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Abstract

This paper is concerned with the stability of a class of robust and constrained
optimal control laws for linear discrete-time systems subject to bounded state dis-
turbances and arbitrary convex constraints on the states and inputs. The paper
considers the class of feedback control policies parameterized as affine functions of
the system state, calculation of which has recently been shown to be tractable via
a suitable convex reparameterization. When minimizing the expected value of a
quadratic cost, we show that the resulting value function in the optimal control
problem is convex. When used in the design of a robust receding horizon controller,
we provide sufficient conditions to establish that the closed-loop system is input-
to-state stable (ISS). The paper further shows that the resulting control law has
an interesting interpretation as the projection of the optimal unconstrained linear-
quadratic control law onto the set of constraint-admissible control policies.

1 Introduction

This paper is concerned with the stability of a class of robust and constrained opti-
mal control laws for linear discrete-time systems subject to bounded state disturbances,
and subject to arbitrary convex constraints on the states and inputs. We consider the
class of feedback control policies parameterized as affine functions of the system state,
calculation of which has been shown to be tractable via a suitable convex reparameter-
ization [1]. When minimizing the expected value of a quadratic cost, we show that the
resulting value function in the optimal control problem is convex, and provide sufficient
conditions, when used in the design of a robust receding horizon controller, to establish
that the closed-loop system is input-to-state stable (ISS).

It is generally accepted that, if one wishes to account for disturbances when designing
finite- or receding-horizon control laws for constrained systems, then the optimization
must be done over state feedback policies, rather than over open-loop control sequences
[2]. However, the difficulty is that proposals for optimization over arbitrary feedback
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laws, such as [3], are generally intractable, particularly when one wishes to guarantee
constraint satisfaction for all possible realizations of the disturbance.

As a result, many compromise solutions have been proposed in the predictive control
literature. One common approach is to pre-compute one or more pre-stabilizing linear
feedback control laws off-line, and then calculate on-line perturbations to this control
law [4–6]. Approaches of this sort, though computationally attractive, are problematic
in the sense that it is not obvious how one should select the particular pre-stabilizing
feedback law to employ.

An obvious improvement to this approach is to optimize over state feedback policies
on-line at each time instant. However, this is seemingly problematic since it generally
requires the solution of a non-convex optimization problem at each step, because the
predicted sequence of states is a nonlinear function of the gains to be optimized.

In a recent publication [1], the authors demonstrate that the non-convex state feed-
back optimization problem can be reparameterized as an equivalent but convex problem
by recasting the optimization problem in terms of affine disturbance or error feedback
laws. They further demonstrate that, when implemented in a receding horizon fashion
with a particular cost function, the closed loop system is input-to-state stable (ISS)
when the constraints and disturbance sets are polytopic.

In this paper we present a generalization of this result, using the expected value of
a quadratic cost. We demonstrate that, for systems with arbitrary convex state and
input constraints and disturbance sets, the resulting value function is convex and lower
semicontinuous when optimizing over state feedback policies, and provide conditions
under which input-to-state stability can be established for such systems using convex
Lyapunov functions. Since the optimization problems we consider are performed over
arbitrary convex sets, the proofs differ substantially from those required in the case
where the constraints and disturbance sets are polytopic, as in [1]. This is of particular
interest, for example, in the case where the disturbance or constraint sets are 2−norm
bounded, and the resultant optimization problem can be solved as a tractable second-
order-cone program (SOCP), but for which no proof of stability exists at present.

The paper further shows that the resulting control law has an interesting interpre-
tation as the projection of the optimal unconstrained linear-quadratic control law onto
the set of constraint-admissible control policies.

Notation: A continuous function γ : R≥0 → R≥0 is a K-function if it is strictly in-
creasing and γ(0) = 0; it is a K∞-function if, in addition, γ(s) → ∞ as s → ∞. A
continuous function β : R≥0 × R≥0 → R≥0 is a KL-function if for all k ≥ 0, the func-
tion β(·, k) is a K-function and for each s ≥ 0, β(s, ·) is decreasing with β(s, k) → 0
as k → ∞. Z[k,l] represents the set of integers {k, k + 1, . . . , l}. E is the expectation
operator. Given sets X and Y , X + Y := {x + y | x ∈ X, y ∈ Y }, intX represents the
interior of X, rintX its relative interior, linX its linear hull (i.e. the smallest subspace
the contains X), and ∂X its boundary. R̄ represents the extended real line [−∞,∞].
Given a vector x and matrices A and B, A ⊗ B is the Kronecker product of A and B,
N (A) is the null space of A, tr(A) is the trace of A, vec(A) denotes the vector formed
by stacking the columns of A into a vector, ‖x‖2

A := xT Ax and ‖x‖ :=
√

xT x.
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2 Definitions and Standing Assumptions

Consider the following discrete-time linear time-invariant system:

x+ = Ax + Bu + w, (1)

where x ∈ R
n is the system state at the current time instant, x+ is the state at the

next time instant, u ∈ R
m is the control input and w ∈ R

n is the disturbance. It is
assumed that (A,B) is stabilizable and that at each sample instant a measurement of
the state is available. It is assumed that the current and future values of the disturbance
are unknown and may change from one time instant to the next, but are contained in
a compact set W containing the origin in its relative interior. We further assume that,
in addition to lying in the set W , the disturbances are independent and identically
distributed with mean E [w] = 0 and positive semidefinite covariance E

[

wwT
]

= Cw.
Finally, we assume that the covariance Cw is sensibly defined with respect to the set W ,
i.e. we assume that N (Cw) ∩ linW = {0}.

