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Abstract

This paper proposes an algorithm for the characterization of reachable sets of states for continuous-time piecewise affine systems. Given
a model of the system and a bounded set of possible initial states, the algorithm employs a linear matrix inequality approach to compute
both upper and lower bounds on reachable regions. Rather than performing computations in the state-space, this method uses impact map
to find the reachable sets on the switching surfaces of the system. This tool can then be used to deduce safety and performance result:
about the system.
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1 Introduction hyperplanes (termed switching surfaces). Furthermore, we

) , assume that there exists a bounded set of possible initial
Hybrid systems are a class of dynamical systems that featuregiates, possibly representing an uncertainty in the system.

multiple modes of operation. The dynamics of the system Therefore, a brief problem description is, given a hybrid
obey a particular set of differential (or difference) equations, system and such a bounded set of possible initial states,

depending on which mode the system is in. Often, there what hound can one place on the reachable set after a finite
exist a set of state-dependent rules for switching betweenzmount of time?

these modes, although the transition may also be event- or

time-driven. This paper addresses the reachability problemPrevious methods of computing reach sets were based on
in a particular type of hybrid system termed continuous- face lifting techniques [2],[5], whereby vertices of a polyhe-
time piecewise affine systems (cPWA). The distinguishing dral initial set are expanded at incremental periods of time
feature of cPWA is that the differential equations in each r in the direction of the system’s flow, perpendicularly to
mode are affine. the edges of the initial set. The todfdt uses this proce-

h . f th hability of a hvbrid i of dure and stores the reach set as a union of orthogonal poly-
The question of the reachability of a hybrid system is of oqra For linear systems of low dimension this tool keeps

particular interest to the_ verifi_cation _engineer_seeking to en- o over-approximation error of ordéd(r?) [1]. The tool
sure Fhat the_sysftem_ trajectories Sat'SfY certain properties. INcpecmate [8] maps the vertices of a polyhedral set to their
addition to yielding information regarding the stability and q,ccessors at fixed increments of time into the future and
performance of the system, reachability results can be uset o gyer-approximates the convex hull of these vertices.
to verify whether a system’s trajectories remain outside Un- gjnce this method uses unions of convex polyhedral sets, the

safe regions of the state-space. method is difficult to use in high dimensional cases. In other
Although there are several variants of the reachability prob- methods [3],[9], ellipsoids have been used to approximate
lem, it essentially involves identifying the regions of the reach sets. The complication with using ellipsoidal reach
state space that trajectories of the system can reach giversets in the state space is that their unions are non-convex.
an uncertainty in the system, in a finite amount of time. The
uncertainty could lie in the initial state, the input, the system
dynamics or the switching rules.

In [6] a new approach was introduced that globally ana-
lyzed stability in cPWA. This method consisted of finding
Lyapunov functions on the switching surfaces to prove that
This study concerns autonomous cPWA whose discrete Poincaé-type maps associated with the system were con-
modes of operation are state-dependent. We assume thairacting. These generalized Poinganaps, oimpact maps
the various regions of the state-space that are associate@re defined from one switching surface to another. This work
with particular modes are separated from each other byintroduced a technique that involved expressing the impact
map as a linear transformation parameterized by the switch-
Email addressesaoh21@cam.ac.uk (Abdullah Hamadeh), ing time, that is, the time for a trajectory to cross from one
jmg77@cam.ac.uk (Jorge Goncalves). switching surface to another. This led to the ability to nu-
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merically solve sets of linear matrix inequalities (LMIs) to discrete mode of the system. The &t= {3,},cq is a

find surface Lyapunov functions for the system. set of affine dynamical systems. When the system is in a
. . . particular mode;, the active dynamical system 15,. The
The rea%hsblht)é anal;r/]5|s mlethod 6pro_|pr<])_se_d heg_aflrn takes aNsystemy:, has the time-dependent, continuousizf{ate vector
approach based on the tools in [6]. This is a different ap- z(T) € R™ which is the solution to the affine differential
proach from those employed in most previous studies in thatequation

