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Abstract

This paper proposes an algorithm for the characterization of reachable sets of states for continuous-time piecewise affine systems. Given
a model of the system and a bounded set of possible initial states, the algorithm employs a linear matrix inequality approach to compute
both upper and lower bounds on reachable regions. Rather than performing computations in the state-space, this method uses impact maps
to find the reachable sets on the switching surfaces of the system. This tool can then be used to deduce safety and performance results
about the system.
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1 Introduction

Hybrid systems are a class of dynamical systems that feature
multiple modes of operation. The dynamics of the system
obey a particular set of differential (or difference) equations,
depending on which mode the system is in. Often, there
exist a set of state-dependent rules for switching between
these modes, although the transition may also be event- or
time-driven. This paper addresses the reachability problem
in a particular type of hybrid system termed continuous-
time piecewise affine systems (cPWA). The distinguishing
feature of cPWA is that the differential equations in each
mode are affine.

The question of the reachability of a hybrid system is of
particular interest to the verification engineer seeking to en-
sure that the system trajectories satisfy certain properties. In
addition to yielding information regarding the stability and
performance of the system, reachability results can be used
to verify whether a system’s trajectories remain outside un-
safe regions of the state-space.

Although there are several variants of the reachability prob-
lem, it essentially involves identifying the regions of the
state space that trajectories of the system can reach given
an uncertainty in the system, in a finite amount of time. The
uncertainty could lie in the initial state, the input, the system
dynamics or the switching rules.

This study concerns autonomous cPWA whose discrete
modes of operation are state-dependent. We assume that
the various regions of the state-space that are associated
with particular modes are separated from each other by
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hyperplanes (termed switching surfaces). Furthermore, we
assume that there exists a bounded set of possible initial
states, possibly representing an uncertainty in the system.
Therefore, a brief problem description is, given a hybrid
system and such a bounded set of possible initial states,
what bound can one place on the reachable set after a finite
amount of time?

Previous methods of computing reach sets were based on
face lifting techniques [2],[5], whereby vertices of a polyhe-
dral initial set are expanded at incremental periods of time
r in the direction of the system’s flow, perpendicularly to
the edges of the initial set. The toold/dt uses this proce-
dure and stores the reach set as a union of orthogonal poly-
hedra. For linear systems of low dimension this tool keeps
the over-approximation error of orderO(r2) [1]. The tool
Checkmate [8] maps the vertices of a polyhedral set to their
successors at fixed increments of time into the future and
then over-approximates the convex hull of these vertices.
Since this method uses unions of convex polyhedral sets, the
method is difficult to use in high dimensional cases. In other
methods [3],[9], ellipsoids have been used to approximate
reach sets. The complication with using ellipsoidal reach
sets in the state space is that their unions are non-convex.

In [6] a new approach was introduced that globally ana-
lyzed stability in cPWA. This method consisted of finding
Lyapunov functions on the switching surfaces to prove that
Poincaŕe-type maps associated with the system were con-
tracting. These generalized Poincaré maps, orimpact maps,
are defined from one switching surface to another. This work
introduced a technique that involved expressing the impact
map as a linear transformation parameterized by the switch-
ing time, that is, the time for a trajectory to cross from one
switching surface to another. This led to the ability to nu-
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merically solve sets of linear matrix inequalities (LMIs) to
find surface Lyapunov functions for the system.

The reachability analysis method proposed herein takes an
approach based on the tools in [6]. This is a different ap-
proach from those employed in most previous studies in that
the core reachability computations take place on the switch-
ing surfaces rather than in the state space. In other words,
the algorithm begins by identifying an ellipsoidal set of ini-
tial states on one switching surface, called the departure
switching surface. Each point within this set will map onto
a subsequent hyperplane (the arrival switching surface) to
form a reachable seton this latter switching surfacethat is
generally not convex. LMIs are then used to find two ellip-
soids on the arrival switching surface, one of which is an
over-approximation of the reach set and the other an under-
approximation. These steps are repeated taking the bounds
on the reach set as the new initial sets and and using them
to compute the reachable sets on the next switching sur-
face. By the end of the algorithm, after a certain number of
switches, the reach sets will form a series of upper bound
and lower bound ellipsoidal subsets of the switching sur-
faces indicating what states the trajectories of the system can
autonomously reach given the set of possible initial states.
The upper bounds represent limits on the states that the sys-
tem cannot autonomously reach beyond given the initial set.
The lower bounds indicate subsets of the switching surfaces
that are definitely reachable from the initial set.

