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Abstract

This paper is concerned with the optimal control of linear discrete-time
systems, which are subject to unknown but bounded state disturbances
and mixed constraints on the state and input. It is shown that the class
of admissible affine state feedback control policies with memory of prior
states is equivalent to the class of admissible feedback policies that are
affine functions of the past disturbance sequence. This result implies that
a broad class of constrained finite horizon robust and optimal control
problems, where the optimization is over affine state feedback policies, can
be solved in a computationally efficient fashion using convex optimization
methods without having to introduce any conservatism in the problem
formulation. This equivalence result is used to design a robust receding
horizon control (RHC) state feedback policy such that the closed-loop
system is input-to-state stable (ISS) and the constraints are satisfied for
all time and for all allowable disturbance sequences. The cost that is
chosen to be minimized in the associated finite horizon optimal control
problem is a quadratic function in the disturbance-free state and input
sequences. It is shown that the value of the receding horizon control
law can be calculated at each sample instant using a single, tractable and
convex quadratic program (QP) if the disturbance set is polytopic or given
by a 1-norm or ∞-norm bound, or a second-order cone program (SOCP)
if the disturbance set is ellipsoidal or given by a 2-norm bound.

∗Technical Report CUED/F-INFENG/TR.494, Department of Engineering, University of
Cambridge, UK.
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1 Introduction

This paper is concerned with the control of constrained discrete-time linear
systems that are subject to additive, but bounded disturbances on the state.
The main aim will be to provide results that allow for the efficient computation
of an optimal and stabilizing state feedback control policy that ensures a given
set of state and input constraints are satisfied for all time, despite the presence
of the disturbance. This is a problem that has been studied for some time now
in the optimal control literature [6–8, 58] and a number of different solutions
are available, most of which draw on results from set invariance theory [10],
`1 optimal control [16, 18, 52] or predictive control [3, 14, 42, 44, 45].

Predictive control is an optimal control technique that is widely employed
in industry, mainly because of its strength in being able to handle constraints
in a transparent fashion. In predictive control, a finite horizon optimal control
problem is solved on-line at each time instant, given the latest plant measure-
ments. The solution to this problem is then implemented in a variety of ways,
depending on the application. Most often the solution is implemented in a re-
ceding horizon fashion, i.e. only the first part of the solution is applied and the
same optimal control problem is re-solved at the next sample instant, but using
an updated measurement. However, other types of implementation are also pos-
sible, such as variable horizon (the horizon length is also a decision variable),
decreasing horizon (the horizon length decreases at each sample instant) and
time-optimal (the shortest horizon length is chosen such that a target set can
be reached at the end of the horizon).

It is now generally accepted that if disturbances are to be taken into ac-
count in the formulation of the optimal control problem, then the optimization
has to be done over admissible state feedback policies, rather than open-loop
input sequences, otherwise infeasibility and instability problems can occur [45].
However, optimization over arbitrary (nonlinear) feedback policies is particu-
larly difficult if constraints have to be taken into account. Current propos-
als for achieving this using finite dimensional optimization, such as [51], are
computationally intractable since the size of the optimization problem grows
exponentially with the size of the problem data.

A number of results are also available that allow for the computation of
the analytical solution to a large class of robust finite horizon optimal control
problems with constraints. If all the relevant constraint sets are polyhedral
and the cost function is suitably chosen, then the solution turns out to be a
time-varying piecewise affine state feedback control policy [2, 11, 17, 31, 46, 50].
Unfortunately, the practicality of these results are currently limited to small
problem sizes. This is because it is easy to find examples where the complexity
of the solution to the optimal control problem grows exponentially with the size
of the problem data.

As is often the case, there is very little one can do about the inherent com-
plexity of the solution to a given control problem. The availability of a more
efficient algorithm for computing the solution off-line or implementing it on-
line will still not change the fact that at some point the off-line and/or on-line
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computation power will not be sufficient. A practically implementable solution
somehow has to trade off optimality with computational complexity. Hence,
a question that has received a lot of attention is how to formulate a suitable
optimal control problem that allows for the efficient computation of a robustly
stabilizing and admissible control policy.

An interesting recent proposal in the predictive control literature is to define
a polytopic tube over the control horizon and compute control inputs only at
the vertices of this tube [37]. Though this approach is computationally tractable
and is equivalent to optimizing over a restricted class of piecewise affine state
feedback control policies, it currently suffers from the drawback that it is not
clear how to best choose the shape of the tube so as to minimize the conservative-
ness of the solution. Another possibility for reducing the on-line computational
requirements is to compute a single dynamic linear controller off-line [13, 16],
but this approach often results in controllers of very high dimension and can be
very conservative in practice.

