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Subspace identification – a Markov parameter approach
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Estimating observability matrices or state sequences is the central component of existing

subspace identification methods. In this paper a different approach, in which Markov
parameters are first estimated under general input excitation, is proposed. The prominent
difference of this approach is that a three-block arrangement of data matrices is used. It is

shown that one advantage of this approach over other subspace algorithms is that several
unbiased estimating procedures can be carried out. One immediate application is to obtain
balanced or nearly balanced models directly from the estimated Markov parameters.

Another application is that with the estimated Markov parameters, consistently initialized
Kalman filter state sequences can be obtained, from which the system matrices can be easily
determined without bias. Performance of the proposed algorithms is investigated in two

case studies which are based on real data taken from two industrial systems. The algorithms
developed in this paper have been implemented and are publicly available.

1. Introduction

Various versions of subspace methods for identifying

discrete-time linear systems in state-space form have

been derived in recent years. Commonly known

subspace based algorithms include CVA (Larimore

1990), N4SID (Van Overschee and De Moor 1994),

MOESP (Verhaegen and Dewilde 1992, Verhaegen

1994), and IV-4SID (Viberg 1995). All of these methods

first estimate the range space of the observability

matrix, and then obtain the matrices of the state-space

form either by estimating the observability matrix, or

by estimating the state sequence. A unified treatment of

most of these algorithms has been given in Van

Overschee and De Moor (1995), where it is shown that

each variant corresponds to a different choice of certain

weighting matrices. Some statistical analysis of subspace

algorithms is available in Peternell et al. (1996), Viberg

et al. (1997), and Bauer (1998) and references therein.
The basis of subspace algorithms is exploitation of the

concept of the state as a finite-dimensional interface

between the past and the future; a concept which dates

back to Nerode (1958) in the deterministic case and
to Akaike (1974) in the stochastic case. An intuitive
description of their operation is the following.
The input–output data is arranged into two distinct
blocks, one of which can be thought of as inputs and
past outputs and the other as future outputs. (The first

block can also be thought of as regressors in the
statistical sense, when there are no measured inputs.)
The data in the second block is projected onto the
space spanned by the data in the first block.
Orthogonal projection corresponds to least-squares
prediction of the output, which can be factorized into

estimation of the observability matrix and estimation
of the state sequence. If both measured inputs and
unmeasured disturbances are present, further processing
of the projected data is necessary, in order to distinguish
between the effects of these two kinds of signal. Thus in
Van Overschee and De Moor (1995), for instance, one
finds a relatively simple algorithm which is known to

give biased estimates of the system matrices (unless the
measured inputs are white), and a considerably more
complex algorithm which is known to be asymptotically
unbiased, as the data blocks become doubly infinite.

In this paper we introduce a class of subspace
algorithms in which the data is arranged into three*Corresponding author. Email: jmm@eng.cam.ac.uk
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blocks rather than two. The additional block can be
thought of as a source of instrumental variables, which
are used to remove the effects of the unmeasured noise
sources, and thus allow the estimation of some initial
Markov parameters (impulse response coefficients) of
the system. These Markov parameters are used to
modify existing approaches, so that unbiased estimates
of the system matrices are obtained, even if the row-
dimension of the blocks remains finite. This dimension
can be thought of as the length of a sliding window
passed over the data, which limits the correlation or
memory length used in subspace algorithms. Thus our
three-block approach allows unbiased estimates to be
obtained with finite window lengths, in the presence of
arbitrary measured inputs. The tools used in our
approach are essentially the same (projections, QR
factorizations, etc.) as in the existing subspace methods.
The introduction of Markov parameters and of

instrumental variables into subspace identification is
not new. In particular, the way these appear in
Verhaegen and Dewilde (1992) and Verhaegen (1994)
is very similar to the way they appear in this paper.
But Verhaegen and Dewilde (1992) is limited to the
output error noise structure, while Verhaegen (1994)
is limited to white noise inputs, and deals with the
identification of the deterministic part of the system
only. In this paper careful analysis of the relationships
between several subspaces which arise in the combined
deterministic-stochastic case, with a general noise
structure, allows us to give a complete solution for the
general case.
The paper is organized as follows. The identification

problem is defined in x 2, and some notations are
introduced in x 3. Section 4 considers identification of
deterministic systems. Section 5 then considers the
general case, and introduces the 3-block arrangement
of data. Section 6 shows how initial Markov parameters
can be estimated in the general case. Section 7 considers
the estimation of the state sequences Xk and Xkþ1,
paying particular attention to the requirement that
the estimated initial conditions of these sequences
are consistent with each other. Failure to meet
this requirement has been the source of biased estimates
in some subspace algorithms. In x 8, three alter-
native approaches for identifying the deterministic
(input–output) part of the system are suggested, and
x 9 discusses the estimation of the stochastic part.
Numerically efficient implementation is developed
in x 10. Finally, two cases based on industrial data are
studied in x 11.
Some initial results in the direction taken in this paper

were previously reported in Chui and Maciejowski
(1999). An earlier version of this paper appeared as
Chui and Maciejowski (1998c). Since the appearance
of Chui and Maciejowski (1998c), Algorithms 2, 3

and 4 have been implemented in software, and are
available in CUEDSID: Cambridge University System
Identification Toolbox, which can be found at http://
www-control.eng.cam.ac.uk/jmm/cuedsid/cuedsid.html

2. Problem setup

Throughout this paper, the sets of integers and
non-negative integers are denoted by Z and Zþ, respec-
tively. The Moore-Penrose inverse is written as �y while
the transpose is written as ��. Denote by þ, � and \
the sum, the direct sum and the intersection
of two vector spaces. The notation �? denotes the
orthogonal complement of a subspace with respect to
the predefined ambient space.

Consider a linear time-invariant system with the
following state-space realization:

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ þ wðtÞ, ð1aÞ

yðtÞ ¼ CxðtÞ þDuðtÞ þ vðtÞ, ð1bÞ

where A 2 R
n�n, B 2 R

n�m, C 2 R
p�n, D 2 R

p�m.
The input and output signals are denoted by u and y,
respectively; the process disturbance and output noise
are denoted by w and v, respectively. We further
assume that u, y, w and v are signals in an ideal probabil-
ity space. That is, for any instance t 2 Zþ, x(t), u(t), y(t),
w(t) and v(t) are vectors of real Lebesgue square
integrable random variables. We assume that u, y, w
and v are stationary, which implies that A has all its
eigenvalues strictly inside the unit disk. In addition,
E denotes the usual expectation operator. When
used with lower-case letters, ut, yt, etc. will denote data
collected at time t from a particular realization of u(t),
y(t), etc.

The identification problem which we address is: Given
a sample of a particular realization of input-output data,
fut, yt: t ¼ 0, . . . ,Ng, estimate the state dimension n,
the matrices A, B, C, and D, the Kalman gain K, and
the covariance of the process e(t) in the innovations
representation

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ þ KeðtÞ, ð2aÞ

yðtÞ ¼ CxðtÞ þDuðtÞ þ eðtÞ: ð2bÞ

We assume that N is sufficiently large, that all required
sample statistics of the data are arbitrarily close to the
population statistics.

Suppose that the system is comprised of two
uncorrelated subsystems, a deterministic one denoted
by a superscript d, and a stationary stochastic one

Subspace identification – a Markov parameter approach 1413



denoted by a superscript s

xðtÞ ¼ xdðtÞ þ xsðtÞ,

yðtÞ ¼ ydðtÞ þ ysðtÞ:

The deterministic subsystem, describing the behaviour
due to the input u, has the state-space equations

xdðtþ 1Þ ¼ AxdðtÞ þ BuðtÞ, ð3aÞ

ydðtÞ ¼ CxdðtÞ þDuðtÞ, ð3bÞ

whereas the stationary stochastic subsystem, describing
the behaviour due to the process and output noises w
and v, has the state-space equations

xsðtþ 1Þ ¼ AxsðtÞ þ wðtÞ, ð4aÞ

ysðtÞ ¼ CxsðtÞ þ vðtÞ: ð4bÞ

Let the process noises w and v have the following
correlation matrices:

E
wðtÞ

vðtÞ

� �
wð�Þ

vð�Þ

� ��� �
¼:

�w �wv

�vw �v

� �
�t� , ð5Þ

for all t, � 2 Zþ, where � denotes the Kronecker delta.
Moreover, define the correlation matrices �s, �i and G
as

�s :¼ E
�
xsðtÞ ½xsðtÞ��

�
,

�� :¼ E
�
ysðtþ �Þ ½ysðtÞ��Þ,

G :¼ E xsðtþ 1Þ ½ysðtÞ��ð Þ,

where t � �, t 2 Zþ, � 2Z. Since the stochastic sub-
system is assumed stationary, �w, �v, �wv, �vw, �s, ��

and G are all constant matrices.