The novelty of this method is its use of LMIs in computing
reach sets, thus significantly reducing computation times.
It also allows us to analyze cPWA models of high dimen-
sionality, a feature which would have been computationally
intractable using previous methods. The expensive compu-
tations of the reach sets in the state space are avoided by
finding the image of the reach set on the switching surfaces
of the system in terms of ellipsoids. To verify the safety of
the system we then express the unsafe states in terms of new
hyperplanes and verify that the upper bound ellipsoids do
not reach these switching surfaces.

This paper begins with a description of cPWA and impact
maps. This is followed by a section detailing the problem and
tools for computing the upper and lower bound estimates on
reach sets. We then present an algorithm that incorporates
the tools in the previous section to find the reach sets after a
finite number of switches. Following this, we present some
technical notes on improving the results of the algorithm.
Finally, we conclude with a discussion of the results.

2 Framework

In this section, we begin by describing the framework of
the cPWA that will be analyzed in this paper. This approach
builds on the tools developed in [6].

2.1 Piecewise Affine Systems

The autonomous, continuous-time,n-dimensional piecewise
affine systemH takes the formH = [Q,Σ,J ,S]. The set
Q = {1, · · · , N} is the collection of indicesq denoting the

discrete mode of the system. The setΣ = {Σq}q∈Q is a
set of affine dynamical systems. When the system is in a
particular modeq, the active dynamical system isΣq. The
systemΣq has the time-dependent, continuous state vector
x(τ) ∈ Rn which is the solution to the affine differential
equation

ẋ = Aqx + Bq, q ∈ Q (1)

at timeτ , with initial statex(0). Here,Aq ∈ Rn×n, Bq ∈
Rn. We place no restrictions on the eigenvalues ofAq except
that they are non-zero, and henceAq is invertible.

The setS = {Sj}j∈J is a set of hyperplanes (or, switch-
ing surfaces), indexed byj ∈ J , J = {1, · · · ,M}. These
hyperplanes divide the state spaceX into closed polyhedral
subsetsXq. In each regionXq the dynamics of the system
are given by its respective equation (1). The subsetsXq are
polyhedral, with limit points given by the switching surfaces
Sj . Since the subsetsXq are closed, the state spaceX is
such thatX =

⋃
q∈Q{Xq}. Which discrete modeq is active

at a particular instant of timeτ depends on which subsetXq

of the state space the trajectory ofx lies in at timeτ .

Definition 1 The switching surfaceSj , j ∈ J is defined as
the hyperplane of statesx such thatSj = {x ∈ Rn|Cjx =
dj}, whereCj ∈ R1×n anddj ∈ R.

Assuming no sliding modes exist, then if a trajectoryx(τ)
reaches a switching surface it will either cross it into a new
modeq or remain in its current mode depending on the di-
rection of the vector field given by (1). Lettingts be the
switching timeat which the trajectoryx(τ) reaches a switch-
ing surface, we impose the constraint that the trajectory is
continuous at the switching timets:

lim
τ→t−s

x(τ) = lim
τ→t+s

x(τ) = x(ts)

2.2 Impact Maps

Consider an autonomous cPWA which has a discrete mode
q, active when the current statex ∈ Xq. In this mode the
continuous-time dynamics are given by the differential equa-
tion (1). LetUj ⊂ Sj be a nonempty set of states such that
any trajectory with an initial condition inUj will next switch
at the switching surfaceSj+1. Therefore, statesx ∈ Uj are
such thatx(0) ∈ Uj , x(ts) ∈ Sj+1 and x(τ) ∈ Xq for
τ ∈ (0, ts) is the solution to the differential equation (1)
with initial statex(0).