Hence, a popular approach in the predictive control literature is to compute
one or more stabilizing linear state feedback control laws off-line and restrict
the on-line computation to the selection of one of these control laws (if there are
more than one), followed with the computation of a finite sequence of admissible
perturbations to the selected control law [1,15,30,38,47]. Though this approach
considerably reduces the computational complexity, it is not always obvious how
to best choose the linear control laws off-line so as to minimize conservativeness.

An obvious improvement to this approach of “pre-stabilization” is to try
to simultaneously compute the linear feedback control law and perturbation se-
quence on-line at each sample instant. However, the problem with this approach
is that the predicted input and state sequences are often nonlinear functions of
the sequence of state feedback gains. As a consequence, the set of feasible
decision variables is non-convex, in general. Various proposals have been put
forward for modifying this problem so that the set of feasible decision variables
is convex [27, 36, 53], but generally this comes with an increase in the conser-
vativeness of the solution. Hence, an interesting question is whether one can
re-parameterize the optimal control problem, where the optimization is over the
class of affine state feedback policies (linear feedback plus perturbation), and
formulate an equivalent, but convex and tractable optimization problem. One
of the contributions of this paper is to show that this is possible.

In order to show this, we exploit a recent result for solving a specific class
of robust optimization problems with hard constraints, called adjustable robust
counterpart (ARC) problems [5,23], where the optimization variables correspond
to decisions that can be adjusted as soon as the actual value of the uncertainty
becomes available. The authors of [5,23] proposed that instead of solving for an
admissible nonlinear function of the uncertainty, one could aim to parameterize
the solution as an affine function of the uncertainty. They proceeded to show
that if the uncertainty set is a polyhedron and the constraints in the robust
optimization problem are affine, then an affine function of the uncertainty can
be found by solving a single, computationally tractable linear program (LP).

An equivalent parameterization was also proposed in the literature on predic-
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tive control with Gaussian state disturbances [55,56] and bounded state distur-
bances [40,41]. However, the question whether this alternative parameterization
is more or less conservative than an affine state feedback parameterization, was
not addressed in detail. It was also clear that further work needed to be under-
taken in order to determine conditions on the resulting optimal control problem
such that the solution can be used to synthesize robustly stabilizing predictive
controllers with robust constraint satisfaction guarantees. Motivated by the en-
couraging results reported in [5,23,40,41,55,56], this paper presents a number of
novel system-theoretic results relating to the use of this new parameterization.

In order for the results in this paper to be applicable to a large class of prob-
lems, the development of this paper starts with a general problem description,
which is refined in each section. Section 2 discusses the class of systems that is to
be considered throughout the paper and lists a number of standing assumptions.
Section 3 describes the well-known affine state feedback parameterization and
Section 4 describes the new affine disturbance feedback parameterization that
was proposed in [5,23,40,41,55,56]. The key point made in Section 3 is that, in
general, the set of admissible state feedback parameters is non-convex. In con-
trast, the main result in Section 4 states that the set of admissible disturbance
feedback parameters is convex. Under suitable assumptions on the disturbance,
it is then shown that an admissible disturbance feedback policy can be found
by solving a single and tractable convex optimization problem.

The main contributions of this paper are contained in Sections 5–7. In Sec-
tion 5 it is shown that the affine state feedback parameterization of Section 3 is
equivalent to the affine disturbance feedback parameterization of Section 4. This
has important system-theoretical consequences, which are explored in detail in
Sections 6 and 7. Section 6 is mainly concerned with results that guarantee
robust constraint satisfaction for all time. Section 7 formulates a suitable ro-
bust finite horizon optimal control problem and presents results that guarantee
robust stability of the closed-loop system for the case when the solution to the
optimal control problem is implemented in a receding horizon fashion. The
paper concludes in Section 8 and suggests some topics for further research.

Some of the results in this paper have been published by the authors in the
conference papers [21,30,32]. For a detailed discussion on the numerical imple-
mentation of the results in this paper, the reader is referred to the conference
paper [20] and technical report [22].