3. System in block equation form

The notation introduced in this section mostly follows
Van Overschee and De Moor (1994) closely. Let Ut be
a matrix composed of a sequence of the input signal

Ut :¼ uðtÞ uðtþ 1Þ � � � uðtþ q� 1Þ
� �

,

for some positive integer q. Using similar definitions for
Yt, Xt, etc., it is easy to see that (1) can also be written as

Xtþ1 ¼ AXt þ BUt þWt, ð6aÞ

Yt ¼ CXt þDUt þ Vt: ð6bÞ

Now, consider the following block-Hankel matrix
constructed from the input signal u for some k

Up

����

Uf

2
6666664

3
7777775

:¼

uð0Þ uð1Þ � � � uðq� 1Þ

� �
�

� �
�

� �
�

� �
�

uðk� 1Þ uðkÞ � � � uðkþ q� 2Þ

� � � ��������������

uðkÞ uðkþ 1Þ � � � uðkþ q� 1Þ

� �
�

� �
�

� �
�

� �
�

uð2k� 1Þ uð2kÞ � � � uð2kþ q� 2Þ

2
6666666666664

3
7777777777775
:

Define Yp, Yf, Wp, Wf, Vp, and Vf in a similar way, and
define Xp and Xf slightly differently as

Xp

Xf

� �
:¼

xð0Þ xð1Þ � � � xðq� 1Þ
xðkÞ xðkþ 1Þ � � � xðkþ q� 1Þ

� �
:

such that each is a sequence of one block row. At this
point, we shall introduce a few more matrices. Define
the deterministic controllability matrix Cdi , the stochastic
controllability matrix Csi , and C

w
i as

C
d
i :¼ Ai�1B Ai�2B � � � B

� �
,

C
s
i :¼ Ai�1G Ai�2G � � � G

� �
,

C
w
i :¼ Ai�1 I Ai�2 I � � � I

� �
:

Furthermore, define the observability matrix Oi, and
Toeplitz matrices T d

i and T w
i as

Oi :¼

C

CA

..

.

CAi�1

2
66664

3
77775, T d

i :¼

D 0

CB D

..

. . .
. . .

.

CAi�2B � � � CB D

2
66664

3
77775,

T
w
i :¼

0 0

C 0

..

. . .
. . .

.

CAi�2 � � � C 0

2
66664

3
77775:

Note that D,CB,CAB, . . . are the Markov parameters
of the system, which will also be denoted by
h0, h1, h2, . . . in this paper. With these new matrices,
it is easy to derive the following ‘block form’ of the
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system equations

Xf ¼ AkXp þ C
d
kUp þ C

w
kWp, ð7aÞ

Yp ¼ OkXp þ T
d
kUp þ T

w
kWp þ Vp: ð7bÞ

To facilitate the analysis, denote by UP the space
spanned by all the rows of the block Hankel matrix
Up. That is,

Up :¼ span ��Up j � 2 R
km

	 

:

We will use similar notation to represent the row spaces
spanned by other block-Hankel matrices. Finally, let �
be the orthogonal projection operator. In this paper, we
will use the shorthand &RQ to represent the orthogonal
projection of each row of Q onto the space R. For
instance, &UpX0 is equivalent to

&UpX0 :¼

&UpX0; 1

..

.

&UpX0; n

2
64

3
75, for X0 ¼

X0; 1

..

.

X0; n

2
64

3
75:

Moreover, this projection also is equivalent to
EðX0U

�
pÞ � EðUpU

�
pÞ
y
�Up. Finally, it can be seen without

difficulty that EðOhX0U
�
pÞ � EðUpU

�
pÞ
y
�Up can also be

written as OhEðX0U
�
pÞ � EðUpU

�
pÞ
y
�Up, or equivalently,

&UpOhX0 ¼ Oh&UpX0. In other words, the projection
operation commutes with real matrix multiplication.
We remark that we shall abuse terminology slightly by

speaking of subspaces having empty intersection to mean
that their intersection contains only the singleton f0g.

4. Deterministic Identification

First, deterministic identification via Markov parameter
(MP) estimation is covered. In the deterministic setup,
it will be seen that a two-block configuration is
adequate. We shall assume k is greater than the observa-
bility index of the system. The data equations have the
following form:

Yp ¼ OkXp þ T
d
kUp; ð8Þ

Yf ¼ OkXf þ T
d
kUf: ð9Þ

In addition, the state equation linking the past and
future data equations can be written as

Xf ¼ AkXp þ C
d
kUp: ð10Þ

It is well known that the quality of a model obtained
from an identification experiment depends highly on

the degree of excitation of the input signal. Such consid-

eration leads to the study of informative experiments,

which are identification experiments which contain

sufficient information to discriminate between different

models in an intended model set (Ljung 1987). The

study of informative experiments for subspace methods

is beyond the scope of this paper, but can be found in

Chui and Maciejowski (1996b and the references

therein) for the deterministic case and Chui (1997)

and Chui and Maciejowski ((2005) and the references

therein) for the combined deterministic-stochastic

case. Instead, in this paper we will make certain key

assumptions about the state sequences and the input

sequences, which enable correct results to be obtained

using the algorithms developed here. First, we assume

the following for the deterministic case

E

Xp

Up

Uf

0
B@

1
CA

Xp

Up

Uf

0
B@

1
CA
�2

64
3
75 > 0: ð11Þ

With this assumption, the following lemma holds.

Lemma 1: Suppose (11) holds. Then,

X f � Yp þ Up,

Xf þ Uf ¼ X f � Uf � ðYp þ UpÞ � Uf:

Proof: From equation (8), it is easy to see that

Yp � X p þ Up. On the other hand, rewriting equation

(8) as OkXp ¼ Yp � T
d
kUp gives X p � Yp þ Up, since

Ok is injective. Now, adding UP to both sides of these

inclusions gives

Yp þ Up � Xp þ Up, and Xp þ Up � Yp þ Up:

Thus, clearly Yp þ Up ¼ X p þ Up. In addition, with

equation (10) we then have

X f � X p þ Up ¼ Yp þ Up:

Finally, (11) guarantees the direct sum property

that X f þ U f ¼ X f � U f, since X f \ U f ¼ f0g. Thus, the

lemma follows. œ

Lemma 1 states that the space X f can be observed from

Yp þ Up and has empty intersection with U f. Therefore,

Yf in equation (9) has a unique decomposition into OkXf

and T d
kUf by the direct sum property. Consequently, T d

k

can be determined by removing Uf from T
d
kUf.
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Assume T d
k is determined. We introduce two Toeplitz

matrices

�U :¼

0 hk�1 � � � h1

..

. . .
. . .

. ..
.

..

. . .
.

hk�1

0 � � � � � � 0

2
666664

3
777775,

�L :¼

hk 0 � � � 0

..

. . .
. . .

. ..
.

..

. . .
.

0

h2k�1 � � � � � � hk

2
666664

3
777775, ð12Þ

such that OkC
d
k ¼ �U þ�L. It can be seen that �U

depends only on h1, . . . , hk�1 whereas �L depends only
on hk, . . . , h2k�1. Substituting (10) into (9) gives

Yf � T
d
kUf ��UUp ¼ OkA

kXp þ �LUp, ð13Þ

where the terms in the left hand side are all known. Note
that X p can be found from the equation OkXp ¼

Yp � T
d
kUp. Furthermore, by (11) we have Xp þ Up ¼

Xp � Up. As a result, we can uniquely decompose the
left hand side of Equation (13) into OkA

kXp and
�LUf. In this way, �L is determined.
Thus, the Markov parameters h0, . . . , h2k�1, or equiva-
lently, D,CB, . . . ,CA2k�2B, are acquired. Finally, by
Kalman’s fundamental realization criterion (Kalman
1971), a unique realization ðA,B,C,DÞ can be obtained.
The following summarizes the algorithm for the
deterministic case, at a conceptual level.

Algorithm 1: Deterministic subspace algorithm via MP
Determination

1. Decompose Yf into OkXf and T
d
kUf using

X f � Uf � ðYp þ UpÞ � Uf. Determine T d
k.

2. Compute X p ¼ spanfYp � T
d
kUpg and construct �U.

3. Decompose Yf � T
d
kUf � �UUp into OkA

kXp and
�LUp using X p þUp ¼ Xp �Up. Then determine �L.

4. Determine ðA,B,C,DÞ from the 2k Markov
parameters, for example using Kung’s algorithm
(Kung 1978).

5. Deterministic-stochastic identification:

a three-block configuration

As shown in the previous section, a two-block
configuration, splitting the data into past (Up) and
future (Uf) blocks, is adequate to identify Markov
parameters in the deterministic case. However, when it
comes to the combined deterministic-stochastic case,

a two-block configuration cannot determine the
Markov parameters of a system. In the remaining part
of this paper, we demonstrate the use of a three-block
configuration to estimate initial Markov parameters in
a stochastic environment.