Definition 2 Define asT (Uj) the set of switching timests
of trajectories with initial states in setUj ⊂ Sj , all of which
next switch at switching surfaceSj+1.

Now consider two general statesxk ∈ Uj andxk+1 ∈ Sj+1.
By fixing a statex∗k ∈ Uj we can define any pointxk ∈ Uj

as xk = x∗k + ∆j(x∗k) where∆j(x∗k) ∈ Uj − x∗k. After
finite switching times the trajectories emanating fromxk,
x∗k will reach statesxk+1, x

∗
k+1 ∈ Sj+1 respectively, and so

we can rewritexk+1 asxk+1 = x∗k+1 + ∆j+1(x∗k+1), with
∆j+1(x∗k+1) ∈ Sj+1−x∗k+1. This is illustrated in Figure 1.

2



xk xk+1

∆j(xk ) ∆j+1(xk+1)Uj

Sj
Sj+1

xk+1
*

xk
*

*
* 

Figure 1. Points inUj next switch atUj+1 ⊂ Sj+1.

Definition 3 Πj ∈ Rn×n−1 is the matrix of column vectors
in the orthogonal complement ofCj , forming an orthonor-
mal basis on the switching surfaceSj .

Given the statesxk, x∗k ∈ Uj , the vector∆j(x∗k) = xk −
x∗k ∈ Uj can be written, for anyxk, as

∆j(x∗k) = Πjδj(x∗k) (2)

whereδj(x∗k) ∈ Rn−1. SinceΠT
j Πj = In−1, then−1×n−1

identity matrix, we then have:

δj(x∗k) = ΠT
j (xk − x∗k) (3)

Using (3) we define the vectorsδj(x∗k) = ΠT
j (xk−x∗k) and

δj+1(x∗k+1) = ΠT
j+1(xk+1 − x∗k+1) which respectively lie

in Sj and Sj+1. The mapping from the vectorδj(x∗k) to
δj+1(x∗k+1) is given by a generally nonlinear map, called
the impact map, which is defined in [6]:

Definition 4 (Gonçalves et al.)The impact map is the ma-
trix H̄j,k(τ) ∈ Rn−1×n−1 given by

H̄j,k(τ) = ΠT
j+1

(
In −

(x∗k(τ)− x∗k+1)Cj+1

Cj+1(x∗k(τ)− x∗k+1)

)
eAqτΠj (4)

wherex∗k(τ) is the development with time of a trajectory
with initial statex∗k and dynamics given by (1). This map is
such that

δj+1(x∗k+1) = H̄j,k(ts)δj(x∗k) (5)

wherets is the switching time associated with a trajectory
obeying (1) with initial statex∗k.

Following a derivation completely analogous to that of
H̄j,k(τ) in [6], it is straightforward to construct a ‘re-
verse’ impact map,̄Jj,k(τ) which mapsδj(x∗k) back onto
δj+1(x∗k+1).

Definition 5 The reverse impact map is the matrixJ̄j,k(τ) ∈
Rn−1×n−1 given by

J̄j,k(τ) = ΠT
j

(
In −

(x∗k+1(τ)− x∗k)Cj

Cj(x∗k+1(τ)− x∗k)

)
e−AqτΠj+1 (6)

This map is such that

δj(x∗k) = J̄j,k(ts)δj+1(x∗k+1) (7)

wherets is the switching time associated with a trajectory
obeying (1) with initial statex∗k.

3 Reach Set Computations

3.1 Problem Formulation

In a system with unsafe states, ensuring emptiness of the the
intersection of such regions with an over-approximation (or,
upper bound) of the reach set would imply safety. Similarly,
if there are regions of the state space where one would like
the system to reach, results on an under-approximation (or,
lower bound) on the reach set can be used to measure the
performance of the system. In this section we show how
such bounds may be computed.