the core reachability computations take place on the switch-

ing surfaces rather than in the state space. In other words,; = A,z + B,;,, q€Q )
the algorithm begins by identifying an ellipsoidal set of ini-

tial states on one switching surface, called the departureat time r, with initial statez(0). Here, 4, € R"*", B, €
switching surface. Each point within this set will map onto  R™. We place no restrictions on the eigenvalueg gexcept
a subsequent hyperplane (the arrival switching surface) tothat they are non-zero, and hendg is invertible.

form a reachable semn this latter switching surfacthat is . .
generally not convex. LMIs are then used to find two ellip- 1he SetS = {S;} ;e is a set of hyperplanes (or, switch-
soids on the arrival switching surface, one of which is an Ind surfaces), indexed by € 7, J = {1,---, M}. These
over-approximation of the reach set and the other an under-Nyperplanes divide the state spacento cllosed polyhedral
approximation. These steps are repeated taking the boundSUPSetsX,. In each regionX,, the dynamics of the system
on the reach set as the new initial sets and and using then2r€ given by its respective equation (1). The subsgtsire

to compute the reachable sets on the next switching Sur_polyh.edral,wr[h limit points given by the switching surf_aces
face. By the end of the algorithm, after a certain number of 5;- Since the subset¥, are closed, the state spadeis
switches, the reach sets will form a series of upper bound SUch thatX’ = U, { X, }. Which discrete modg s active
and lower bound ellipsoidal subsets of the switching sur- ata particular instant of time depends on which subsa,
faces indicating what states the trajectories of the system carPf the state space the trajectoryzofies in at timer.

autonomously reach given the set of possible initial states. pefinition 1 The switching surfacé’;, j € J is defined as

The upper bounds represent limits on the states that the sysi,o hyperplane of states such that$; = {z € R"|C;z =
tem cannot autonomously reach beyond given the initial set. d;}, whereC; € R\" andd, € R.

The lower bounds indicate subsets of the switching surfaces
Assuming no sliding modes exist, then if a trajectary)

that are definitely reachable from the initial set.

reaches a switching surface it will either cross it into a new
modeq or remain in its current mode depending on the di-
rection of the vector field given by (1). Letting be the

The novelty of this method is its use of LMIs in computing
reach sets, thus significantly reducing computation times.

It also allows us to analyze cPWA models of high dimen- switching timeat which the trajectory(7) reaches a switch-

sl?na![l;)gla feature V;h!Ch Woilt?] hgve_l?r?:g compytatlcc:)nally ing surface, we impose the constraint that the trajectory is
intractable using previous methods. Xpensive CompU-(oninio1c at the switching i

tations of the reach sets in the state space are avoided by
finding the image of the reach set on the switching surfaces I S —
of the system in terms of ellipsoids. To verify the safety of 2 #(7) = lim 2(r) = z(t;)
the system we then express the unsafe states in terms of new :
hyperplanes and verify that the upper bound ellipsoids do 2.2
not reach these switching surfaces.

Impact Maps

Consider an autonomous cPWA which has a discrete mode
This paper begins with a description of cPWA and impact ¢, active when the current statec X,,. In this mode the
maps. This is followed by a section detailing the problem and continuous-time dynamics are given by the differential equa-
tools for computing the upper and lower bound estimates ontion (1). LetU; C S; be a nonempty set of states such that
reach sets. We then present an algorithm that incorporatesany trajectory with an initial condition itv; will next switch
the tools in the previous section to find the reach sets after aat the switching surfacé; ;1. Therefore, states € U; are
finite number of switches. Following this, we present some such thatz(0) Uj, z(ts) € Sj41 andz(r) € X, for

te_chnical notes on imp_roving_ the r_esults of the algorithm. , ¢ (0,t,) is the solution to the differential equation (1)
Finally, we conclude with a discussion of the results. with initial statex(0).