We split the data Hankel matrices into three-block
configurations, such as

Up

����

Uf

����

Ur

2
666666666664

3
777777777775

:¼

uð0Þ uð1Þ � � � uðq� 1Þ

� �
�

� �
�

� �
�

� �
�

uðk� 1Þ uðkÞ � � � uðkþ q� 2Þ

� � � ��������������

uðkÞ uðkþ 1Þ � � � uðkþ q� 1Þ

� �
�

� �
�

� �
�

� �
�

uð2k� 1Þ uð2kÞ � � � uð2kþ q� 2Þ

� � � ��������������

uð2kÞ uð2kþ 1Þ � � � uð2kþ q� 1Þ

� �
�

� �
�

� �
�

� �
�

uð3k� 1Þ uð3kÞ � � � uð3kþ q� 2Þ

2
66666666666666666666664

3
77777777777777777777775

:

ð14Þ

The suffices p, f and r are supposed to be mnemonic,
representing past, future and remote future, respectively.
We define Yp, Yf, and Yr similarly, and the state
sequences are defined as

Xp

Xf

Xr

2
64

3
75 :¼

xð0Þ xð1Þ � � � xðq� 1Þ

xðkÞ xðkþ 1Þ � � � xðkþ q� 1Þ

xð2kÞ xð2kþ 1Þ � � � xð2kþ q� 1Þ

2
64

3
75:

It can be seen without difficulty that the data equations
can be written as

Yp ¼ OkXp þ T
d
kUp þ T

w
kWp þ Vp, ð15Þ

Yf ¼ OkXf þ T
d
kUf þ T

w
kWf þ Vf, ð16Þ

Yr ¼ OkXr þ T
d
kUr þ T

w
kWr þ Vr: ð17Þ

In addition, the state equations linking the state
sequences have the relationships

Xf ¼ AkXp þ C
d
kUp þ C

w
kWp, ð18Þ

Xr ¼ AkXf þ C
d
kUf þ C

w
kWf: ð19Þ
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As in x 4, we divide OkC
d
k into two Toeplitz matrices, one

in the upper triangular form �U and one in the lower

triangular form �L, as in equation (12). In short,
we have OkC

d
k ¼ �U þ �L.

Due to the presence of noise, a stronger condition

than (11) is needed for experiments to be informative

in the combined deterministic-stochastic case. One
such condition can be expressed as follows:

E

&SXf

Uf

Ur

0
@

1
A &SXf

Uf

Ur

0
@

1
A
�2

4
3
5 > 0, ð20Þ

where S :¼ Yp þ Up þ U f þ Ur. We refer to Chui (1997)

and Chui and Maciejowski (2005) for a detailed

exposition on informative experiments in the combined
deterministic-stochastic case. For the rest of this

paper, we shall adopt this assumption.
Now, define two new variables Zf and Zr as follows:

Zf

Zr

� �
:¼

Yf

Yr

� �
�
T

d
k 0

�U T
d
k

" #
Uf

Ur

� �
: ð21Þ

Using Equations (16), (17) and (19), it is easy to see that

Zf and Zr can also be written as

Zf ¼ OkXf þ T
w
kWf þ Vf, ð22Þ

Zr ¼ OkA
kXf þ �LUf þOkC

w
kWf þ T

w
kWr þ Vr: ð23Þ

The purpose of introducing Zr and Zf is to eliminate

any known information relating to the Markov
parameters h0, . . . , hk�1, so that the subsequent

Markov parameters hk, . . . , h2k�1 can be determined.

The spaces spanned by the rows of Zf and Zr will be

denoted by Zf and Zr, respectively.
In this three-block configuration, the projection space

will be S :¼ Yp þ Up þ Uf þ Ur: Again, k will be

assumed to be greater than the observability index,

which implies that Ok�1 is of full column rank.

Theorem 1: Suppose (20) holds. Then,

&SX r � &SYf þ U f,

&SX r þ Ur ¼ &SX r � Ur � ð&SYf þ UfÞ � Ur,

where S ¼ Yp þ Up þ Uf þ Ur.

Proof: Due to the uncorrelated property of past, future
and remote future noises, we have &SWf ¼ &SVf ¼

&SWr ¼ &SVr ¼ 0. Projecting equation (16) onto S

gives &SYf ¼ Ok&SXf þ T
d
kUf. Thus, we have

&SYf � &SX f þ U f,

&SYf þ Uf � &SX f þ U f, ð24Þ

where the last inclusion is obtained by adding Uf to both
sides of the first inclusion. On the other hand, it is also
easy to see that Ok&SXf ¼ &SYf � T

d
kUf. Thus, we have

&SX f � &SYf þ U f,

&SX f þ U f � &SYf þ U f, ð25Þ

where the last inclusion is obtained by adding Uf to
both sides of the first inclusion. In effect, (24) and
(25) together imply

&SX f þ U f ¼ &SYf þ Uf:

Using (20), it can be seen that &SX f þ Uf þ Ur ¼

&SX f � U f � Ur. Moreover, we have &SX r � &SX f �

U f, which can be seen from projecting equation (19)
onto S. Thus,

&SX r þ Ur ¼ &SX r � Ur � &SX f � Uf � Ur

¼ ð&SYf þ UfÞ � Ur,

which completes the proof. œ

Remark 1: From Theorem 1, it can be seen that
&SYf þ U f provides a subspace which contains the
space of the Kalman filter state sequence &SX r.

Theorem 2: Suppose equation (20) holds. Then,

&SX f ¼ &SZf,

&SX f þ Uf ¼ &SX f � Uf ¼ &SZf � Uf,

where S ¼ Yp þ Up þ U f þ Ur.

Proof: Due to the uncorrelated property of past, future
and remote future noises, we have &SWf ¼ &SVf ¼

&SWr ¼ &SVr ¼ 0. Thus, projecting equation (22)
onto S gives

&SZf ¼ Ok&SXf:

By equation (20), we have &SX f þ Uf þ Ur ¼

&SX f � U f � Ur. Since Ok is injective, the statement
follows. œ

Remark 2: From Theorem 2, it can be seen that &SZf

can be used to observe the space of the Kalman filter
state sequence &SX f.

Subspace identification – a Markov parameter approach 1417



6. Markov parameter estimation

From Theorems 1 and 2, a corollary can immediately be
obtained. In this corollary, we eliminate by orthogonal
projections the state components &SXr in equation (30)
and &SXf in equation (31) in order to isolate the input
components. It turns out that such an isolation can
be done without reducing the richness of the input
sequences, as shown in (28), and (29) below.

Corollary 1: Suppose equation (20) holds. Denote R :¼
&SYf þ Uf and Q :¼ &SZf. Then,

&R? &SYr ¼ T
d
k &R?Ur, ð26Þ

&Q? &SZr ¼ �L &Q?Uf, ð27Þ

where S ¼ Yp þ Up þ Uf þ Ur. Furthermore,

E ð&R?UrÞ
�
&R?Ur

��� �
> 0, ð28Þ

E ð&Q?UfÞ
�
&Q?Uf

��� �
> 0: ð29Þ

Proof: Projecting equations (17) and (23) onto S gives

&SYr ¼ Ok&SXr þ T
d
kUr, ð30Þ

&SZr ¼ OkA
k&SXf þ �LUf: ð31Þ

From Theorems 1 and 2, we have &SX r � R and
&SX f � Q. Thus, we can isolate T d

k and �L by the
corresponding orthogonal projection. Furthermore, the
direct sum property stated in Theorems 1 and 2 gives
(28) and (29). œ

It can been seen that the matrices T d
k and �L can directly

be determined from equations (26) and (27) in
Corollary 1. However, recall that T d

k is a lower triangu-
lar Toeplitz matrix composed of h0, . . . , hk�1, and �L

a lower triangular Toeplitz matrix composed of
hk, . . . , h2k�1. In practice such a T d

k and a �L may
not be a perfect lower triangular Toeplitz matrix.
As a result, a direct extraction of the Markov
parameters may not be possible since several values
of a single Markov parameter may be obtained in the
corresponding entries in the Toeplitz matrix. Owing to
this consideration, another method of extracting the
Markov parameters is proposed.
First, consider equation (26). Partition the following

matrices:

&ð&SYfþUfÞ?&SYr¼:

S1

S2

..

.

Sk

2
66664

3
77775 and &ð&SYfþU fÞ?Ur¼:

P1

P2

..

.

Pk

2
66664

3
77775,

with obvious dimensions. From Inequality (28), we have
&ð&SYfþU fÞ?Ur of full row rank. Define S and P as

S :¼ S1 S2 � � � Sk

� �

and P :¼

P1 P2 � � � Pk

P1 � � � Pk�1

. .
. ..