First, consider an initial ellipsoidal set that is a subset ofUj .
The impact mapH̄j,k(τ) maps points within this set onto
Sj+1. The smallest upper bound is the smallest ellipsoidal
set onSj+1 which contains all the pointsδj+1(x∗k+1) =
H̄j,k(ts)δj(x∗k) for all switching timests in that ellipsoidal
set. It may also contain points that are not reachable from
the initial set onSj . This idea is illustrated in Figure 2.

Initial set Upper bound

Reach set
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δj+1(xk+1)
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Figure 2. Initial set, exact reach set and upper bound.

The reverse map̄Jj,k(τ) maps points in the reach set back
onto the initial set. Define the largest lower bound on the
reach set to be the largest subset of the actual reach set such
that each point in this lower bound is mapped byJ̄j,k(τ)
back onto a point in the initial set onSj . The lower bound
may not cover the entire reach set, but it contains points
that can definitely be reached from the initial set. This is
illustrated in Figure 3.

Lower bound

Initial set

Reach set
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Jj,k(t)

Ellipse Ei,j,k

Ellipse Ei+1,j+1,k+1
l

δj(xk)*
δj+1(xk+1)*

Figure 3. Initial set, exact reach set and lower bound.

The remainder of this section shows how to compute these
upper and lower bounds. Prior to that, however, we first give
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the definition of the standard ellipsoidal set on a switching
surface that will be used to characterize initial sets and reach
sets.

Definition 6 The setEi,j,k = Ei,j,k(Pi, Sj , x
∗
k) ⊂ Sj ,

wherePi > 0, Pi ∈ Rn−1×n−1 and x∗k ∈ Sj is defined as
Ei,j,k(Pi, Sj , x

∗
k) = {xk ∈ Sj |δj(x∗k)T Piδj(x∗k) ≤ 1}.

The initial set of states is taken to be an ellipsoidal set
Ei,j,k ⊂ Uj , as per Definition 6. The upper bound and lower
bound on the reach set are respectively over-approximations
and under-approximations on the reach set, both also ex-
pressed as ellipsoidal subsets ofSj+1 as per Definition 6.

3.2 Upper Bound Computation

Before defining the upper bound of a reach set we make the
following assumption which will be relaxed in the sequel.

Assumption 7 Given a setEi,j,k ⊂ Uj of initial states on
the departure switching surfaceSj , we assume that all tra-
jectories with initial statesxk(0) ∈ Ei,j,k next switch at the
same switching surfaceSj+1. Each trajectory switches at
Sj+1 after a finite switching time in the setT (Ei,j,k).

Definition 8 [Upper Bound Reach Set] Given a set
Ei,j,k = Ei,j,k(Pi, Uj , x

∗
k) of initial states on the de-

parture switching surfaceSj and under Assumption 7,
an upper bound on the reach set is defined as the set
Eu

i+1,j+1,k+1 = Ei+1,j+1,k+1(Pu
i+1, Uj+1, x

∗
k+1) which is

such that ifx(0) ∈ Ei,j,k then x(ts) ∈ Eu
i+1,j+1,k+1 for

somets ∈ T (Ei,j,k).

Theorem 9 Under Assumption 7, given a setEi,j,k ⊂ Uj

of initial states on the departure switching surfaceSj as
defined in Definition 6, an upper bound on the reach set (in
the sense of Definition 8) for this set of initial states is given
by the setEu

i+1,j+1,k+1 ⊂ Sj+1 where

Pi − H̄j,k(τ)T Pi+1H̄j,k(τ) ≥ 0, ∀τ ∈ T (Ei,j,k) (8)

Proof From Definition 6, statesxk within the initial set
Ei,j,k ⊂ Uj , which are represented on the switching surface
Sj by the vectorδj(x∗k), are such that:

Fu
i = 1− δj(x∗k)T Piδj(x∗k) ≥ 0 (9)

