in Figure 4. As shown in the right subfigure
this figure, control variables of this system are the control currents u1; u2 of electromagnetic
valves R1;R2; and the outputs are the water levels of the double tanks h1; h2: Qi ði ¼ 1; . . . ; 5Þ are
water flows. The control signals u1; u2 are transferred to standard electronic signals between 4

Figure 4. Water control system of double tank.
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and 20mA, while the output signals (0–300mm water levels) h1; h2 are transferred to standard
electronic signals between 1 and 5V by HMPK2-0.00588-A-0.5-AGAB-typed pole-inputting
water level sensors, whose accuracy is �0:25%: Hand valves R3;R4 are used to adjust double
tanks’ drain flows Q3;Q4; respectively, while hand valve R5 is used to modulate the flow Q5

between the two ranks.

6.1.1. SISO (single input/single output) water level control of cascaded tanks. In this experiment,
R5 is completely opened, R2;R3 are completely closed, and R4 is partly opened. u1 is used to
control h2: This cascaded water level SISO control system can be described by mechanism
differential equations (84) [23], where jðu1Þ is the input flow of left tank, and gðh1; h2Þ is the flow
passing R5

A1
dh1

dt
¼ jðu1Þ � gðh1; h2Þ

A2
dh2

dt
¼ gðh1; h2Þ � K

ffiffiffiffiffi
h2

p ð84Þ

Because of the long pipe line between the electromagnetic valves and the water tanks’ entries,
the system has long time-delay. Moreover, the fluctuation of the water flow velocity makes the
time-delay varying. Therefore, besides the non-linearity in Equations (84), varying long time-
delay also makes this plant difficult to control.

Initial water levels of the double tanks are set to be 0mm. Valve opening of R5 is decreased by
20% at the 480th second (GPC) and the 420th (IMLLPC), which equals to importing a big
disturbance to plant’s characteristics. Control parameters are set as: In GPC predictive horizon
P ¼ 8; control horizon M ¼ 5; soften factor a ¼ 0:6; control weighted factor r ¼ 0:2; sampling
period T ¼ 1 s; In IMLLPC: P ¼ 7; M ¼ 5; a ¼ 0:5; r ¼ 0:2; T ¼ 1 s; time scaling factor
p ¼ 1:5; Laguerre series order N ¼ 7; forgetting factor l ¼ 0:8:

Figure 5 shows the control performances of IMLLPC. The overshooting, the response time of
the output and the oscillation amplitudes of the control and output variables are much smaller
than the counterparts of GPC under perturbation of control plant. Moreover, the control
precision in steady-state of IMLLPC ð�0:5%Þ is much higher than that of GPC� 0:8%:

6.1.2. Double tanks’ 2 inputs and 2 outputs water level control. In this experiment, initial water
levels of the double tanks are set to be 0. R3; R4 are completely opened, R5 is partly opened. u1
and u2 are used together to control h1; h2: The valve opening R5 determines the coupling
intensity.

This 2 inputs and 2 outputs control system can be described by mechanism differential
equations (85) [23], where jðu1Þ; jðu2Þ are the input flows of left tank and right tank,
respectively, and gðh1; h2Þ is the flow passing R5

A1
dh1

dt
¼ jðu1Þ � gðh1; h2Þ � K

ffiffiffiffiffi
h1

p
A2

dh2

dt
¼ jðu2Þ þ gðh1; h2Þ � K

ffiffiffiffiffi
h2

p ð85Þ

Parameters are set as: In GPC, P ¼ 8; M ¼ 5; soften factor vector a ¼ ½0:6 0:5�; control
weighted factor vector r ¼ ½0:2 0:2�; In IMLLPC: a ¼ ½0:7 0:5�; forgetting factor l ¼ ½0:8 0:8�;
N ¼ 8: The other parameters are the same as above IMLLPC for SISO system. It should be
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noted that, in multi-input=multi-output (MIMO) system, the scalar factors a; l; r of SISO
system are extended into vector factors. Set points w1;w2 are step curves. Valve opening of R5 is
increased by 20% at the 210th second, which increases the coupling intensity of the two tanks.
As shown in Figure 6, both GPC and IMLLPC can trace set curves. However, the
overshootings, the response time of the output and the oscillation amplitudes of the control
and output variables of IMLLPC are much smaller then the counterparts of GPC. Moreover,
the control precision of IMLLPC ð�0:8%Þ is much higher than that of GPC ð�1:4%Þ: Thus, the
control algorithm’s superiority is verified.