The system is subject to mixed convex constraints on the state and input, so that
the system must satisfy (x, u) ∈ Z where Z ⊂ R

n × R
m is a convex and compact set

containing the origin in its interior. A design goal is to guarantee that the state and
input of the closed-loop system remain in Z for all time and for all allowable disturbance
sequences.

In addition to Z, a target/terminal constraint set Xf ⊂ R
n is given, which is convex,

compact and contains the origin in its interior. The set Xf can, for example, be used as a
target set in time-optimal control or, if chosen to be robust positively invariant, to design
a receding horizon controller with guaranteed invariance and stability properties [1].

Before proceeding, we define some additional notation. In the sequel, predictions
of the system’s evolution over a finite control/planning horizon will be used to define
a number of suitable control policies. Let the length N of this planning horizon be a
positive integer and define stacked versions of the predicted input, state and disturbance
vectors u ∈ R

mN , x ∈ R
n(N+1) and w ∈ R

nN , respectively, as

x := vec(x0, . . . , xN−1, xN ), (2a)

u := vec(u0, . . . , uN−1), (2b)

w := vec(w0, . . . , wN−1), (2c)

where x0 = x denotes the current measured value of the state and xi+1 := Axi+Bui+wi,
∀i ∈ Z[0,N−1] denotes the prediction of the state after i time instants. We let the set

W := W N := W × · · · × W , so that w ∈ W. We define the matrix Cw := I ⊗ Cw, so
that E

[

wwT
]

= Cw and N (Cw)∩ linW = {0}. We define a convex and compact set Y,
appropriately constructed from Z and Xf , such that the constraints to be satisfied are
equivalent to (x,u) ∈ Y, i.e.

Y :=

{

(x,u)

∣

∣

∣

∣

(xi, ui) ∈ Z, ∀i ∈ Z[0,N−1]

xN ∈ Xf

}

. (3)

Finally, we construct matrices A, B and E (defined in the Appendix) using the rela-
tion (1) such that x = Ax + Bu + Ew.
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3 Affine Feedback Control Policies

3.1 State Feedback Parameterization

One natural approach to controlling the system in (1), while ensuring the satisfaction
of the constraints (3) for all allowable disturbance sequences, is to search over the set
of time-varying affine state feedback control policies. We thus consider policies of the
form:

ui =

i
∑

j=0

Li,jxj + gi, ∀i ∈ Z[0,N−1], (4)

where each Li,j ∈ R
m×n and gi ∈ R

m. For notational convenience, we also define the
block lower triangular matrix L ∈ R

mN×n(N+1) and stacked vector g ∈ R
mN as

L :=







L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0






,g :=







g0
...

gN−1






(5)

so that the control input sequence can be written as u = Lx+g. For a given initial state
x (since the system is time-invariant, the current time can always be taken as zero), we
say that the pair (L,g) is admissible if the control policy (4) guarantees that, for all
allowable disturbance sequences of length N , the constraints (3) are satisfied over the
horizon i = 0, . . . , N . More precisely, the set of admissible (L,g) is defined as

Πsf
N (x) :=















(L,g)

∣

∣

∣

∣

∣

∣

∣

∣

(L,g) satisfies (5)
x = Ax + Bu + Ew

u = Lx + g
(x,u) ∈ Y, ∀w ∈ W















(6)

and the set of initial states x for which an admissible control policy of the form (4) exists
is defined as

Xsf
N :=

{

x ∈ R
n

∣

∣

∣
Πsf

N (x) 6= ∅
}

. (7)

As noted in [1], it is generally not possible to select a single pair (L,g) such that

(L,g) ∈ Πsf
N (x) for all x ∈ Xsf

N . Additionally, such a control policy is seemingly very

difficult to compute, since the set Πsf
N (x) is non-convex. However, for a given x ∈ X sf

N ,
an admissible pair (L,g) may be found via convex optimization through an appropriate
reparameterization. This parameterization is introduced in the following section.

3.2 Disturbance Feedback Parameterization

An alternative to (4) is to parameterize the control policy as an affine function of the
sequence of past disturbances, so that

ui =
i−1
∑

j=0

Mi,jwj + vi, ∀i ∈ Z[0,N−1], (8)

where each Mi,j ∈ R
m×n and vi ∈ R

m. It should be noted that, since full state feedback
is assumed, the past disturbance sequence is easily calculated as the difference between
the predicted and actual states at each step, i.e.