The setEi,j,k is parameterized by the statex∗k ∈ Uj and the
trajectory with initial statex∗k switches at statex∗k+1 ∈ Sj+1.
Statesxk+1 in the upper bound reach setEu

i+1,j+1,k+1,
represented on the switching surfaceSj+1 by the vector
δj+1(x∗k+1), are such that:

Fu
i+1 = 1− δj+1(x∗k+1)

T Pu
i+1δj+1(x∗k+1) ≥ 0 (10)

By Assumption 7 and Definition 8, forEu
i+1,j+1,k+1 to be

an upper bound (9) must imply (10), since any statexk lying
in the start setEi,j,k must have its imagexk+1 in the upper
bound on the reach set. Applying the S-procedure [4] gives

a single relation that says that non-negativity ofFu
i implies

non-negativity ofFu
i+1 whenεu is positive:

Fu
i+1 − εuFu

i ≥ 0 (11)

Now as δj(x∗k) → 0, (5) implies thatδj+1(x∗k+1) → 0.
Furthermore,Fi → 1 and Fi+1 → 1, which implies that
εu ≤ 1. SinceFu

i , Fu
i+1 ≥ 0, settingεu = 1 (the supremum

over its allowable range) gives the tightest condition on (11).
Inequality (11) now becomes

δj(x∗k)T Piδj(x∗k)− δj+1(x∗k+1)
T Pi+1δj+1(x∗k+1) ≥ 0

Substituting (5) into the above inequality then yields the
series of LMIs, parameterized by the switching timesτ ∈
T (Ei,j,k)

Pi − H̄j,k(τ)T Pu
i+1H̄j,k(τ) ≥ 0, ∀τ ∈ T (Ei,j,k) (12)

We therefore need to solve forPu
i+1 to obtain the upper

boundEu
i+1,j+1,k+1. ¥

What remains is to optimize the upper bound so that it is as
‘small’ as possible in some sense. Maximizing the trace of
the matrixPu

i+1 is one convex optimization that is linear in
the elements ofPu

i+1 that could be performed to do this.

So far the functions used to approximate initial and reach
sets are quadratic forms. It is also possible to use quadratic
functions and higher order polynomial sets as bounds on
start and reach sets, giving even less conservative results.
Using the techniques in [10], higher order polynomials can
be recast as a sum of squares of polynomials, and these can
then be used to form LMIs similar to those described above.

3.3 Lower Bound Computation

Definition 10 [Lower Bound Reach Set] Given a set
Ei,j,k ⊂ Uj of initial states on the departure switch-
ing surfaceSj and under Assumption 7, a lower bound
on the reach set is defined as the setEl

i+1,j+1,k+1 =
Ei+1,j+1,k+1(P l

i+1, Uj+1, x
∗
k+1) which is such that if

x(ts) ∈ El
i+1,j+1,k+1 for some ts ∈ T (Ei,j,k) then

x(0) ∈ Ei,j,k.

With this definition, a point in ellipsoidEl
i+1,j+1,k+1 can be

reached from a point inEi,j,k, thoughEi,j,k will also contain
points that can reach beyond the limits ofEl

i+1,j+1,k+1.

Theorem 11 Given a setEi,j,k ⊂ Uj of initial states on the
departure switching surfaceSj as defined in Definition 6, a
lower bound on the reach set (in the sense of Definition 10)
for this set of initial states is given by the setEl

i+1,j+1,k+1 ⊂
Sj+1 where

Pi+1 − J̄j,k(τ)T PiJ̄j,k(τ) ≥ 0, ∀τ ∈ T (Ei,j,k) (13)

Proof From Definition 6, statesxk+1 within the lower
bound on the reach setEl

i+1,j+1,k+1 ⊂ Uj+1 , which are
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represented on the switching surfaceSj+1 by the vector
δj+1(x∗k+1), are such that:

F l
i = 1− δj+1(x∗k+1)

T P l
i+1δj+1(x∗k+1) ≥ 0 (14)

Statesxk in the initial setEi,j,k, represented on the switching
surfaceSj by the vectorδj(x∗k), are such that:

F l
i+1 = 1− δj(x∗k)T Piδj(x∗k) ≥ 0 (15)