Definition 2 Define as7 (U;) the set of switching timeg
of trajectories with initial states in séf; C .S}, all of which
next switch at switching surfac®; ;.

2 Framework

In this section, we begin by describing the framework of
the cPWA that will be analyzed in this paper. This approach

builds on the tools developed in [6]. Now consider two general states € U; andxy41 € Sj41.

By fixing a stater; € U; we can define any point;, € U;
asx, = xj + Aj(xy) where Aj(xy) € U; — . After

2.1 Piecewise Affine Systems 1S Ty ; ) k ;
finite switching times the trajectories emanating fram

The autonomous, continuous-timegdimensional piecewise
affine systent{ takes the forntH = [Q, X, 7, S]. The set
Q ={1,---, N} is the collection of indiceg denoting the

ay, will reach.states:kﬂ, Ty, € Sj41 respectively, anpl S0
we can rewriterg 1 asxyy1 = ‘.%'Z.._H.-f- Ajﬂ(m?gﬂ)., with
Aj(xf,,) € Sjp1 — ). Thisisillustrated in Figure 1.



This map is such that

9j(2x) = Jjn(ts)djt1 (Ths1) )

wheret, is the switching time associated with a trajectory
obeying (1) with initial stater}.

S, Siv1 3 Reach Set Computations

. o . 3.1 Problem Formulation
Figure 1. Points irU/; next switch atU; 1 C Sj41.

In a system with unsafe states, ensuring emptiness of the the
Definition 3 II; € R"*"~1 is the matrix of column vectors  intersection of such regions with an over-approximation (or,
in the orthogonal complement 6f;, forming an orthonor- upper bound) of the reach set would imply safety. Similarly,

mal basis on the switching surfacs. if there are regions of the state space where one would like
i the system to reach, results on an under-approximation (or,

Given the statesy,, zj, € Uy, the vectorA;(zy) = xp — lower bound) on the reach set can be used to measure the

xj;, € U; can be written, for anyy, as performance of the system. In this section we show how

such bounds may be computed.
Aglai) = 10;(x1) @ First, consider an initia ellipsoidal set that is a subset pf
The impact mapH; (7) maps points within this set onto
S;+1. The smallest upper bound is the smallest ellipsoidal
set onS;,1 which contains all the point§; (v}, ,) =
H; i (t5)d;(x;) for all switching timest, in that ellipsoidal
0j(xy) = I0j (a — ) ®) set. It may also contain points that are not reachable from
the initial set onS;. This idea is illustrated in Figure 2.

whered; (z}) € R"~'. Sincell] II; = I,,_1, then—1xn—1
identity matrix, we then have:

Using (3) we define the vectods(z};) = HJT(J:,C —z7) and
8j+1(zfyy) = T, (@pq1 — },,) which respectively lie " Elipse it o1
in S; and S;41. The mapping from the vectaf;(x}) to
dj+1(z5, 1) is given by a generally nonlinear map, called
theimpact map which is defined in [6]:

Definition 4 (Goncalves et al.) The impact map is the ma-
trix H;(r) € R"~1*"~1 given by

Ellipse Ejjx Reach set

gj,k(7-> = HT

(I B (xZ(T) - x2+1)0j+1
i1 |\ n

" " ) eAqTHj 4) Figure 2. Initial set, exact reach set and upper bound.
Cipr(i(r) = 2} 41) )
The reverse map; . (7) maps points in the reach set back

where 2 (7) is the development with time of a trajectory ONto the initial set. Define the largest lower bound on the
with initial statez} and dynamics given by (1). This map is reach set to be the largest subset of the actual reach set such

such that that each point in this lower bound is mapped By, ()
back onto a point in the initial set afi;. The lower bound
* 7 * may not cover the entire reach set, but it contains points
Gj+1(hy1) = Hjr(ts)d5(ay) (5) y P

that can definitely be reached from the initial set. This is

. o . . . illustrated in Figure 3.
wheret, is the switching time associated with a trajectory

obeying (1) with initial stater;. Ellipse Eity o1 ket

Following a derivation completely analogous to that of
Hjx(7) in [6], it is straightforward to construct a ‘re-
verse’ impact map/J; »(7) which mapsé;(x;) back onto
0j41(f4q)-

Definition 5 The reverse impact map is the matdix, (1) € Elipse Eijik

R~ 1xn=1 given by

Lower bound

Figure 3. Initial set, exact reach set and lower bound.