.

0 P1

2
66664

3
77775,

where P is of full row rank as well. Furthermore, it can
be seen without difficulty that

S ¼ HP,

where H :¼ h0 h1 � � � hk�1
� �

. Thus least-squares
solutions for the first k Markov parameters can be
obtained as

H ¼ SP�ðPP�Þ�1:

To solve for the next kMarkov parameters hk, . . . , h2k�1,
we can simply repeat this procedure with equation (27).

7. Kalman filter state estimation

Van Overschee and De Moor (1994) showed that the
state sequence Xk projected onto the input–output
space S was actually a state sequence estimate, running
through the following Kalman filter with some initial
condition X̂X0

X̂Xt ¼ AX̂Xt�1 þ BUt�1 þ Kt�1ðYt�1 � CX̂Xt�1 �DUt�1Þ,

ð32aÞ

Kt�1 ¼ ðGþ A ~PPt�1C
�Þð�0 þ C ~PPt�1C

�Þ
�1, ð32bÞ

~PPt ¼ A ~PPt�1A
� � ðGþ A ~PPt�1C

�Þð�0 þ C ~PPt�1C
�Þ
�1

� ðGþ A ~PPt�1C
�Þ
�, ð32cÞ

where

~PP0 þ�s :¼
1

q
E
�
½X0 � X̂X0� ½X0 � X̂X0�

�
�
: ð33Þ

Note also that extension to the partial stochastic
excitation case can be found in Chui (1997) and
Chui and Maciejowski (1998b). In this section, a new
method is derived for estimating the Kalman filter
state sequences &SXk and &SþYk

Xkþ1. This method
first determines the initial Markov parameters, then
isolates the terms O2k�1&SXk and O2k�1&SþYk

Xkþ1
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from the data equations, and finally factors out O2k�1

using a singular value decomposition.
Suppose that the first 2k Markov parameters

have already been determined. We have already seen
how they can be obtained using a three-block
partition of the block-Hankel matrices. Then, it is easy
to see that

Yf

Yr

� �
� T

d
2k

Uf

Ur

� �
¼ O2kXf þ T

w
2k

Wf

Wr

� �
þ

Vf

Vr

� �
:

Projecting the above equation onto S ¼ Yp þ Upþ

Uf þ Ur gives

&S
Yf

Yr

� �
� T

d
2k

Uf

Ur

� �
¼ O2k&SXf: ð34Þ

The main idea now is to extract the terms O2k�1&SXk

and O2k�1&SXkþ1 from the data equations. To this
end, we introduce two more matrices UU and UL, each
of which has one block row (U3k�1 or Uk) deleted, in
the following way:

Uf

Ur

� �
¼

Uk

..

.

U3k�1

2
64

3
75 ¼

UU

����

U3k�1

2
64

3
75 ¼

Uk

����

UL

2
64

3
75: ð35Þ

We define YU and YL similarly. Thus, as in equation (34)
we have

&SYU � T
d
2k�1UU ¼ O2k�1&SXk, ð36Þ

&SþYkYL � T
d
2k�1UL ¼ O2k�1&SþYk

Xkþ1: ð37Þ

Finally, we separate the observability matrix and
the Kalman filter states using a singular value
decomposition

&SYU &SþYkYL

� �
� T

d
2k�1 UU UL

� �
¼: �1 �2

� � �1 0

0 0

� �
��1

��2

� �
: ð38Þ

Then, in some particular state coordinates we have

O2k�1 ¼ �1�
1=2
1 , and &SXk &SþYk

Xkþ1

� �
¼�1=2

1 ��1:

An important property of the two Kalman filter state
estimate sequences &SXk and &SþYk

Xkþ1 is that they
are sequences of two consecutive state estimates from
the same Kalman filter bank. In Van Overschee and
De Moor (1994) it has been shown that for the full
stochastic excitation case (or equation (5) positive

definite for t ¼ �), these two state estimates can be

obtained from the same Kalman filter with initial state
estimate &UX0, where U :¼ Up þ Uf þ Ur. It is also

shown in Chui (1997) and Chui and Maciejowski
(2005) that even if the system is not fully stochastically

excited, the above statement remains true. In general,

the initial conditions for &SXk and &SþYk
Xkþ1 are

respectively &ðY d
p\YpÞþU

X0 and &ðY dþ
p \Y

þ
p ÞþU

X0, where

Ydþ
p :¼ Yd

p þ Y
d
k and Yþp :¼ Yp þ Yk. However, it is also

shown that as long as k is greater than the observability

index, we have

ðYd
p \ YpÞ þ U ¼ ðY

dþ
p \ Y

þ
p Þ þ U:

This is also to say that the two state estimates are from

the same Kalman filter with the same initial condition.

8. Modelling of the deterministic part

In this section, three different approaches are presented
for estimating the system matrices A, B, C, D. One

method is to extract the system matrices directly from

the initial Markov parameters in a similar fashion as
in Kung’s algorithm. The second method determines

system matrices using the shift invariance approach.
Finally, the third method, extended from Chui and

Maciejowski (1999), determines system matrices using

the state sequence approach. Our experience is that
none of these three methods is uniformly better than

the other two; each is best for particular data sets.
However, a tentative comparison of the three methods

is made at the end of x 11.

8.1. A Markov parameter approach

One effective way of finding system matrices from

Markov parameters is to use Kung’s algorithm. The
procedure is the following. First determine the initial

2k Markov parameters as in x 6. Then, construct the
block-Hankel matrix H as

H :¼

h1 h2 � � � hk

� �
�

� �
�

� �
�

� �
�

hk hkþ1 � � � h2k�1

2
6664

3
7775:

Decompose the block Hankel matrix using SVD, and
follow the standard Kung’s algorithm as in Kung (1978).
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If the block-Hankel matrix is formed instead as

H :¼

h1 � � � h2k�1

..

.

� �
�

0

h2k�1 0 0

2
64

3
75

then a balanced (and hence asymptotically stable)
approximation can be obtained in a very simple fashion
for rapidly decaying systems. By rapidly decaying we
mean that all eigenvalues of A are relatively close to
zero, so that the first 2k Markov parameters contain
all the significant dynamics of the system.
However, to determine the stochastic part of the

system, Kalman filter state sequences are needed.
Instead of calculating the SVD of (38), we compute
the following SVD:

h1

..

.
&SYU � T

d
2k�1UU &SþYkYL � T

d
2k�1UL

h2k�1 �
�
�
�
�

�
�
�
�
�

2
664

3
775

¼: �1 �2

� � �1 0

0 0

� �
��1

��2

� �
:

It can be seen from (36) and (37) that this can also be
written as

O2k�1 B �
� &SXk �
� &SþYk

Xkþ1

� �
¼ �1�1�

�
1:

In some particular state coordinates, we have

O2k�1 ¼�1�
1=2
1 , B �

� &SXk �
� &SþYk

Xkþ1

� �
¼�1=2

1 �1:

Clearly, B, &SXk, and &SþYkXkþ1 are obtained in this
way, whereas D is simply equal to h0. A and C can be
obtained from Ok by using the shift invariance property,
as shown in (39) in the next subsection.

8.2. A shift invariance approach

The identification method using the shift invariance
property is more complicated and requires a greater
computational effort compared with the other two
methods mentioned in this section. However, these
shortcomings are usually considered to be outweighed
by its ability to provide a better fit to the data.
In this method, we first determine O2k�1 and &SXf

as in x 7. In practice, there may not exist matrices A
and C which fit O2k�1 perfectly, due to sampling error.
A commonly used remedy is to find the best A and C
in the least-squares sense with the use of the shift

invariance property

C ¼ �1 and A ¼

�1

..

.

�2k�2

2
64

3
75
y �2

..

.

�2k�1

2
64

3
75, where

O2k�1 ¼

�1

..

.

�2k�1

2
64

3
75: ð39Þ

ReconstructO2k from A and C. Now, from equation (34)
it is not hard to see

&S
Yf

Yr

� �
�O2k&SXf ¼ T d

2k

Uf

Ur

� �
:

Again, in practice there may not exist matrices B and D
which fit the above equation perfectly. To solve for B
and D from the above, we first note that

T
d
2k

Uf

Ur

� �
¼

I 0

������
0

0
O2k�1

�
�
�
�
�

2
664

3
775 D

B

� �
Uk

þ

0 0

�����
I

0

0

O2k�2�
�
�
�
�

2
664

3
775 D

B

� �
Ukþ1

þ � � � þ

0 0

�����
0

I

0

0�
�
�
�
�

2
664

3
775 D

B

� �
U3k�1:

Furthermore, note that B and D appear linearly in the
equation. Using the Kronecker product (see for instance
Horn and Johnson (1994)), we have

vec T d
2k

Uf

Ur

� �� �

¼ U�k 	

I 0

������
0

0
O2k�1

�
�
�
�
�

2
664

3
775

0
BB@

1
CCAvec D

B

� �� �

þ U�kþ1 	

0 0

�����
I

0

0

O2k�2�
�
�
�
�

2
664

3
775

0
BB@

1
CCAvec D

B

� �� �

þ � � � þ U�3k�1 	

0 0

�����
0

I

0

0�
�
�
�
�

2
664

3
775

0
BB@

1
CCAvec D

B

� �� �
:

ð40Þ

Here, 	 denotes the Kronecker product and vec denotes
the vector operation, i.e. stacking the columns of the
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matrix on top of each other in a vector. Thus, from the
above equation the least-squares solutions for B and D
can easily be acquired by taking the appropriate
pseudo-inverse. Finally, note that discussion on stability
enforcement can be found in Chui and Maciejowski
(1996a).