6.2. Temperature control of semiconductor diffusion furnace

Diffusion furnace is an equipment in semiconductor apparatus production which can be used to
diffuse semiconductor particulates [10]. It is a pipe shaped resistance heater whose main heating
section is enlaced by heating wires evenly. As shown in Figure 7, the sensor of the diffusion
furnace is a thermal couple, whose voltage signal is transferred by the ICP 7018 module to
temperature signal whose accuracy is �0:18C: A controlled silicon component acts as the
executer (controller). The ICP 7043 and ICP 7520 modules are the A=D transmitter and the
transmitter between RS-232 bus signals and RS-485 bus signals, respectively.

As to the furnace chamber’s temperature, in reality, the diffusion furnace is a two dimension
distributed parameters dynamic system. However, consider the evenly heating structure, this
system is generally simplified as a centralize parameters system whose transfer function is

Figure 5. Control performances of SISO system.
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GðsÞ ¼ Ke�ts=ðTS þ 1Þ: The input and output of this system are the heating power and the
furnace chamber’s temperature, respectively.

The requirements of steady-state performances in temperature control are very strict by
semiconductor production technics. Generally, the steady-state error between the measured
output value and the set value is required to be under �0:58C: However, the furnace is fairly
hard to control, the reasons are stated as follows.

The heating signals can affect the temperature after a comparatively long time, moreover, the
dynamic characteristics of this furnace can be easily influenced by the variance of surrounding
temperature and device aging of itself, so this plant has a long varying time-delay. Besides, there
is no cooling equipment in this furnace and the adiabatic material in the chamber makes the
temperature difficult to fall, so the cooling process of the furnace chamber is much slower than

Figure 6. Control performance of 2 inputs and 2 outputs system.

Figure 7. Structure of diffusion furnace control system.
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the heating process, which causes a big dynamic characteristic difference between these two
processes. Consequently, some traditional predictive controllers such as GPC [2, 24], and DMC
[18, 25], etc. cannot give satisfying control performances so far.

IMLLPC is applied to diffusion furnace system. Control parameters in IMLLPC is set as:
T ¼ 5 s; p ¼ 1:5; N ¼ 7; l ¼ 0:9; a ¼ 0:5; P ¼ 7; M ¼ 5: The control variable value is required
to be transferred to an integer between 5 and 20mA by the ICP7520 module, in which 5mA is
the lower limit representing zero heating power and 20mA is the upper limit indicating full
heating power.

Control performances of IMLLPC are presented in Figure 8. There are 3 curves tracing 945,
895 and 8458C; respectively. These experiments show that the steady-state errors are smaller
than �0:38C; which can satisfy the requirements of the semiconductor production technics. In
the course of experiment tracing 8958C; we purposely open the cover at one end of the furnace
to quicken the cooling speed. In this way, output perturbation is imported, meanwhile, the
furnace’s characteristic suffers a big variance. However, it can be seen from the experiment
results that this disturbance influences little on diffusion furnace’s temperature control
performance. Therefore, conclusion can be drawn that this furnace’s IMLLPC system has
shown great adaptation to the variances of the plant’s time-delay and other structural
characteristics. In addition, IMLLPC algorithm has shown good robustness to outside
disturbance.

Remark 4
In these experiments, the strategy to choose p follows Reference [17]. Theorems 2–4 and
Corollary 1 are used to choose suitable values for the other parameters, such as N; l; a;P;M;

Figure 8. Temperature control performance of diffusion furnace.
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etc. In addition, there are also some empirical or experimental methods to optimize these control
parameters [2, 8, 11–14].

7. CONCLUSION

Laguerre functional model has advantages such as good approximation capability for the
variances of control plant’s time-delay, order and other structural parameters. Moreover, if
combined with Volterra Series, Wiener Series, etc. this model can be easily extended to the
domain of non-linear predictive control. Therefore, it is more applicable to process control than
some traditional linear models such as CARIMA model [2, 23], etc. However, it is a pity that
existing researches in this field have not systemically presented the theoretical analyses for
control algorithms based on Laguerre Functional Model so far.

A new multi-step prediction and multi-step control adaptive predictive control algorithm,
IMLLPC, is proposed in this paper. Then, the theoretical analyses of stability, robustness and
steady-state performance are presented systemically. After that, the extensions to open-loop
unstable plants are introduced briefly. At last, the applications of IMLLPC on two different real
industrial plants are given in detail. A large amount of industrial application results have
validated the feasibility and superiority of this control algorithm.
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