Notation and definitions: For matrices A and B, A⊗B is the Kronecker
product of A and B, A† is the one-sided or pseudo-inverse of A, and A ≤ B
denotes element-wise inequality and abs(A) is the element-wise absolute value of
A. A matrix, not necessarily square, is referred to as (strictly) lower triangular if
the (i, j) entry is zero for all i < j (i ≤ j). A block partitioned matrix is referred
to as (strictly) block lower triangular if the (i, j) block is zero when i < j (i ≤ j);
note that a block lower triangular matrix is not necessarily lower triangular.
1 is a column vector of ones. For vectors x and y, vec(x, y) := [xT yT ]T ,
and ‖x‖2

Q := xT Qx. Z[k,l] represents the set of integers {k, k + 1, . . . , l}. A
continuous function γ : R≥0 → R≥0 is a K-function if it is strictly increasing
and γ(0) = 0; it is a K∞-function if, in addition, γ(s) → ∞ as s → ∞. A
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function β : R≥0 × R≥0 → R≥0 is a KL-function if for all k ≥ 0, the function
β(·, k) is a K-function and for each s ≥ 0, β(s, ·) is decreasing with β(s, k) → 0
as k → ∞.

2 Standing Assumptions

Consider the following discrete-time LTI system:

x+ = Ax + Bu + w, (1)

where x ∈ R
n is the system state at the current time instant, x+ is the state

at the next time instant, u ∈ R
m is the control input and w ∈ R

n is the
disturbance1. The current and future values of the disturbance are unknown and
may change unpredictably from one time instant to the next, but are contained
in a convex and compact (closed and bounded) set W , which contains the origin.
The actual values of the state, input and disturbance at time instant k are
denoted by x(k), u(k) and w(k), respectively; where it is clear from the context,
x, u and w will be used to denote the current value of the state, input and
disturbance (note that since the system is time-invariant, the current time can
always be taken as zero). It is assumed that (A, B) is stabilizable and that at
each sample instant a measurement of the state is available. We also assume
that a linear state feedback gain matrix K ∈ R

m×n is given, such that A + BK
is strictly stable.

The system is subject to mixed constraints on the state and input:

Z := {(x, u) ∈ R
n × R

m | Cx + Du ≤ b} , (2)

where the matrices C ∈ R
s×n, D ∈ R

s×m and the vector b ∈ R
s; s is the number

of affine inequality constraints that define Z . It is assumed that Z is bounded
and contains the origin in its interior. A primary design goal is to guarantee
that the state and input of the closed-loop system remain in Z for all time and
for all allowable disturbance sequences.

In addition to Z , a target/terminal constraint set Xf is given by

Xf := {x ∈ R
n | Y x ≤ z } , (3)

where the matrix Y ∈ R
r×n and the vector z ∈ R

r; r is the number of affine
inequality constraints that define Xf . It is assumed that Xf is bounded and
contains the origin in its interior. As will be seen in Sections 6 and 7, the set Xf

can be used as a target set in time-optimal control or as a terminal constraint in a
receding horizon controller with guaranteed invariance and stability properties.

Remark 1. Many of the results in this paper remain valid if the assumption
that Z and Xf are polytopes is relaxed to Z and Xf being convex; the current
assumptions serve to simplify the presentation in Section 4.

1This assumption on the disturbance is without loss of generality; the results in this paper
are easily generalized to the case where x+ = Ax + Bu + Ed (see Section 4.2).

5



Before proceeding, we define some additional notation. In the sequel, pre-
dictions of the system’s evolution over a finite control/planning horizon will
be used to define a number of suitable control policies. Let the length N of
this planning horizon be a positive integer and define stacked versions of the
predicted input, state and disturbance vectors u ∈ R

mN , x ∈ R
n(N+1) and

w ∈ R
nN , respectively, as

x := vec(x0, . . . , xN−1, xN ), (4a)

u := vec(u0, . . . , uN−1), (4b)

w := vec(w0, . . . , wN−1), (4c)

where x0 = x denotes the current measured value of the state and xi+1 :=
Axi + Bui + wi, i = 0, . . . , N − 1 denote the prediction of the state after i time
instants into the future. Finally, let the set W := W N := W × · · · ×W , so that
w ∈ W .

3 Affine State Feedback Parameterization

One natural approach to controlling the system in (1), while ensuring the sat-
isfaction of the constraints, is to search over the set of time-varying affine state
feedback control policies with memory of prior states:

ui =

i
∑

j=0

Li,jxj + gi, ∀i ∈ Z[0,N−1], (5)

where each Li,j ∈ R
m×n and gi ∈ R

m. For notational convenience, we also
define the block lower triangular matrix L ∈ R

mN×n(N+1) and stacked vector
g ∈ R

mN as

L :=







L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0






, (6a)

and
g := vec(g0, . . . , gN−1), (6b)

so that the control input sequence can be written as

u = Lx + g. (7)

For a given initial state x, we say that the pair (L,g) is admissible if the
control policy (5) guarantees that for all allowable disturbance sequences of
length N , the constraints (2) are satisfied over the horizon i = 0, . . . , N − 1 and
that the state is in the target set (3) at the end of the horizon. More precisely,
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the set of admissible (L,g) is defined as