8.3. A state sequence approach

In the shift invariance approach, we have already seen
that the matrices A and C are first determined, and
then the matrices B and D. However, in determining
B and D, Kronecker products are employed to convert
the data equation into a matrix-vector form. For this
reason, numerical complexity can increase dramati-
cally if a large amount of data is used. In Van
Overschee and De Moor (1994), an alternative
method, which is known as the state sequence
approach, is proposed. Such a method has also been
used for deterministic identification in Moonen et al.
(1989). In a combined deterministic-stochastic setup,
this method reduces the complexity of the numerical
calculation, but in some algorithms at the expense of
introducing a bias in the estimates. Loosely speaking,
this bias can be regarded as resulting from the fact
that initial Markov parameters are not available.
Consequently, inconsistent Kalman filter state
sequences, in the sense that their initial conditions are
not consistent, are obtained for different time instants.
Further detail regarding this issue is omitted here but
can be found in more depth in Van Overschee and
De Moor (1994).
As seen at the end of x 7, &SXk and &SþYkXkþ1

are Kalman filter state sequences with consistent
initial conditions. Consequently, denoting X̂Xk :¼ &SXk

and X̂Xkþ1 :¼ &SþYk
Xkþ1, we have

X̂Xkþ1 ¼ AX̂Xk þ BUk þ KkðYk � CX̂Xk �DUkÞ, ð41aÞ

Yk ¼ CX̂Xk þDUk þ ðYk � CX̂Xk �DUkÞ: ð41bÞ

These equations can also be written as

X̂Xkþ1

Yk

" #
¼

A B

C D

" #
X̂Xk

Uk

" #
þ

Kk

I

" #
ðYk � CX̂Xk �DUkÞ:

In Van Overschee and De Moor (1994), it is pointed
out that Yk � CX̂Xk �DUk is orthogonal to X̂Xk and Uk.
More precisely, we have

E
�
ðYk � CX̂Xk �DUkÞðX̂XkÞ

�
�

¼ E
�
ðYk � CX̂Xk �DUkÞðUkÞ

�
�
¼ 0:

Consequently, unbiased estimates can be obtained from
a least-squares solution:

A B

C D

� �
¼ E

X̂Xkþ1

Yk

 !
X̂Xk

Uk

 !�" #
E

X̂Xk

Uk

 !
X̂Xk

Uk

 !�" #�1
:

Note that the conditions for the above covariance
matrix to be invertible are covered in Chui (1997) and
Chui and Maciejowski (2005). In practice, with real
data, this unbiasedness is obtained asymptotically as
N!1, although k can remain fixed.

Again, for a discussion of stability enforcement with
the state-sequence approach we refer to Chui and
Maciejowski (1996a).

9. Modelling of the stochastic part

In this section, we will follow the method proposed
in Van Overschee and De Moor (1993, 1994) to model
the stochastic subsystem. With A, B, C, D, X̂Xk and
X̂Xkþ1 determined, this method uses (41) to estimate
the steady state covariances �w,�wv and �v. However,
since equations (41) are not in steady state, there is
some approximation error. Nonetheless, as pointed
out in Van Overschee and De Moor (1996) this approx-
imation error will grow smaller, as the number of blocks
k grows larger.

The stochastic identification procedure is summarized
as follows. First determine A, B, C, D, X̂Xk and X̂Xkþ1 as in
the previous sections. Now, let

"w

"v

� �
¼

X̂Xkþ1

Yk

" #
�

A B

C D

� �
X̂Xk

Uk

" #
:

Then, obtain the approximation:

�w �wv

�vw �v

" #



1

q
E

"w

"v

 !
"w

"v

 !�" #
, ð42Þ

where q is the number of columns in Uk,Yk, etc., as
defined in x 3. Solve �s,G, and �0 from

�s ¼ A�sA� þ�w; ð43aÞ

G ¼ A�sC� þ�wv; ð43bÞ

�0 ¼ C�sC� þ�v: ð43cÞ
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Finally, the Kalman filter gain K and the associated
covariance matrix P can be solved from

K ¼ ðGþ APC�Þð�0 þ CPC�Þ�1, ð44aÞ

P ¼ APA� � ðGþ APC�Þð�0 þ CPC�Þ�1ðGþ APC�Þ�:

ð44bÞ

10. Numerically efficient implementation by

QR factorization

In practice, QR factorization has been shown to be a
reliable and efficient way of implementing subspace
algorithms. (In the literature of subspace idenitfication
it is common to use the term RQ factorization, because
the factorization used is one in which the triangular R
factor comes before the orthogonal Q factor. This is
sometimes called the LQ factorization. We prefer to use
the term QR factorization, since this is the commonly
used terminology in the linear algebra literature.) Both
the MOESP algorithms in Verhaegen (1994) and the
N4SID algorithms in Van Overschee and De Moor
(1994) use QR factorization to speed up numerical
computation. To implement an efficient algorithm for
the identification scheme developed in this paper, the
following QR factorization is computed:

Uf

Ur

Up

Yp

Yf

Yr

2
666666664

3
777777775
¼:

R11 0

R21 R22

R31 R32 R33

R41 R42 R43 R44

R51 R52 R53 R54 R55

R61 R62 R63 R64 R65 R66

2
666666664

3
777777775

�

Q1

Q2

Q3

Q4

Q5

Q6

2
666666664

3
777777775
¼: RQ: ð45Þ

Note that the above arrangement of the data blocks
shares a similar structure with that used in the
MOESP PO scheme Verhaegen (1994), both having
the past data blocks placed in the center.
The major advantage of this factorization is that

sequences projected onto S ¼ Yp þ Up þ U f þ Ur

are easily obtained by eliminating the Q5 and Q6

components. That is,

&S
Yf

Yr

� �
¼

R51 R52 R53 R54 0 0

R61 R62 R63 R64 0 0

� �
Q:

The following subsections show how this factorization
facilitates the computation of Markov parameters and
Kalman filter state sequences.

10.1. Determination of the first k Markov parameters

From the QR factorization in equation (45), a smaller
QR factorization is computed

R52 R53 R54

R22 0 0

R62 R63 R64

2
64

3
75 ¼:

R̂R52 0 0

R̂R22 R̂R23 0

R̂R62 R̂R63 R̂R64

2
64

3
75 Q̂Q2

Q̂Q3

Q̂Q4

2
64

3
75:
ð46Þ

It will been seen in Proposition 10 that T d
k can in fact

be determined from this factorization. Also, with
this smaller factorization we immediately obtain the
following factorization

&S

Uf

Yf

Ur

Yr

2
666664

3
777775¼

R11 0 0 0

R51 R52 R53 R54

R21 R22 0 0

R61 R62 R63 R64

2
666664

3
777775

Q1

Q2

Q3

Q4

2
666664

3
777775

¼

R11 0 0 0

R51 R̂R52 0 0

R21 R̂R22 R̂R23 0

R61 R̂R62 R̂R63 R̂R64

2
666664

3
777775

I 0

0 Q̂Q2

0 Q̂Q3

0 Q̂Q4

2
666664

3
777775

Q1

Q2

Q3

Q4

2
666664

3
777775¼: R̂RQ̂Q:

ð47Þ

Proposition 1: Suppose equation (20) holds. Then, for
R̂R23 and R̂R63 defined in equation (46), we have

R̂R63 ¼ T
d
kR̂R23:

Proof: By Theorem 1 we have &SYr � &SYfþ

U f þ Ur. This implies R̂R64 ¼ 0. Now, let R :¼&SYfþU f.
From equation (47), it is easy to see that

&R?Ur ¼ 0 0 R̂R23 0
� �

Q̂Q,

&R?&SYr ¼ 0 0 R̂R63 0
� �

Q̂Q:

Thus, by Corollary 1 the result follows. œ
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Using the QR factorization in (46) and Proposition 1,
we can determine h0, . . . , hk�1 by following the proce-
dure described in x 6.