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1]. (9)
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Define the variable v ∈ R
mN and the block lower triangular matrix M ∈ R

mN×nN such
that

M :=











0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0











,v :=











v0

v1
...

vN−1











(10)

so that the control input sequence can be written as u = Mw + v. Define the set of
admissible (M,v), for which the constraints (3) are satisfied, as:

Πdf
N (x) :=















(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (10)
x = Ax + Bu + Ew

u = Mw + v
(x,u) ∈ Y, ∀w ∈ W















, (11)

and define the set of initial states x for which an admissible control policy of the form
(8) exists as

Xdf
N := {x ∈ R

n | Πdf
N (x) 6= ∅}. (12)

We are interested in this control policy parameterization primarily due to the fol-
lowing two properties, partial proof of which may be found in [1]:

Theorem 1 (Convexity). For a given state x ∈ Xdf
N , the set of admissible affine

disturbance feedback parameters Πdf
N (x) is closed and convex. Furthermore, the set of

states Xdf
N , for which at least one admissible affine disturbance feedback parameter exists,

is also closed and convex.

Theorem 2 (Equivalence). The set of admissible states X df
N = Xsf

N . Additionally,

given any x ∈ Xsf
N , for any admissible (L,g) an admissible (M,v) can be constructed

that yields the same input and state sequence for all allowable disturbances, and vice-

versa.

Remark 1. The method of proof for convexity in [1] is insufficient for the rather gen-
eral convex state and input constraints presented here. However, proof of convexity is
straightforward by noting that the set

CN :=
⋂

w∈W















(M,v, x)

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (10)
x = Ax + Bu + Ew

u = Mw + v
(x,u) ∈ Y















(13)

is closed and convex, since it is the intersection of closed and convex sets. The set Πdf
N (x)

is also closed and convex, since (11) can be rewritten in a similar manner. The set X df
N

is convex since it can be expressed as a projection of CN onto an appropriate subspace.
Closedness of Xdf

N also follows directly from this projection when the set CN is bounded;
we prove the result in the more general unbounded case in Lemma 2 in the Appendix.

4 An Expected Value Cost Function

We consider a function Φ(x,u) which is quadratic in the state and control sequence, and
seek a control policy that will minimize its expected value over the planning horizon.
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We define

Φ(x,u) :=

N−1
∑

i=0

(‖xi‖Q + ‖ui‖R) + ‖xN‖P , (14)

where, for all i, xi+1 = Axi +Bui +wi, and Q, R and P are positive definite. We define
an optimal policy pair (L∗(x),g∗(x)) ∈ Πsf

N (x) to be one which minimizes the expected
value (over all disturbances) of this function over the set of feasible control policies (6).
We thus define

VN (x,L,g) := E [Φ(x, ū)] (15)

where ū := Lx̄ + g and x̄ := (I −BL)−1(Ax + Bg + w), and define an optimal policy
pair as

(L∗(x),g∗(x)) := argmin
(L,g)∈Πsf

N
(x)

VN (x,L,g). (16)

We assume for the moment that the minimizer in (16) exists and is well-defined. The

receding horizon control policy µN : Xsf
N → R

m is defined by the first part of the optimal
affine state feedback control policy, i.e.

µN (x) := L∗
0,0(x)x + g∗0(x) (17)

Note that the control law µN (·) is time-invariant and is, in general, a nonlinear function
of the current state. The closed-loop system becomes

x+ = Ax + BµN (x) + w. (18)

We also define the value function V ∗
N : Xsf

N → R≥0 to be

V ∗
N (x) := min

(L,g)∈Πsf
N

(x)
VN (x,L,g). (19)

As noted in [1], the difficulty with this scheme lies in the non-convexity of the set of fea-

sible policies Πsf
N (x) and of the function VN (x, ·, ·), and thus in the non-convexity of the

optimization problem (19). We therefore exploit the alternative parameterization (8),
and define the analogous cost function

JN (x,M,v) := E [Φ(x, û)] (20)

where û := Mw + v. In this case we define an optimal policy as:

(M∗(x),v∗(x)) := argmin
(M,v)∈Πdf

N
(x)

JN (x,M,v). (21)

We again assume for the moment that the minimizer in (21) exists and is well-defined.
It then follows from Theorem 2 that

V ∗
N (x) = min

(M,v)∈Πdf
N

(x)
JN (x,M,v). (22)

The control policy (17) is then given by

µN (x) = v∗0(x) = L∗
0,0(x)x + g∗0(x). (23)

We first demonstrate that the function JN (x, ·, ·) is convex, so the problem (22) can be
solved using standard techniques in convex optimization.
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Proposition 1 (Convex Cost). The function (x,M,v) 7→ JN (x,M,v) is convex and

quadratic in the state x and parameter M, and strictly convex and quadratic in the

parameter v.