Under Assumption 7 and Definition 10, forEl
i+1,j+1,k+1 to

be a lower bound (14) must imply (15), since any statexk+1

lying in the lower bound must be the image of a statexk

in the initial set. Applying the S-procedure as in the proof
of Theorem 9 gives a single relation that says that non-
negativity ofF l

i+1 implies non-negativity ofFi when εl is
positive:

F l
i − εlF

l
i+1 ≥ 0 (16)

As δj+1(x∗k+1) → 0, (7) implies thatδj+1(x∗k+1) → 0.
Furthermore,F l

i+1 → 1 andF l
i+1 → 1, which implies that

εl ≤ 1. SinceF l
i , F

l
i+1 ≥ 0, settingεl = 1 (the supremum

over its allowable range) gives the tightest condition on (16).
Inequality (16) now becomes

δj+1(x∗k+1)
T P l

i+1δj+1(x∗k+1)− δj(xk
∗)

T Piδj(x∗k) ≥ 0

Substituting (7) into the above inequality then yields the
series of LMIs

P l
i+1 − J̄j,k(τ)T PiJ̄j,k(τ) ≥ 0, ∀τ ∈ T (Ei,j,k) (17)

We therefore need to solve forP l
i+1 to obtain the upper

boundEl
i+1,j+1,k+1. ¥

Minimizing the trace of the matrixP l
i+1 is a convex opti-

mization that can be performed to maximize the size of the
lower bound.

Remark 12 It would be sufficient to have the series
of LMIs (17) hold true for the range of switching
times T (El

i+1,j+1,k+1), but knowing this range would
require previous knowledge ofP l

i+1. However, since
T (El

i+1,j+1,k+1) ⊂ T (Ei,j,k), if the LMIs hold true for the
latter range of switching times, they necessarily hold true
for the former.

3.4 Bounds On Switching Times

The LMIs (8) and (13) are both parameterized by the switch-
ing time of the trajectories in their respective initial sets. To
solve these LMIs for the matricesPu

i+1 andP l
i+1, we need

to have a bound on this range of times. In [6] we saw that
the set of points onSj having the same switching time is
always a convex subset of a linear manifold of dimension
n− 2. This follows from the fact that any point onSj must

satisfy two linear equations on∆j(x∗k) (see the relevant pa-
per for more details). This idea is illustrated in Figure 4.

Therefore, given the initial setEi,j,k, finding the subsets
of states with the same switching time that are tangent to
this ellipsoid yields the set of switching timesT (Ei,j,k) of
points within this ellipsoid.

S0 S1x2(0)

x1(0)

x3(0)

x4(0)

x1(t1)

x2(t1)

x3(t2)
x4(t2)

Start set Reach set

Figure 4. Lines are subsets of the hyperplanes containing states
with the same switching time. The range of switching timesTk is
[t1,t2].

4 Implementation

Using Theorems 9 and 11 we can now propose an algorithm
that systematically finds the upper and lower bound reach
sets for multiple switches, terminating after a finite amount
of time, a finite number of switches or after a certain switch-
ing surface is reached. We assume that the initial set is given
as an elliptical setEi,j,k ⊂ Sj .

Algorithm 1 (Computing Reach Sets) Initialize with set
Ei,j,k ⊂ Sj

Step 1 Find range of switching timesT (Ei,j,k) to switching
surfaceSj+1 for points inEi,j,k.

Step 2 Find upper bound ellipsoidEu
i+1,j+1,k+1 by solving

(8) for τ ∈ T (Ei,j,k). Optimal upper bound is found by
maximizing the trace ofPu

i+1.
Step 3 Find lower bound ellipsoidEl

i+1,j+1,k+1 by solving
(13) for τ ∈ T (Ei,j,k). Optimal lower bound is found by
minimizing the trace ofP l

i+1.
Step 4 To find the next upper boundEu

i+2,j+2,k+2 repeat
steps 1 and 2 using as the new initial set the previous
upper boundEu

i+1,j+1,k+1.
Step 5 To find the next lower boundEl

i+2,j+2,k+2 repeat
steps 1 and 3 using as the new initial set the previous
lower boundEl

i+1,j+1,k+1.