Remark 3: It is noteworthy that the QR factorization
in equation (46) requires much less numerical
calculation than that in equation (45).

10.2. Determination of the next k Markov parameters

With Markov parameters h0, . . . , hk�1, we can construct
�U as in equation (12). The next step is to determine
&SZf and &SZr as in equation (21). From equation
(47), we have

&SZf ¼ &SYf � T
d
kUf

¼ R51 R̂R52 0 0
� �

Q̂Q� T d
k R11 0 0 0
� �

Q̂Q

¼: �RR51 R̂R52 0 0
� �

Q̂Q;

and

&SZr ¼ &SYr � ½�U T
d
k�

Uf

Ur

� �

¼ R61 R̂R62 R̂R63 R̂R64

� �
Q̂Q

� �U Tk

� � R11 0 0 0

R21 R̂R22 R̂R23 0

� �
Q̂Q

¼: �RR61
�RR62

�RR63 R̂R64

� �
Q̂Q:

To obtain the next k Markov parameters, another
small QR factorization, similar to that in equation (46),
is computed

�RR51 R̂R52

R11 0
�RR61

�RR62

2
4

3
5 ¼:

~RR51 0
~RR11

~RR12
~RR61

~RR62

2
4

3
5 ~QQ1

~QQ2

� �
: ð48Þ

Note that �L can be determined from the above QR
factorization. To see how, we first observe the following
factorization which can be obtained immediately from
the above QR factorization:

&S

Zf

Uf

Zr

2
64

3
75 ¼

�RR51 R̂R52 0 0

R11 0 0 0

�RR61
�RR62

�RR63 R̂R64

2
64

3
75Q̂Q

¼

~RR51 0 0 0

~RR11
~RR12 0 0

~RR61
~RR62

�RR63 R̂R64

2
64

3
75

�

~QQ1 0

~QQ2 0

0 I

2
64

3
75Q̂Q ¼: ~RR ~QQ: ð49Þ

Proposition 2: Suppose equation (20) holds. Then, for
~RR12 and ~RR62 defined in equation (48), we have

~RR62 ¼ �L
~RR12:

Proof: By Theorem 2 we have &SZr � &SZf þ U f.
This implies �RR63 ¼ R̂R64 ¼ 0. Now, let Q :¼ &SZf.
From equation (49), it is easy to see that

&Q?Uf ¼ 0 ~RR12 0 0
� �

~QQ,

&Q?&SZr ¼ 0 ~RR62 0 0
� �

~QQ:

Thus, by Corollary 1 the result follows. œ

Using the QR factorization in (48) and Proposition 2,
we can determine hk, . . . , h2k�1 by following the proce-
dure described in x 6.

10.3. Determination of Kalman filter state sequences

The determination of Kalman filter state sequences
is relatively straightforward. The first step is to
extract UU,UL,YU and YL, which are defined in
equation (35). To obtain these block Hankel matrices,
we can simply repartition the QR factorization in
equation (45) as

UU

U3k�1

����

Up

Yp

����

YU

Y3k�1

2
66666666666664

3
77777777777775
¼:

Rþ11
R�21 R�22

�������������

R31 R32 R33

R41 R42 R43 R44

�������������

Rþ51 Rþ52 Rþ53 Rþ54 Rþ55
R�61 R�62 R�63 R�64 R�65 R�66

2
66666666666664

3
77777777777775
Q :¼RQ,

ð50Þ

and

Uk

UL

����

Up

Yp

����

Yk

YL

2
66666666666664

3
77777777777775
¼:

R�11

Rþ21 Rþ22
�������������

R31 R32 R33

R41 R42 R43 R44

�������������

R�51 R�52 R�53 R�54 R�55
Rþ61 Rþ62 Rþ63 Rþ64 Rþ65 Rþ66

2
66666666666664

3
77777777777775
Q :¼RQ:

ð51Þ

Using the first 2k Markov parameters deter-
mined in the previous subsections, we reconstruct
T 2k�1. Consequently, equations (36) and (37) can be

Subspace identification – a Markov parameter approach 1423



rewritten as

O2k�1&SXk ¼ &SYU � T
d
2k�1UU

¼ Rþ51 Rþ52 Rþ53 Rþ54 0 0
� �

Q

� T
d
2k�1 Rþ11 0 0 0 0 0

� �
Q

¼: �RRþ51 Rþ52 Rþ53 Rþ54 0 0
� �

Q,

and

O2k�1&SþYk
Xkþ1 ¼&SþYkYL�T

d
2k�1UL

¼ Rþ61 Rþ62 Rþ63 Rþ64 0 0
� �

Q

�T
d
2k�1 Rþ21 Rþ22 0 0 0 0

� �
Q

¼: �RRþ61 Rþ62 Rþ63 Rþ64 Rþ65 0
� �

Q:

Finally, the following SVD is computed

�RRþ51 Rþ52 Rþ53 Rþ54 0 0 �RRþ61
�RRþ62 Rþ63 Rþ64 Rþ65 0

� �
¼: ½�1 �2 �

�1 0

0 0

� �
��1

��2

� �
:

Then, we have

O2k�1¼�1

X1=2

1
, and &SXk &SþYk

Xkþ1

� �
¼
X1=2

1
��1Q:

Schematic overviews of the algorithms developed in this

paper can be found in tables 1, 2, and 3.

11. Case studies

Various aspects of the performance of the subspace

algorithms presented in this paper are investigated in

two case studies. These case studies are based on data

taken from industrial systems. Both sets of data are

available in the DAISY database (De Moor 1997),

and both have also been investigated in Chou and

Maciejowski (1997).

. The first example, presented in x 11.1, is based on

step responses of a simulation model of a fractional

distillation column.
. The second example, presented in x 11.2, is based on

a set of process measurements recorded from an

industrial dryer.

Table 1. A schematic overview of the subspace identification via Markov parameter estimation:
a Markov parameter approach.

Algorithm 2: ID via MP estimation; a Markov parameter apprroach

(1) Construct Up, Uf, Ur and Yp, Yf, Yr as in equation (14).

(2) Determine h0, . . . , hk�1 from

&R?&SYr ¼ T
d
k&R?Ur, for R :¼ &SYf þ U f:

(3) Compute Zf and Zr as in (21). Then determine hk, . . . , h2k�1 from

&Q?&SZr ¼ �L &Q?Uf, for Q :¼ &SZf:

(4) Extract UU, UL and YU and YL as in (35). Calculate the following SVD and partition accordingly by selecting a model order

h1

..

.
&SYU � T

d
2k�1UU &SþYkYL � T

d
2k�1UL

h2k�1

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2
6666664

3
7777775
¼: �1 �2

� � �1 0

0 0

� �
��1

��2

� �
:

(5) Assign D¼ h0. Determine O2k�1, B, &SXk and &SþYk
Xkþ1 as

O2k�1 ¼ �1�
1=2
1 , and B &SXk &SþYkXkþ1

� �
¼ �1=2

1 ��1:

(6) Determine A and C from O2k�1 using the shift invariance property, as in (39).

(7) Determine �w,�v, and �wv by taking the covariance of

"w
"v

� �
:¼

&SþYkXkþ1

Yk

� �
�

A B
C D

� �
&SXk

Uk

� �
:

(8) Determine Kalman filter gain K and the error covariance matrix P using (43) and (44).
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H1 and H2 model errors are not used commonly as

performance indicators in the identification literature,

since the true generating system is not usually avail-

able. But in the first example it is possible to obtain

a very high-order model which fits the step response

data exactly, and consider that model to be the

‘‘true system’’. We are therefore able to investigate

H1 and H2 measures of performance. One purpose

of such a study is to reveal how well the

algorithms perform in extracting system dynamics

within a certain model order. In the second example

performance is measured in a more classical

fashion, namely in terms of simulation and prediction

accuracy.
As it is difficult to judge the performance of identifi-

cation algorithms in an absolute sense, throughout the

case studies a rather well-known subspace identification

algorithm, N4SID Robust Combined Algorithm

(Van Overschee and De Moor 1996, p. 131), is used

as a reference method, whose performance is provided

for comparison with our algorithms. Note that this

reference algorithm has been encoded as a MATLAB

m-file subid.m, which can be found in Van Overschee

and De Moor (1996).

11.1. A distillation column

The data is the step response of a very detailed
non-linear simulation model of a fractional distillation
column with 3 input channels: the input cooling tem-
perature, the reboiling temperature, and the pressure,
and 2 output channels: the top product flow rate and
the C4 concentration. Step responses were determined
by applying a step to each of the input channels, while
keeping the other two input channels at zero. The
responses from the output channels were then sampled
at a rate of once every second for a period of 2500
seconds, giving a total of 2501 samples.