Jix(r) =17 (1, - (2541 (7) = 23)C5 eI, (6) The remainder of this section shows how to compute these
’ "G () — ) A upper and lower bounds. Prior to that, however, we first give



the definition of the standard ellipsoidal set on a switching
surface that will be used to characterize initial sets and reach
sets.

Definition 6 The setE; ;. = E;;x(FP;,S;,z5) C S;,
whereP; > 0, P, € R""1*n=1 andx; € S; is defined as
Ei ;1 (Pi, Sy, xy) = {ax € 8j16;(x}) " P (zf) < 1}

The initial set of states is taken to be an ellipsoidal set
E; ;.. C Uj, as per Definition 6. The upper bound and lower

bound on the reach set are respectively over-approximations
and under-approximations on the reach set, both also ex-

pressed as ellipsoidal subsets$yf,; as per Definition 6.
3.2 Upper Bound Computation

Before defining the upper bound of a reach set we make the
following assumption which will be relaxed in the sequel.

Assumption 7 Given a sett; ; ,, C U; of initial states on

the departure switching surfacg;, we assume that all tra-
jectories with initial states: (0) € E; ; , next switch at the
same switching surfac§;;. Each trajectory switches at
S;4+1 after a finite switching time in the s@t(E; ; x).

Definition 8 [Upper Bound Reach Set] Given a set
Eijr = Ei;i(P;,Uj,xp) of initial states on the de-
parture switching surfaceS; and under Assumption 7,
an upper bound on the reach set is defined as the set
Bl ik = Bivrgries1 (P, Ujga, @44) Which is
such that ifz(0) € E; ;x thenz(ts) € By ;g 5y fOr
somet, € T(E; j 1)

Theorem 9 Under Assumption 7, given a sgt ;.. C U,

of initial states on the departure switching surfaSe as
defined in Definition 6, an upper bound on the reach set (in
the sense of Definition 8) for this set of initial states is given
by the sett}’,; ;. 111 C Sj+1 Where

H — Hj7k(T)TPi+1FIx,k(T) Z 0,

V1 e T(E; k) (8)

Proof From Definition 6, states; within the initial set
E; ;r C U; , which are represented on the switching surface
S; by the vector; (z;), are such that:

k) = ©)

The setE,; ; ;. is parameterized by the statg € U; and the
trajectory with initial stater;; switches at state; , ; € S 1.
Stateszy41 in the upper bound reach sétt , .., .,
represented on the switching surfaSe,; by the vector
dj41(z%,1), are such that:

; §;(x) " Pidj(x 0

Fi,=1- 5j+1(37;::+1>TP£+15j+1(CUZH) >0 (10)

By Assumption 7 and Definition 8, foE},, ;. , ;. to be

an upper bound (9) must imply (10) since any statdying

in the start sef; ; , must have its image1 in the upper
bound on the reach set. Applying the S-procedure [4] gives

a single relation that says that non-negativityff implies
non-negativity ofF, ; whene, is positive:

U
Ferl

— e F >0 (12)
Now asd;(zy) — 0, (5) implies thaté; (z},,) — O.
Furthermore,F; — 1 and F;; — 1, which implies that

€, < 1. SinceF, ' | > 0, settinge, = 1 (the supremum
over its allowable range) gives the tightest condition on (11).
Inequality (11) now becomes

65 ( i)

Substituting (5) into the above inequality then yields the
series of LMIs, parameterized by the switching times
T (Eijk)

2i) Pisj(a}) — 6541 (hy1) T P16 (whyq) = 0

Py — Hjx(7)" P4 Hyx(7) > 0,

i VT € T(Ei,j,k) (12)
We therefore need to solve fdr;, , to obtain the upper
boundEy,y ;g hyg- [
What remains is to optimize the upper bound so that it is as
‘small’ as possible in some sense. Maximizing the trace of
the matrix Py, | is one convex optimization that is linear in
the elements of’}, | that could be performed to do this.