5 Continuity of Impact Maps

Algorithm 1 requires that the all states inEi,j,k will next
switch at switching surfaceSj+1. In addition to requiring the
impact map to be continuous, the algorithm would need to
also consider situations where points in the initial set would
not map ontoSj+1. We consider some of these cases here.

5.1 Tangential trajectories

Consider a discrete modeq which is defined on the subsetXq

of the state space, and assume that three of the boundaries of
Xq are formed by the switching surfacesSj , Sj+1 andST .
LetEi,j,k ⊂ Sj be a set of initial states which, in the absence
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of switching surfaceST would all switch atSj+1. However,
if, with ST present, there exists at least one trajectoryx(τ),
starting fromEi,j,k, with a switching time toST smaller
than the switching time toSj+1, then that trajectory will
switch atST first. This scenario is illustrated in Figure 5. To
find the reach set we need to divide the initial set into those
states that switch atST and those that switch atSj+1 and
apply Algorithm 1 to each subset ofEi,j,k. To find which
states switch atST we use the result in [7, Lemma 3.1]
which says that trajectories tangential toST are those where

d(Cj+1x(t)− dj+1)
dt

∣∣∣∣
t=tT

= 0 (18)

wheretT is the switching time toST . Any trajectories with
a switching time toST less thantT next switch atST .

Sj Sj+1

ST

Figure 5. Trajectories may switch atST before reachingSj+1.

5.2 Intersecting switching surfaces

Suppose the system is in modeq, with initial setEi,j,k ⊂ Sj

and that the hyperplanesSj+1 andSj+2 now intersect. We
consider the situation where the reach set includes a subset
of the n − 2-dimensional set of intersection between two
switching surfacesSj+1 andSj+2. To find the reach set on
each of these hyperplanes, we apply Algorithm 1 fromSj to
Sj+1, assuming the absence ofSj+2, giving the reach sets
Eu

i+1,j+1,k+1 and El
i+1,j+1,k+1. Following this, the algo-

rithm is applied fromSj to Sj+2, assuming the absence of
Sj+1, giving the reach setsEu

i+2,j+2,k+2 andEl
i+2,j+2,k+2.

Since the subsetXq is closed,the upper bound reach set is
then given by(Eu

i+1,j+1,k+1∩Xq)∪(Eu
i+2,j+2,k+2∩Xq) and

the lower bound is(El
i+1,j+1,k+1 ∩Xq)∪ (El

i+2,j+2,k+2 ∩
Xq). Since the reach set now lies on different switching sur-
faces, the reach set of the following iteration of the algorithm
will be split into two. For one branch of the following reach
set the algorithm uses as the new initial setsEl

i+1,j+1,k+1

andEu
i+1,j+1,k+1. For the other branch it usesEl

i+2,j+2,k+2

andEu
i+2,j+2,k+2.

5.3 Non-switching sets

In the cases where there exists an equilibrium point in the set
Xq, we must isolate any points in the initial setEi,j,k which
reach the equilibrium without switching. In certain cases,
these points can be separated from points in the initial set that
do switch by the hyperplanes of tangential trajectories given
in (18). In other cases, a stable eigenvector passing through
an initial set will cause any point in the initial set and on the
eigenvector to go to the equilibrium without switching.

6 Example - Batch reactor

Controlled batch reactors are typical applications of cPWA.
The processing of the reactants usually consists of several
stages and the reaction environment (such as temperature,
pressure, concentration of reactants) often has to be con-
trolled. The method of control usually involves initiating a
process in the reactor that will restore the system to its nor-
mal operating conditions when a certain threshold, typically
a safety constraint, is breached.