The ‘true model’ Since the dynamics of the column are
very slow, we re-sampled the data with a sampling inter-
val of 30 seconds, leaving a total of 84 samples. We then
converted the step responses to impulse responses by
taking successive differences, and used these to generate
a high-order ‘‘true system’’ that reproduced these
impulse responses perfectly.

As pointed out in Chou (1994), it is important to
make sure that the the input–output channels are
scaled, so that they are all weighted comparably.
A good basis for appropriate scaling is the energy

Table 2. A schematic overview of the subspace identification via Markov parameter estimation:
a shift invariance approach.

Algorithm 3: ID via MP estimation; a shift invariance apprroach

(1) Construct Up, Uf, Ur and Yp, Yf, Yr as in equation (14).

(2) Determine h0, . . . , hk�1 from

&R?&SYr ¼ T
d
k&R?Ur, for R :¼ &SYf þ U f:

(3) Compute Zf and Zr as in (21). Then determine hk, . . . , h2k�1 from

&Q?&SZr ¼ �L &Q?Uf, for Q :¼ &SZf:

(4) Extract UU, UL and YU and YL as in (35). Calculate the following SVD and partition accordingly by selecting a model order:

&SYU &SþYkYL

� �
� Td

2k�1 UU UL

� �
¼: �1 �2

� � �1 0
0 �2

� �
��1
��2

� �
:

(5) Determine O2k�1, &SXk and &SþYk
Xkþ1 as

O2k�1 ¼ �1�
1=2
1 , and &SXk &SþYk

Xkþ1

� �
¼ �

1=2
1 ��1:

(6) Determine A and C from O2k�1 using the shift invariance property, as in (39).

(7) Reconstruct O2k. Solve for B and D as in (40) from

B,D ¼ arg min
B,D

&S
Yf

Yr

� �
�O2k&SXk � Td

2kðB,DÞ
Uf

Ur

� �����
����
F

:

(8) Determine �w,�v, and �wv by taking the covariance of

"w
"v

� �
:¼

&SþYkXkþ1

Yk

� �
�

A B
C D

� �
&SXk

Uk

� �
:

(9) Determine Kalman filter gain K and the error covariance matrix P using (43) and (44).
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content of each input–output channel, calculated as the

sum of squares of all data points of the corresponding

impulse response. Thus the input–output channels

were rescaled according to the scheme developed in

Chou (1994). The final scaled step responses are

depicted in figure 1.

Identification data Two sets of data, each of length

N¼ 1000, were generated from the ‘‘true system’’,

with an initial condition vector generated as normal

random variables and an input signal generated by

uniform random variables distributed in [0,1].

Furthermore, one set of simulation data was left noise-

free, whereas the other was corrupted by white process

and output noises of variance 0.15.

Performance measurement The proposed identification

algorithms, Algorithms 2–4, were applied to these two

sets of data. Note that the original model has a H1
norm of 247.6 and aH2 norm of 75.63. The performance

of the proposed algorithms and of the N4SID algorithm

is given in table 4 for the noise-free case and table 5

for the noise-corrupted case. Note that algorithms

which give the smallest H1 or H2 error are highlighted

for each model order.

Figures 2 and 3 show the frequency responses of the

original model and the 8th order identified models

in the noise free and noise corrupted case respectively.

For a clear view, only models produced by

Algorithm 4 and N4SID algorithm are displayed

for comparison. On the other hand, the errors of

the identified models, measured as the maximum

singular value of the difference from the original

model, are plotted for each frequency in Figures 4

and 5. From these figures, it is easy to verify

the H1 errors calculated earlier. At this point, some

observations can be drawn from the tables and figures

as follows:

. The proposed algorithms seem to be less sensitive to

noise and provide better models for most estimates

of the state dimension n (the order).
. Algorithm 4 seems to be least sensitive to the choice

of state dimension.

As regards computational complexity, Algorithms 2–4

needed about 135M, 134M, and 156M floating point

operations respectively for the 8th order models, while

the N4SID algorithm required about 142M floating

point operations. Finally, note that the truncation

Table 3. A schematic overview of the subspace identification via Markov parameter estimation:
a state sequence approach.

Algorithm 4: ID via MP estimation; a state sequence approach

(1) Construct Up, Uf, Ur and Yp, Yf, Yr as in equation (14).

(2) Determine h0, . . . , hk�1 from

&R?&SYr ¼ T
d
k&R?Ur, for R :¼ &SYf þ U f:

(3) Compute Zf and Zr as in (21). Then determine hk, . . . , h2k�1 from

&Q?&SZr ¼ �L &Q?Uf, for Q :¼ &SZf:

(4) Extract UU, UL and YU and YL as in (35). Calculate the following SVD and partition accordingly by selecting a model order

&SYU &SþYkYL

� �
� Td

2k�1 UU UL

� �
¼: �1 �2

� � �1 0
0 �2

� �
��1
��2

� �
:

(5) Determine &SXk and &SþYk
Xkþ1 as

&SXk &SþYk
Xkþ1

� �
¼ �

1=2
1 ��1:

(6) Determine A, B, C and D from

A,B,C,D ¼ arg min
A,B,C,D

&SþYkXkþ1

Yk

� �
�

A B
C D

� �
&SXk

Uk

� �����
����
F

:

(7) Determine �w,�v, and �wv by taking the covariance of

"w
"v

� �
:¼

&SþYkXkþ1

Yk

� �
�

A B
C D

� �
&SXk

Uk

� �
:

(8) Determine Kalman filter gain K and the error covariance matrix P using (43) and (44).
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index k for Algorithms 2–4 was chosen to be 15, whereas

for the N4SID algorithm it was chosen to be 23.

The rationale for choosing these values is explained

below.
The results with these values of k can be seen in

tables 4 and 5. In each case, it can be observed that as

we increase the model order, initially the model

quality improves, as judged by both the H1 norm and

the H2 norm. Beyond some model order, however,

the performance deteriorates. As is to be expected, this

point is reached sooner for the noise-corrupted data

set than for the noise-free data set.

Table 4. Accuracy of distillation column models in the noise free case.

Algorithm 2 Algorithm 3 Algorithm 4 N4SID Algorithm

Order H1 Err H2 Err H1 Err H2 Err H1 Err H2 Err H1 Err H2 Err

4 39.2 16.96 26.4 13.84 21.8 13.65 35.0 13.86
6 7.9 3.44 8.1 3.27 7.9 3.25 12.3 3.54

8 7.8 2.61 7.3 2.61 7.6 2.62 11.1 2.98
10 8.2 2.25 9.8 2.34 8.5 2.26 14.7 2.80
12 6.6 1.84 6.3 1.83 6.8 1.86 7.8 1.95
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Figure 1. Scaled step responses of the distillation column simulation model. Unit time interval¼ 30 sec.
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Table 5. Accuracy of distillation column models in the noise corrupted case.

Algorithm 2 Algorithm 3 Algorithm 4 N4SID Algorithm

Order H1 Err H2 Err H1 Err H2 Err H1 Err H2 Err H1 Err H2 Err

4 42.6 16.80 32.3 14.14 28.7 13.92 36.1 14.13
6 20.1 5.05 42.7 7.03 26.8 5.86 23.6 5.31
8 17.2 4.15 14.7 4.31 14.6 4.29 31.2 5.38

10 13.9 4.08 13.6 3.96 14.7 3.98 83.7 11.18
12 21.1 4.49 22.9 4.42 17.7 3.96 86.1 9.79
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Figure 2. Comparison of frequency responses of alternative 8-state models in the noise free case: original model (solid);
model from Algorithm 4 (dashdot); model from N4SID algorithm (dotted).
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Determination of the truncation index A difficulty in
using subspace based methods is choosing a suitable
truncation index k. As the model order is determined
from some matrix closely related to OkXf, increasing k
will provide more information about Ok, or equivalently
the dynamics of the pair ðA;CÞ, which is certainly of
importance when principal components are to be
extracted from this pair. Nevertheless, an increase in
k obviously decreases the number of columns q in Xf,
creating two shortcomings. First of all, since Xf

intrinsically contains information about the
controllability pair ðA;BÞ, decreasing q will reduce the
information relating to the pair ðA;BÞ, giving a similar
problem mentioned above. On the other hand, these
columns in Xf actually have an averaging effect
on the data in each row, so they have the capability of
smoothing the observations. Therefore, if q is small,
there is relatively little smoothing. The effects of various
k values on the accuracy of pole estimation have
been made in Wahlberg and Jansson (1994) and
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Figure 3. Comparison of frequency responses of alternative 8-state models in the noise corrupted case: original model (solid);

model from Algorithm 4 (dashdot); model from N4SID algorithm (dotted).
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Jansson and Wahlberg (1995, 1999), while some
rigorous statistical treatments of this issue can be
found in Deistler et al. (1995) and Peternell et al. (1996).
When Algorithms 2–4 were applied to the two sets

of simulation data, the value of k was chosen to
give approximately optimal performance for both
data sets, and a range of model orders. As remarked
above, the best choice of k was markedly different
for our 3-block algorithms than for the N4SID
algorithm.