So far the functions used to approximate initial and reach
sets are quadratic forms. It is also possible to use quadratic
functions and higher order polynomial sets as bounds on
start and reach sets, giving even less conservative results.
Using the techniques in [10], higher order polynomials can
be recast as a sum of squares of polynomials, and these can
then be used to form LMIs similar to those described above.

3.3 Lower Bound Computation

Definition 10 [Lower Bound Reach Set] Given a set
E;;r C U; of initial states on the departure switch-
ing surfaceS; and under Assumption 7, a lower bound

on the reach set is defined as the ié[t+1j+1 kil =
P!

Ei—i—l,]-l—l k+1( i+17U7+1’xk+1) which is such that if
x(ts) € Bl 414 for somet, € T(E;;y) then
$(0) € E’L,j,k

With this definition, a pointin eIIipsoi(EfH’jH’kH can be
reached from a pointi; ; ., thoughk; ; . will also contain

points that can reach beyond the limitsgf, , L1

Theorem 11 Given a setf; ; ,, C U; of initial states on the
departure switching surfacg; as defined in Definition 6, a
lower bound on the reach set (in the sense of Definition 10)
for this set of initial states is given by the ﬂtﬂ,jﬂykﬂ C
S]‘+1 where

Piq —

Jin(M) I PJ k(1) >0, Y71 eT(Eijx) (13)

Proof From Definition 6, statesc;.; within the lower
bound on the reach sez!IHlJJr1 k+1 C Ujy1 , which are



represented on the switching surfaSe,; by the vector
dj41(z5,;), are such that:

Fl=1—5j+1

K3

>0

(x501) " Pladin(zhgs) (14)
Statessy, in the initial sett; ; ,, represented on the switching
surfaceS; by the vector,(x}), are such that:

Flyy=1-6;(x;)" Pidj(z5) > 0 (15)

Under Assumption 7 and Definition 10, f;ﬂﬁﬂ’jﬂ’k+1 to

be a lower bound (14) must imply (15), since any state;
lying in the lower bound must be the image of a state

in the initial set. Applying the S-procedure as in the proof
of Theorem 9 gives a single relation that says that non-
negativity ofFilH implies non-negativity off; whene; is
positive:

Fl —FL, >0 (16)
As 5j+1(1’;;+1) — 0, (7) ImpIIeS that5j+1(xz+1) — 0.
Furthermore ', ; — 1 andF},; — 1, which implies that
e < 1. SinceF}, F!,, > 0, settinge; = 1 (the supremum
over its allowable range) gives the tightest condition on (16).
Inequality (16) now becomes

i1 (xhy) T Plydia(xhyy) — 6;(a8) T Pidj(xk) > 0

Substituting (7) into the above inequality then yields the
series of LMIs

Pl —Jix(T)TPidj(7) >0, VreT(Eij) (17)

We therefore need to solve fdp! 1 to obtain the upper
bound B, .y jq1- L
Minimizing the trace of the matri>P,}Jrl is a convex opti-
mization that can be performed to maximize the size of the
lower bound.

Remark 12 It would be sufficient to have the series
of LMIs (17) hold true for the range of switching

times 7(E},, ;,1441), but knowing this range would

require previous knowledge of/ ,. However, since
T(El, 1 j11.641) C T(Ei ), if the LMIs hold true for the
latter range of switching times, they necessarily hold true
for the former.