In this example, a batch reactor tries to maintain the system
temperature (x3) above10◦C by activating its heating ele-
ment when the temperature falls below30◦C. The system is
modelled as a cPWA with three states,x = [ x1 x2 x3 ]T ,
the states being, respectively, the product yield, the amount
of unused reactant, and the average temperature of the reac-
tor and its contents. The reaction produces several species
and it is required to estimate the minimum amount of the
productx1 that may be produced given an initial uncertainty
in the amount of reactant and in the temperature, whilst
maintaining the safety constraint. The reaction begins with
no product present and ends when there is no more reactant.

The constraints are such that the system exhibits a total of
four switching surfaces and three different modes of opera-
tion. The details of the dynamics of this system and of the
switching surfaces are given in Appendix 7. The uncertainty
is modelled in the state-space by a circular set of possible
initial states on the switching surfaceC1x = 0, centered on
the nominal initial statex = [ 0 40 40 ]T . A nominal trajec-
tory emanates from the nominal initial state.

The nominal trajectory of the system and the upper bounds
and lower bounds on the reach sets, given the initial uncer-
tainty, are shown in Figure 6. The individual reach sets on
each switching surface, centered around the nominal trajec-
tory’s intersection with the switching surfaces, are shown in
Figure 7. These results now give us a safety certificate and
a measure of the performance of the system. To ensure that
the 10◦C minimum temperature condition is not violated,
we can express this constraint as a new switching surface,
namely a hyperplane with equationx3 = 10, and examine
whether this hyperplane is reachable. The upper bound el-
lipse for the second switch shows that the system just satis-
fies temperature constraint (see Figure 7(b)). In addition, the
upper bound ellipse on the fourth switch guarantees a min-
imum product yield of 13.3 units by the end of the reaction
(see Figure 7(d)).

This computation took a total of 64.3720 seconds on a 1400
MHz Pentium M PC. This compares favorably with the simi-
lar three dimensional example in [11] which took 40 minutes
on a 600 MHz Pentium III PC, even after allowing for the
difference in processor speeds.

7 Discussion

We have presented a new method for placing bounds on
reach sets in a cPWA given a set of possible initial states.
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Figure 6. Upper bounds and lower bounds of reach sets on switch-
ing surfaces for a batch reactor system.
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Figure 7. Upper bounds (solid ellipses) and lower bounds (dashed
ellipses) on different switching surfaces.

This method relies on results in [6], which analyze cPWA
by considering their behavior on the switching surfaces. Us-
ing this method, upper and lower bounds are placed on the
image of a set of states that is mapped from one switching
surface to another. By successively repeating this method
for multiple switches, we obtain a set of ellipsoids on the
switching surfaces that indicate where states in the initial
set may reach after a finite amount of time.

As this method relies on solving an optimization of the so-
lution of a set of LMIs, these reachability results can be
obtained quicker than via older algorithms based on tech-
niques such as face-lifting. Furthermore, this method can be
applied to systems of high dimensions without the need to
partition the state-space and discretize the simulation time.
Moreover, by expressing constraints on the operation of the
system in terms of new switching surfaces and assessing the
reachability of those hyperplanes, we obtain results on such
issues as the safety and performance of the system, as illus-
trated in the batch reactor example given in this paper.

A Example Details

The switching surfaces are given by

C1x = [ 1 0 0 ]x = 0

C2x = [ 0 0 1 ]x = 30

C3x = [ 0 1 0 ]x = 30

C4x = [ 0 1 0 ]x = 0

(A.1)

The differential equations of each cell of the system in the
positive orthant, as in (1) are as follows:

Region 1:{x : C2x > 30} ∩ {x : C3x > 30}

ẋ =



−0.1 0 1.0

0 −0.1 0

−1.0 0 −0.1


 x +




0

40

0


 (A.2)

Region 2:{x : C2x < 30}

ẋ =




0.2 0 0

0 −0.1 1.0

0 −3.0 −0.1


 x +




20

30

45


 (A.3)

Region 3:{x : C2x > 30} ∩ {x : C2x < 30}

ẋ =




0.2 0 0

0 −0.1 −1.0

0 1.0 −0.1


 x +




15

5

20


 (A.4)
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