Proof. The function (20) can be rewritten as:

JN (x,M,v) = E

[

(‖(Ax + Bv) + (E + BM)w‖2
Q + ‖Mw + v‖2

R)
]

where Q :=
[

I⊗Q
P

]

and R := I ⊗ R. Since E [w] = 0 and w is independent of both v
and M, this simplifies to

JN (x,M,v) = E

[

‖v‖2
S + xT Hvv + wT HMMw + ‖Mw‖2

S + ‖Ax‖2
Q + ‖Ew‖2

Q

]

where Hv := 2ATQB, HM := 2ETQB, and S := BTQB + R. This can be further
simplified noting that E

[

wT Xw
]

= tr(XCw) = tr(CwX) for any X, so that

JN (x,M,v) = ‖v‖2
S + xT Hvv + tr(CwHMM) + tr(MTSMCw) + γ, (24)

where γ := tr(ETQECw)+‖Ax‖2
Q . Finally, recalling the matrix identities vec(AXB) =

(BT ⊗ A)vec(X), (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), and tr(AT B) = vec(A)T vec(B), the
above may be written in vectorized form as:

JN (x,M,v) = ‖v‖2
S + xT Hvv + ‖vec(M)‖2

(Cw⊗S) + vec(HT
MCw)vec(M) + γ. (25)

The matrix Cw is positive (semi)definite, so Cw ⊗ S is positive (semi)definite, since it
is the Kronecker product of two positive (semi)definite matrices. This follows directly
from the eigenvalue property of Kronecker products; see [7, Thm. 4.2.12]. The matrix S
is positive definite, since R is positive definite by assumption, so the function is strictly
convex in v.

Since the function JN (x, ·, ·) is to be minimized over the potentially unbounded set

Πdf
N (x), it is not immediately obvious that a minimizer in (21) should exist. However, by

exploiting the special structure of the set Πdf
N (x) and of the function JN (x, ·, ·) in (24),

we may state the following result:

Proposition 2. The function JN (x, ·, ·) attains its minimum on the set Πdf
N (x).

Proof. See the Appendix.

Note that in conjunction with Theorem 2, this implies that VN (x, ·, ·) also attains

its minimum on the set Πsf
N (x) in (16).

Remark 2. Since the function to be minimized in (22) is convex in the decision param-

eters M and v, and the minimization is over the convex set Πdf
N (x), the optimization

problem (22) is easily solved using standard techniques from convex optimization. For
example, it can be shown that if the constraint sets Z and Xf are polytopic, then (22)
can be written as a tractable second order cone program (SOCP) when the set W is
ellipsoidal or 2−norm bounded, or as a tractable quadratic program (QP) when W is
polytopic [1].

Remark 3. A similar result can be derived for a broad class of alternative cost func-
tions; for example [1] employs a quadratic function of the undisturbed state and control
sequences, and [8] employs a cost function akin to that employed in H∞ control. The
assumption may also be satisfied for various min-max formulations as in [3, 9, 10].
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5 Preliminary Results

We wish to find conditions under which the closed-loop system (18) is input-to-state
stable (ISS). In order to do this, we first develop some preliminary results related to the
convexity of the value function V ∗

N (·) in (19), and to input-to-state stability for systems
with convex Lyapunov functions.

5.1 Continuity and Convexity of the Value Function

We first demonstrate that the value function V ∗
N (·) in (19) is convex and continuous on

the interior of its domain, by exploiting the relation (22); this property will prove useful
in our subsequent proof of stability for the closed loop system (18). Note that the proof
presented here requires only convexity of the state and input constraints, and does not

make the usual assumption (as in [1, 11, 12]) that the constraint set Y and disturbance
set W are polytopic, leading to a piecewise-quadratic value function. We instead exploit
several results from variational analysis to establish convexity of V ∗

N (·) directly.

Proposition 3 (Continuity and convexity of V ∗
N (·) and µN (·)). If Xsf

N is non-

empty, then the receding horizon control law µN (·) is unique on Xsf
N and continuous on

intXsf
N . The value function V ∗

N (·) is convex on Xsf
N , continuous on intXsf

N and lower

semicontinuous everywhere on Xsf
N .

Proof. See the Appendix.

5.2 Input-to-State Stability

We next develop a result on the input-to-state stability of systems with convex value
functions. We can then exploit the convexity of the value function V ∗

N (·) to provide
conditions in which the closed-loop system (18) is input-to-state stable (ISS) when im-
plemented in a receding horizon fashion.