3.4 Bounds On Switching Times

The LMIs (8) and (13) are both parameterized by the switch-
ing time of the trajectories in their respective initial sets. To
solve these LMIs for the matrice8“ ; and P/, ,, we need

to have a bound on this range of times. In [6] we saw that
the set of points orf; having the same switching time is
always a convex subset of a linear manifold of dimension

n — 2. This follows from the fact that any point of; must

satisfy two linear equations ofiy;(z}) (see the relevant pa-
per for more details). This idea is illustrated in Figure 4.

Therefore, given the initial sek; ; ., finding the subsets
of states with the same switching time that are tangent to
this ellipsoid yields the set of switching timés E; ; 1) of
points within this ellipsoid.

Reach set

Start set

Figure 4. Lines are subsets of the hyperplanes containing states
with the same switching time. The range of switching tirfigss
[t1,t2].

4 Implementation

Using Theorems 9 and 11 we can now propose an algorithm
that systematically finds the upper and lower bound reach
sets for multiple switches, terminating after a finite amount
of time, a finite number of switches or after a certain switch-
ing surface is reached. We assume that the initial set is given
as an elliptical seE; ; , C S;.

Algorithm 1 (Computing Reach Sets) Initialize with set
Ei,j,k C Sj

Step 1 Find range of switching time% (E; ; ) to switching
surfaceS;, for points inE; ; .

Step 2 Find upper bound ellipsoid’, ; ; ., ;. ., by solving
(8) for r € T(E, ;). Optimal upper bound is found by
maximizing the trace oP}", ;.

Step 3 Find lower bound ellipsoid=}, ., ,, by solving
(13) forr € T(E; ; ). Optimal lower bound is found by
minimizing the trace of’!, ;.

Step 4 To find the next upper bound} , ;.. ;. repeat
steps 1 and 2 using as the new initial set the previous
upper bound,, ;1 gy

Step 5To find the next lower bounEerzJJrQ’,ﬁL2 repeat
steps 1 and 3 using as the new initial set the previous
lower boundE}, | ;.\, 4.

5 Continuity of Impact Maps

Algorithm 1 requires that the all states It ; , will next
switch at switching surfacé; ;. In addition to requiring the
impact map to be continuous, the algorithm would need to
also consider situations where points in the initial set would
not map ontaS;,;. We consider some of these cases here.

5.1 Tangential trajectories

Consider a discrete modevhich is defined on the subsk,

of the state space, and assume that three of the boundaries of
X, are formed by the switching surfac8s, S;;1 andSr.

LetE; ;1 C S; be asetofinitial states which, in the absence



of switching surfaceSr would all switch atS;;. However, 6 Example - Batch reactor

if, with S present, there exists at least one trajectery), _ o

starting fromE; ; , with a switching time toS; smaller Controlled bgtch reactors are typical appllcathns of cPWA.
than the switching time e, then that trajectory will The processing of thg reactants usually consists of several
switch atS7 first. This scenario is illustrated in Figure 5. To  Stages and the reaction environment (such as temperature,
find the reach set we need to divide the initial set into those Pressure, concentration of reactants) often has to be con-
states that switch af; and those that switch &, and trolled. T_he method of contrc_)l usually involves initiating a
apply Algorithm 1 to each subset @; ; . To find which process m_the reactor that will restore_the system to its nor-
states switch a5 we use the result in [7, Lemma 3.1] mal operating cqndlt_lons when a certain threshold, typically
which says that trajectories tangential%p are those where @ safety constraint, is breached.