11.2. An industrial dryer

For the second example, data are taken from an
industrial drying process with 3 input channels: fuel
flow rate, hot gas exhaust fan speed, and rate of flow
of raw material, and 3 output channels: dry bulb
temperature, wet bulb temperature, and moisture con-

tent of the raw material leaving the dryer. The first
two inputs could be manipulated, and were generated
as pseudo-random binary signals. The third input is an
external disturbance which could not be manipulated
but could be measured. Values of the input and output

signals were recorded at a sampling interval of
1 second to obtain 11 665 samples.

Pretreatment of data The first 3000 data points were
discarded to ensure that the process had reached a
steady operating point. The means of the samples were
subtracted from the data, then both input and output
data were filtered through an anti-aliasing filter, before
re-sampling at an interval of 10 seconds. As a result, a
data set of 867 data points was obtained, which is
depicted in figure 6. As in Chou and Maciejowski
(1997), we divided the data set into two subsets, the
first one containing the first 600 data points being
used for identification, while the second one containing
the rest being used for model validation.

Performance measurement Algorithms 2–4 were
applied to the identification data set to obtain state-
space models of various orders. A commonly used
performance indicator, which measures the discrepancy
between the original output and the model output as

% Error ¼
1

p

Xp
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
j¼0 ðyiðjÞ � ŷyið j ÞÞ

2PN�1
j¼0 ð yið j ÞÞ
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Figure 5. The maximum singular value of the difference from the original model in the noise corrupted case: model from
Algorithm 4 (dashdot); model from N4SID algorithm (dotted).
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Figure 4. The maximum singular value of the difference from the original model in the noise free case: model from Algorithm 4
(dashdot); model from N4SID algorithm (dotted).
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Table 6. Simulation errors and prediction errors for the identification data set of an industrial dryer.

Algorithm 2 Algorithm 3 Algorithm 4 N4SID Algorithm

Order Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err

2 35.26 22.18 39.30 19.77 31.90 16.55 32.72 15.19

4 31.69 10.36 32.40 9.90 30.66 9.12 33.33 9.26
6 33.96 9.22 32.21 8.86 30.72 8.18 31.17 8.11

8 48.09 8.58 31.10 8.03 29.72 7.60 31.83 7.68
10 36.77 8.00 33.62 7.62 30.05 7.73 — 9.22
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Figure 6. Input and output signals of an industrial dryer. Unit time interval¼ 10 sec.
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was used to judge the fitness of each model produced by
each algorithm in this example. Here, yiðtÞ is the ith
channel of the original output, N is the number of the
data points in the data set, and p is the number of
output channels, which is 3 in this case. On the other
hand, ŷyiðtÞ represents either the simulated ith output
generated by the deterministic part of the model, with
which simulation errors are measured, or the one-step

ahead predicted ith output, with which prediction
errors are measured. As the data set is divided into the
identification and validation data sets, simulation
errors and prediction errors can be evaluated for each
of these sets, producing four performance indices.
These indices are given in table 6 for the identification
data set and table 7 for the validation data set. Note
that an entry with ‘‘—’’ in the tables indicates that the

Table 7. Simulation errors and prediction errors for the validation data set of an industrial dryer.

Algorithm 2 Algorithm 3 Algorithm 4 N4SID Algorithm

Order Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err Sim Err Pre Err

2 59.20 29.59 57.02 25.19 59.72 21.17 58.72 18.52

4 61.56 12.25 64.13 11.92 60.00 11.01 64.84 11.82
6 68.23 11.24 61.20 10.35 60.20 9.53 61.19 9.27

8 88.99 11.11 58.19 9.12 58.22 8.81 56.89 9.07
10 65.09 9.44 53.58 8.22 59.05 8.13 — 10.15
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Figure 7. Comparison of alternative 6-state models for identification data: original model (solid); model from Algorithm 4
(dashdot); model from N4SID algorithm (dotted). Unit time interval¼ 10 sec.
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identified model is unstable, thus giving a large error.
Moreover, algorithms with best performance in each
category are highlighted for easier comparison.
To illustrate the effect of Kalman filters, figure 7

shows the simulation outputs (generated by the determi-
nistic part of the models) and the prediction outputs
(generated by the full models with Kalman filters) for
the identification data set. From this figure, it is clear
that models with Kalman filters can produce much
better predictions. To avoid confusion, only models pro-
duced by Algorithm 4 and the N4SID algorithm are
displayed for comparison. On the other hand, figure 8
shows simulation outputs and cumulative simulation
errors for the validation data set, where the cumulative
error at time t is the error computed up to time t

Xt�1
j¼0

ð yið j Þ � ŷyið j ÞÞ
2

The reason for plotting these cumulative errors is that

it is difficult to distinguish between the performance of

both algorithms just by inspecting the simulation out-

puts. Here, it can be seen that the model produced by

Algorithm 4 is slightly better than that produced by

the N4SID algorithm. Finally, prediction outputs and

cumulative prediction errors for the validation data set

are depicted in figure 9. This time, Algorithm 4 gives

a better fit to the first two outputs, whereas the

N4SID algorithm gives a better fit to the third output.

At this point, we observe that

. Algorithm 4 seems to produce the best model in terms

of simulation and prediction errors, both in identifi-

cation and validation, and more distinctly in terms

of simulation errors for the identification data set.
. Models obtained by Algorithms 2–4 improve, in

terms of prediction errors, each time the model

order increases up to an order of 10.
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Figure 8. Comparison of simulation outputs of alternative 6-state models for validation data: original model (solid); model from
Algorithm 4 (dashdot); model from N4SID algorithm (dotted). Unit time interval¼ 10 sec.
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. Algorithm 2 does not seem to be as robust as
the others, as it is not consistent in producing good
estimates of various orders.

. Algorithms 2–4 required about 12.3M, 9.0M and
4.3M floating point operations respectively for the
6th order models, while the N4SID algorithm used
about 6.0M floating point operations for the same
order. The number of floating point operations in
fact depends heavily on the truncation index k used
in the algorithms. For Algorithms 2–4 the truncation
indices were set to 5, 4, and 3 respectively whereas
for the N4SID algorithm it was set to 5.

12. Conclusions

In this paper, a new approach to subspace identification,
using three-block partitions of data matrices, has been

presented. Each of the three blocks can be seen

as serving a different function, as an instrumental

variable, a Kalman filter state observer, or a computa-

tional data set. Numerically efficient implementation

using QR factorization has also been developed.
A significant advantage of the new approach is that it

gives unbiased estimates of the system matrices with the

state sequence approach in a straightforward way. It is

also noteworthy that in estimating the observability

matrix and the Kalman filter state sequence, all compo-

nents relating to the input sequences are first removed,

as in equations (36) and (37). As a result, any negative

effects due to ill conditioning of the input signals are

minimized. One drawback of the proposed method is

that it has a relatively complicated overall procedure,

in which two additional QR factorizations (46)

and (48) are required. Nonetheless, one can argue that

these QR factorizations should not adversely affect the
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Figure 9. Comparison of prediction outputs of alternative 6-state models for validation data: original model (solid); model from
Algorithm 4 (dashdot); model from N4SID algorithm (dotted). Unit time interval¼ 10 sec.
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performance of the algorithms, as they are numerically
robust and of relatively small size.
The proposed algorithms have been assessed by

means of two case studies. These suggest that
Algorithm 2 is less robust than the other two algorithms.
The reason for this is that in determining the system
matrices, this algorithm computes the matrices directly
from the estimated Markov parameters without
referring to the input–output data for a second time.
Regarding Algorithm 3, it is demonstrated that this
algorithm could identify the deterministic part of
a system fairly well, while identification of the Kalman
filter could be improved. The studies in this paper
also show that the performance of Algorithm 4 is
satisfactory, at a level comparable to that of the
N4SID algorithm. Furthermore, in quite a number of
cases the algorithm indeed produces better models
under various measures, namely the H1 error, the H2

error, the simulation error, and the prediction error.
This paper has added another variation of subspace

identification algorithms to the available set, which is
already considerable. While it gives some advantages,
it must be admitted that all the available methods
assume that the choice of truncation index k, namely
the length of past and future over which the algorithm
looks (see x 3) has been made somehow. Some of
the trade-offs inherent in making this choice have been
mentioned in x 11, and various statistical studies of this
issue were referenced there. This choice of k, and the
related choice of the model order, is the weak point of
subspace methods (although no more difficult than the
determination of order using any other identification
method). Standard methods of order determination,
such as the AIC or MDL criteria, can be employed
(Ljung 1987), but these remain heuristic. A study of
these questions is probably the most urgent remaining
research direction for subspace methods.
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