Consider a nonlinear, time-invariant, discrete-time system of the form

x+ = f(x,w), (26)

where x ∈ R
n is the state and w ∈ R

l is a disturbance that takes on values in a compact
set W ⊂ R

l containing the origin. It is assumed that the state is measured at each time
instant, that f : R

n × R
l → R

n is continuous at the origin and that f(0, 0) = 0. Given
an initial state x and a disturbance sequence w(·), where w(k) ∈ W for all k ∈ Z[0,∞),
let the solution to (26) at time k be denoted by φ(k, x, w(·)). For systems of this type,
a useful definition of stability is input-to-state stability:

Definition 1 (ISS). For system (26), the origin is input-to-state stable (ISS) with

region of attraction X ⊆ R
n, which contains the origin in its interior, if there exist

a KL-function β(·) and a K-function γ(·) such that for all initial states x ∈ X and

disturbance sequences w(·), where w(k) ∈ W for all k ∈ Z[0,∞), the solution of the

system satisfies φ(k, x, w(·)) ∈ X and

‖φ(k, x, w(·))‖ ≤ β(‖x‖ , k) + γ
(

sup
{

‖w(τ)‖
∣

∣ τ ∈ Z[0,k−1]

})

(27)

for all k ∈ N.
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Lemma 1 (ISS-Lyapunov function [13, Lem. 3.5]). For the system (26), the origin

is ISS with region of attraction X ⊆ R
n if the following conditions are satisfied:

• X contains the origin in its interior and is robust positively invariant for (26),
i.e. f(x,w) ∈ X for all x ∈ X and all w ∈ W .

• There exist K∞ functions α1(·), α2(·) and α3(·), a K-function σ(·), and a function

V : X → R≥0 such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (28a)

V (f(x,w)) − V (x) ≤− α3(‖x‖) + σ(‖w‖) (28b)

Remark 4. A function V (·) that satisfies the conditions in Lemma 1 is called an ISS-

Lyapunov function. It is important to note that continuity of the function V is not

required in the proof of [13, Lem. 3.5], though condition (28a) does imply continuity at
the origin.

Proposition 4 (Convex Lyapunov function for undisturbed system).
Let X ⊆ R

n be a compact robust positively invariant set for (26) containing the ori-

gin in its interior. Furthermore, let there exist K∞-functions α1(·), α2(·) and α3(·) and

a function V : X → R≥0 that is convex on X such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (29a)

V (f(x, 0)) − V (x) ≤− α3(‖x‖) (29b)

The function V (·) is an ISS-Lyapunov function and the origin is ISS for the system (26)
with region of attraction X if f(·) can be written as

f(x,w) := g(x) + w, (29c)

and W is compact and convex, containing the origin in its relative interior.

Proof. See the Appendix.

Remark 5. Note that unlike in [1], which requires Lipschitz continuity of the function
V (·), the proof of Proposition 4 requires only the weaker condition that V (·) be convex
on X . This allows application of the result to a broader class of systems with arbitrary
convex constraints, since in these cases one can often only find functions, such as the
value function (22), which are convex and lower semicontinuous on their domains.

6 Minimum Expected Value Control Law

Given the results of the previous sections, we can now provide conditions which allow
for the synthesis of a control law that guarantees that the closed-loop system (18) is
(ISS). We first make the following assumption:

A1 (Terminal Cost and Constraint) The terminal constraint set Xf is chosen to be
both constraint admissible and robust positively invariant under the control u = Kx,
i.e.

Xf ⊆ {x | (x,Kx) ∈ Z } (30a)

(A + BK)x + w ∈ Xf , ∀x ∈ Xf ,∀w ∈ W (30b)

9



We further assume that the feedback matrix K and terminal cost function P are derived
from the solution to the discrete algebraic Riccati equation

P := Q + AT PA − AT PB(R + BT PB)−1BT PA (30c)

K := −(R + BTPB)−1BTPA (30d)

Remark 6. The reader is referred to [5, 14, 15] and the references therein for details on
how to compute a set Xf that satisfies (30). Note that the terminal cost F (x) := xT Px
is a Lyapunov function in the terminal set Xf for the undisturbed closed loop system
x+ = (A + BK)x in the sense that

F ((A + BK)x) − F (x) ≤ −xT (Q + KTRK)x, ∀x ∈ Xf . (31)

Remark 7. Note that, when the constraint sets Z and Xf are R
n ×R

m and R
n, respec-

tively, the control policy u = Kx minimizes both the expected value of Φ(x, ·) (assuming
E [w] = 0), and the value of the deterministic or certainty-equivalent cost one would
compute by setting w = {0} [16]. It should be noted that this certainty equivalence
property does not hold in the general constrained case considered here; i.e.

argmin
(L,g)∈Πsf

N
(x)

E [VN (x, ū)] 6= argmin
(L,g)∈Πsf

N
(x)

VN (x, E [ū]).

However, it is still true that v∗
0(x) = Kx for all x ∈ Xf , since in this case the con-

ditions (30) guarantee that the optimal unconstrained state feedback gain K is also
constraint admissible.

Theorem 3 (ISS for RHC). If A1 holds, then the origin is ISS for the closed-loop sys-

tem (18) with region of attraction Xsf
N . Furthermore, the input and state constraints (3)

are satisfied for all time and for all allowable disturbance sequences if and only if the

initial state x(0) ∈ Xsf
N .