In this example, a batch reactor tries to maintain the system
d(Cjmz(t) —djy1) —0 (18)  temperaturex;) above10°C by activating its heating ele-
dt ment when the temperature falls bel8@”C. The system is
modelled as a cPWA with three states= [z, 25 z3]7,

wheretr is the switching time t&7. Any trajectories with  the states being, respectively, the product yield, the amount
a switching time taSt less thartz next switch atSt. of unused reactant, and the average temperature of the reac-
tor and its contents. The reaction produces several species
and it is required to estimate the minimum amount of the
productz; that may be produced given an initial uncertainty

in the amount of reactant and in the temperature, whilst
maintaining the safety constraint. The reaction begins with
no product present and ends when there is no more reactant.

t=tr

The constraints are such that the system exhibits a total of

Figure 5. Trajectories may switch &t before reaching; 1. four switching surfaces and three different modes of opera-
tion. The details of the dynamics of this system and of the
5.2 Intersecting switching surfaces switching surfaces are given in Appendix 7. The uncertainty
o o is modelled in the state-space by a circular set of possible

Suppose the system is in moglewith initial setE; ; » C S; initial states on the switching surfacg z = 0, centered on

and that the hyperplanes.; andS;» now intersect. We S _ T . .
consider the situation where the reach set includes a subseEhe nominal initial state: = [0 40 40]". A nominal trajec

of the n — 2-dimensional set of intersection between two tory emanates from the nominal initial state.

switching surfaces; ; andsS; . To find the reach seton  The nominal trajectory of the system and the upper bounds
each of these hyperplanes, we apply Algorithm 1 fi$yio and lower bounds on the reach sets, given the initial uncer-
Sj+1, assuming the absence §f.», giving the reach sets  ainty, are shown in Figure 6. The individual reach sets on
E! | ii1he1 @ EL o . Following this, the algo-  each switching surface, centered around the nominal trajec-
rithm is applied fromS; to S, assuming the absence of tory’s intersection with the switching surfaces, are shown in
Sjt1, giving the reach setB}’, , ;5 ;5 andEerz’jJrz’HQ. Figure 7. These results now give us a safety certificate and
Since the subsek,, is closed,the upper bound reach set is @ meaosure of the performance of the system. To ensure that
thengivenby(E}, | ;.1 . 1NXU(EL 5 ;10 k12N Xy) and the 10°C mlnlmutmh_ tempe:at_urte condition |s_;1cr)]t_ wolatefd,
the lower bound ISEY, ;1 11 1 Xg) U (Bl 14500 we can express this constraint as a new switching surface,

X,)- Since the reach set now lies on different switching sur- namely a hyperplane with equation = 10, and examine

>~ ; : whether this hyperplane is reachable. The upper bound el-
fapes, the_rgach setof the following iteration of thg algorithm lipse for the second switch shows that the system just satis-
will be split into two. For one branch of the following reach

set the algorithm uses as the new initial SBf fies temperature constraint (see Figure 7(b)). In addition, the
9 31,5+ 1+ 1 upper bound ellipse on the fourth switch guarantees a min-

andE}, ;. ;- Forthe other branchitusés , ; ., ;o imum product yield of 13.3 units by the end of the reaction
and B}y 5 1o kyo- (see Figure 7(d)).

This computation took a total of 64.3720 seconds on a 1400
MHz Pentium M PC. This compares favorably with the simi-

In the cases where there exists an equilibrium point in the setlar three dimensional example in [11] which took 40 minutes
X, we must isolate any points in the initial 96t ; ,, which on a 600 MHz Pentium Il PC, even after allowing for the
reach the equilibrium without switching. In certain cases, difference in processor speeds.

these points can be separated from points in the initial set that

do switch by the hyperplanes of tangential trajectories given 7 Discussion

in (18). In other cases, a stable eigenvector passing through _
an initial set will cause any point in the initial set and on the V& have presented a new method for placing bounds on

eigenvector to go to the equilibrium without switching. reach sets in a cPWA given a set of possible initial states.

5.3 Non-switching sets



Initial set

positive orthant, as in (1) are as follows:

Ciz = [100]z = 0
Cor = 001jz = 30
° [001] (A.1)
e I Csx = [010]z = 30
g ] R Ciz = [010]z = 0
g ------------ The differential equations of each cell of the system in the
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ing surfaces for a batch reactor system. : )
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