Proof. For the system of interest, we select V (·) = V ∗
N (·) − tr(ETQECw), and let

f(x,w) := Ax+BµN (x)+w. The set Xsf
N is robust positively invariant for system (18),

with 0 ∈ intXsf
N [1]. Xsf

N is compact since it is closed (cf. Remark 1) and bounded
because Z is assumed bounded. Since 0 ∈ Xf , it is easy to show that f(0, 0) = 0 if A1
holds. By the principle of optimality, V is lower bounded by α1(‖x‖) := xT Px. Since

0 ∈ intXsf
N , one can also construct a function α2(·) to satisfy (29a), using arguments

similar to those in the proof of Proposition 3.
Using standard techniques [2], it is easy to show that V (·) := V ∗

N (·) is a Lyapunov
function for the undisturbed system x+ = Ax + BµN (x). More precisely, the methods
in [2] can be employed to show that (29b) holds with α3(z) := (1/2)λmin(Q)z2.

Finally, recall from Proposition 3 that V ∗
N (·) is convex and continuous on intXsf

N . By
combining all of the above, it follows from Proposition 4 that V ∗

N (·) is an ISS-Lyapunov
function for system (18).

6.1 Relationship to LQ control

We next consider the relationship between the optimal unconstrained linear quadratic
(LQ) control law u = Kx, and the optimal constrained control policy (M∗(x),v∗(x)
in (21). We will demonstrate that this optimal pair may be characterized as a weighted
projection of the optimal unconstrained policy onto a convex set.
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6.1.1 Optimal Unconstrained Disturbance Feedback Policy

It can be shown [17, Sec. 11.2] that when the initial state is known exactly and the
disturbances wi are zero mean and independent of the states xi and controls ui, (14)
can be written as

E [Φ(x,u)]=E

[

x0Px0+

N−1
∑

i=0

‖(ui−Kixi)‖2
(BT PB+R)+

N−1
∑

i=0

wT
i Pwi

]

,

where K and P are defined in (30). Note that, in the unconstrained case, it follows
immediately from the above that this expected value can be minimized by selecting
ui = Kxi, and that this is true regardless of the covariance of w. The above can be
written in stacked or vectorized form as

E [Φ(x,u)] = E

[

xT
0 Px0 + ‖u−Kx‖2

T + wTPw
]

,

where K := IN ⊗ K, T := IN ⊗ (BT PB + R), and P := IN ⊗ P . Recalling (8), it then
follows that (21) can be rewritten (dropping constant terms) as

(M∗(x),v∗(x)) = argmin
(M,v)∈Πdf

N
(x)

E

[

‖(Mw + v −Kx̂)‖2
T

]

,

where x̂ = Ax + Bv + (E + BM)w. Eliminating the states x̂, it follows that

(M∗(x),v∗(x))= argmin
(M,v)∈Πdf

N
(x)

E

[

‖(I−KB)Mw−KEw+(I−KB)v−KAx‖2
T

]

. (32)

It is then easy to see that, in the unconstrained case, an optimal policy pair (M̄, v̄) for
the unconstrained system can be defined as

M̄(x) := (I −KB)−1KE (33a)

v̄(x) := (I −KB)−1KAx, (33b)

where (I − KB)−1 always exists since KB is strictly lower triangular. By comparing
this result to that in [1], it is easy to show that this pair matches the control from the
unconstrained LQ control problem.

6.1.2 Optimal Constrained Disturbance Feedback Policy

We are of course more interested in characterizing the optimal control policy in the
constrained case, i.e. where the optimal unconstrained LQ control policy (M̄(x), v̄(x)) /∈
Πdf

N (x). This leads to the following result:

Proposition 5. If Cw is positive definite, the solution to the optimization problem (21)
may be found as a weighted projection of the origin onto the convex set

Πdf
N (x) − (M̄(x), v̄(x)).

Proof. Define δM(x) ∈ R
mN×nN and δv(x) ∈ R

mN as

δM(x) := M(x) − M̄(x), δv(x) := v(x) − v̄(x) (34)

with corresponding feasible set

δΠdf
N (x) := Πdf

N (x) + {(−M̄(x),−v̄(x))}.

11



This set is closed and convex, since it is the translation of a closed and convex set. In
the cases of interest, it will not contain the origin. The optimization problem (32) is
equivalent to

(δM∗(x), δv∗(x)) := argmin
(δM,δv)∈δΠdf

N
(x)

E

[

‖(I −KB)δMw + (I −KB)δv‖2
T

]

(35)

Once again exploiting the independence of w, and defining the positive definite matrix
H := (I −KB)TT (I −KB), the above can be written as

(δM∗(x), δv∗(x)) = argmin
(δM,δv)∈δΠdf

N
(x)

E

[

‖δMw‖2
H + ‖δv‖2

H

]

= argmin
(δM,δv)∈δΠdf

N
(x)

vec(δM)T (Cw ⊗H)vec(δM) + ‖δv‖2
H (36)

Finally, defining the set δΠ̂df
N (x) as

δΠ̂df
N (x) :=

{

(δM̂, δv̂)

∣

∣

∣

∣

∣

vec(δM̂) = (Cw ⊗H)
1

2 vec(δM)

δv̂ = H 1

2 δv, (δM, δv) ∈ δΠdf
N (x)

}

, (37)

the solution to (35) may be found by solving the Euclidean projection problem

(δM̂∗(x), δv̂∗(x)) := argmin
(δM̂,δv̂)∈δΠ̂df

N
(x)

(

‖vec(δM̂)‖ + ‖δv̂‖
)

(38)

and then setting

vec(δM∗(x)) = (Cw ⊗H)−
1

2 vec(δM̂∗(x)) (39a)

δv∗(x) = H− 1

2 δv̂∗(x) (39b)

The optimal pair (δM∗(x), δv∗(x)) is thus one which minimizes the weighted Euclidean

distance between the origin and the set δΠdf
N (x). The optimal policy (M∗(x),v∗(x)) is

therefore one which is the minimum weighted distance from the optimal unconstrained
solution to the set of constraint admissible policies Πdf

N (x).

7 Conclusions

Using an affine state feedback policy parameterization and exploiting the results in [1]
in the calculation of optimal receding horizon control laws, we have shown that input-
to-state stability of the closed-loop system can be established for problems with general
convex state and input constraints using the expected value of a quadratic cost, given
appropriate terminal conditions.

The keys to this result are proving the existence of minimizers and convexity of the
value function in the underlying optimal control problem using results from variational
analysis, as well as providing conditions under which input-to-state stability may be
established using convex Lyapunov functions.

This result represents an important generalization of the results in [1], as it estab-
lishes stability for a broad class of optimal control problems using this framework with
non-polytopic but convex disturbance sets (e.g. ellipsoidal or 2-norm bounded distur-
bances), or for problems with general convex constraints on the states and inputs. The

12



results presented here may also prove useful for problems with alternative convex cost
functions, including min-max problems [3, 9, 10] and H∞ formulations [8].

We further demonstrated that the resulting control law has an interesting interpre-
tation in terms of the projection of the optimal unconstrained control policy onto the
set of constraint admissible feedback policies.
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A Appendix

A.1 Supporting Results and Proofs

Closedness of projections of CN

We consider the general case where the set CN defined in (13) is unbounded, which
can happen when the interior of the disturbance set W is empty, and demonstrate that
projections of this set (in particular the sets Πdf

N (x) and Xdf
N ) are closed. We define the

set M and its orthogonal complement M⊥ to be

M := {M | M satisfies (10), Mw = 0, ∀w ⊥ linW} (40)

M⊥ := {M | M satisfies (10), Mw = 0, ∀w ∈ linW} (41)

Note that both of these sets are actually subspaces, with M ∪ M⊥ equal to the set
of all matrices satisfying (10). Additionally note that if the set W (and thus W) has
non-empty interior, then M⊥ = {0}, and CN is easily shown to be compact. We can
now state the following:

Lemma 2. Any projection of the set CN is closed.

Proof. We define the set

C̃N := CN ∩ (M× R
mN × R

n) (42)

which is closed, since it is the intersection of a closed set and a subspace, and bounded,
since the set Y is compact and maxw∈W ‖Mw‖ > 0 for any non-zero M ∈ M. From
the definition of M⊥ in (41), it immediately follows that CN in (13) can be written as

CN = C̃N + (M⊥ × {0} × {0})

which is the sum of a compact set and a subspace. Since projection is distributive
with respect to set addition, any projection of CN is the sum of the projections of these
sets. Since any projection of the compact set C̃N is compact, and any projection of the
subspace M⊥ × {0} × {0} is a subspace, projections of the set CN are closed [18, Ex.
3.12].

Using arguments similar to those above, we can prove Proposition 2 by decomposing
the set Πdf

N (x) into the sum of a compact set and a subspace.

13



Proof of Proposition 2

Proof. Consider the set

Π̃df
N (x) := Πdf

N (x) ∩ (M× R
mN ),

which is compact for the same reasons that C̃N in (42) is compact. The set Πdf
N (x) can

then be written as
Πdf

N (x) = Π̃df
N (x) + (M⊥ × {0})

Since a continuous function always attains its minimum on a compact set, JN (x, ·, ·)
attains its minimum on Π̃df

N (x). We denote this minimizer

(M̃∗(x), ṽ∗(x)) := argmin
(M,v)∈Π̃df

N
(x)

JN (x,M,v),

and will show that this pair also minimizes JN (x, ·, ·) over the set Πdf
N (x) in (21). We

assume the contrary, so that there exists some M⊥ ∈ M⊥ such that

JN (x, M̃∗(x) + M⊥, ṽ∗(x)) < JN (x, M̃∗(x), ṽ∗(x))

(Note that it is obvious by inspection of JN (x, ·, ·) in (24) that modification of ṽ∗(x)
cannot produce a better result). From (24), this implies that

tr(CwHMM⊥) + tr
(

(MTSM⊥ + MT
⊥SM + MT

⊥SM⊥)Cw

)

< 0 (43)

Since Cw is positive semidefinite, it can be factored as UΛU T := Cw, where U is a matrix
whose columns are the eigenvectors of Cw with corresponding non-zero eigenvalues.
Thus (43) may be rewritten as

tr(HMM⊥UΛUT ) + tr
(

UT (MTSM⊥ + MT
⊥SM + MT

⊥SM⊥)UΛ
)

< 0.

Since Cw is assumed well-defined with respect to W (i.e. the columns of U span linW),
M⊥U = 0 for all M⊥ ∈ M⊥, a contradiction. Thus the pair (M̃∗(x), ṽ∗(x)) minimizes

JN (x, ·, ·) over Πdf
N (x) in (21).

Proof of Proposition 3

Proof. First, define the extended real function J̃N : R
n × R

mN×nN × R
mN → R̄≥0 as

J̃N (x,M,v) :=

{

JN (x,M,v) (M,v) ∈ Πdf
N (x)

∞ otherwise
(44)

Consider the set
PN := {(x,v) | ∃M s.t. (M,v, x) ∈ CN } (45)

which is convex and closed, since it is a projection of the convex set CN (cf. Remark 1
and Lemma 2), and bounded since Y is compact. Thus PN is compact. Consider also
the function

p(x,v) := inf
M

J̃N (x,M,v) (46)

with domain PN , which is convex on R
mN [18, Prop. 2.22], and which is easily shown to

be strictly convex in v (cf. JN (x, ·, ·) in (25), which can be separated into components
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which are independent convex functions of the parameters M and v, and which is strictly
convex in v). The value function V ∗

N (·) in (22) can then be written as

V ∗
N (x) = inf

v
p(x,v), (47)

with compact domain Xsf
N , assumed non-empty. This function is convex and lower semi-

continuous on its domain [18, Cor. 3.32], and is thus strictly continuous on intX sf
N [18,

Thm. 2.35]. The optimal feedback policy parameter v∗(x), defined in (21), can likewise
be written as

v∗(x) = argmin
v

p(x,v) (48)

with domv∗ = Xsf
N . This function is single-valued on Xsf

N and continuous on intXsf
N [18,

Cor. 7.43 and Thm. 3.31]. The uniqueness and continuity properties of µN (·) = v∗0(·)
then follow directly.

Proof of Proposition 4

Proof. We assume throughout that the condition W = {0} does not hold; if W = {0},
the proof is trivial. It is sufficient to show that there exists a constant γ such that

V (f(x,w)) − V (f(x, 0)) ≤ γ ‖w‖ (49)

for all x ∈ X and all w ∈ W . It then follows that V (f(x,w)) − V (x) = V (f(x, 0)) −
V (x) + V (f(x,w)) − V (f(x, 0)) ≤ −α3(‖x‖) + γ ‖w‖, and the conditions of Lemma 1
are satisfied with σ(s) := γ ‖s‖.

When the disturbance set W is compact and contains the origin in its (relative) in-
terior, there exists a constant ρ > 0 such that

ρ := max {ε | (Bε ∩ linW ) ⊆ W } , (50)

where Bε := {x | ‖x‖ ≤ ε}. Thus ρ is the size of the smallest vector on the (relative)
boundary of W . Note that when W has a non-empty interior, this simplifies to

ρ = min {‖w‖ | w ∈ ∂W } . (51)

Since the set X is compact, (29a) implies that V is upper bounded by a constant β̄ and
lower bounded by 0. Since the set X is robust positively invariant, it follows that

g(x) ∈ X̃ := X ∼ W, (52)

where X ∼ W denotes the Pontryagin difference, i.e.

X ∼ W := {x ∈ R
n | x + w ∈ X ,∀w ∈ W } . (53)

Finding a suitable γ in (49) is equivalent to finding one which satisfies

V (x̃ + w) − V (x̃) ≤ γ ‖w‖ , ∀x̃ ∈ X , ∀w ∈ W. (54)

Since W is convex and compact, for any given w ∈ W there exists a w̃ on the (relative)
boundary of W such that w = τw̃ with 0 ≤ τ ≤ 1. Note also that τ = ‖w‖ / ‖w̃‖ ≤
‖w‖ /ρ. Since X is robust positively invariant, x̃ + w̃ ∈ X ∀x̃ ∈ X̃ . Since V is convex,
it follows that V (x̃ + w) ≤ (1 − τ)V (x̃) + τV (x̃ + w̃), or

V (x̃ + w) − V (x̃) ≤ τ(V (x̃ + w̃) − V (x̃)) ≤ (β̄/ρ) ‖w‖ . (55)

The proof is completed by selecting γ := β̄/ρ.
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A.2 Matrix Definitions

Define A ∈ R
n(N+1)×n and E ∈ R

n(N+1)×nN as

A :=















In

A
A2

...
AN















, E :=















0 0 · · · 0
In 0 · · · 0
A In · · · 0
...

...
. . .

...
AN−1 AN−2 · · · In















.

The matrix B ∈ R
n(N+1)×mN is defined as B := E(IN ⊗ B).
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