Πsf
N (x) :=























(L,g)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(L,g) satisfies (6), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i

j=0 Li,jxj + gi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W























. (8)

The set of initial states x for which an admissible control policy of the form (5)
exists is defined as

Xsf
N :=

{

x ∈ R
n
∣

∣

∣
Πsf

N (x) 6= ∅
}

. (9)

It is critical to note that it may not be possible to select a single (L,g)

such that it is admissible for all x ∈ Xsf
N . Indeed, it is easy to find examples

where there exists a pair (x, x̃) ∈ Xsf
N × Xsf

N such that Πsf
N (x)

⋂

Πsf
N (x̃) = ∅.

For problems of non-trivial size, it is therefore necessary to calculate an ad-
missible pair (L,g) on-line, given a measurement of the current state x, rather
than fixing (L,g) off-line. Once an admissible control policy is computed for
the current state, there are many ways in which it can be applied to the sys-
tem; time-varying, time-optimal and receding-horizon implementations are the
most common (these will be considered in more detail in Sections 6 and 7).
We emphasize that, due to the dependence of (8) on the current state x, the
implemented control policy will, in general, be a nonlinear function in x, even
though it may have been defined in terms of the class of affine state feedback
policies (5).

Remark 2. Note that the state feedback policy (5) subsumes the well-known
class of “pre-stabilizing” control policies [1, 15, 30, 38, 47], in which the control
policy takes the form ui = Kxi + ci, where K is computed off-line and on-line
computation is limited to finding an admissible offset sequence {ci}

N−1
i=0 .

Finding an admissible pair (L,g), given the current state x, has been believed
to be a very difficult problem due to the following property:

Proposition 1 (Non-convexity). For a given state x ∈ Xsf
N , the set of admis-

sible affine state feedback control parameters Πsf
N (x) is non-convex, in general.

This is easily shown by the following example:

Example 1. Consider the SISO system

x+ = x + u + w (10)

with initial state x0 = 0, input constraint |u| ≤ 3, bounded disturbances |w| ≤ 1
and a planning horizon of N = 3. Consider a control policy of the form (5) with
g = 0 and L2,1 = 0, so that u0 = 0 and

u1 = L1,1w0 (11)

u2 = [L2,2(1 + L1,1)] w0 + L2,2w1 (12)
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Figure 1: Non-Convexity of Πsf
N (0) in Example 1

In order to satisfy the input constraints for all allowable disturbance sequences,
the controls ui must satisfy

|ui| ≤ 3, i = 1, 2, ∀w ∈ W (13)

or, equivalently,
max
w∈W

|ui| ≤ 3, i = 1, 2. (14)

Since the constraints on the components of w are independent, it is easy to
show that the input constraints are satisfied for all w ∈ W if and only if

|L1,1| ≤ 3 (15)

|L2,2(1 + L1,1)| + |L2,2| ≤ 3. (16)

It is straightforward to verify that the set of gains L, which satisfy these con-
straints, is non-convex; the set of admissible values for (L1,1, L2,2) is shown in
Figure 1.

Remark 3. It is surprising to note that, even though the set of admissible control
parameters Πsf

N (x) may be non-convex, the set of states Xsf
N , for which at least
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one admissible control parameter exists, is always convex. We defer the proof
of this until Section 5.

Despite the fact that the set of admissible parameters Πsf
N (x) may be non-

convex, we will proceed to show that one can actually find an admissible (L,g)
by solving a single, tractable and convex programming problem.

4 Affine Disturbance Feedback Parameterization

An alternative to (5) is to parameterize the control policy as an affine function
of the sequence of past disturbances, so that

ui =

i−1
∑

j=0

Mi,jwj + vi, ∀i ∈ Z[0,N−1], (17)

where each Mi,j ∈ R
m×n and vi ∈ R

m. It should be noted that, since full state
feedback is assumed, the past disturbance sequence is easily calculated as the
difference between the predicted and actual states at each step, i.e.

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1]. (18)

The above parameterization appears to have originally been suggested some
time ago within the context of stochastic programs with recourse [19]. More
recently, it has been revisited as as a means for finding solutions to a class
of robust optimization problems, called affinely adjustable robust counterpart
(AARC) problems [5,23], and robust model predictive control problems [40,41,
55, 56].

Though the two parameterizations in (5) and (17) look very similar (in fact,
it will be shown in Section 5 that they are equivalent), they have different inter-
pretations. Furthermore, as will be seen in subsequent sections, in some cases
it is easier to prove certain system-theoretic results using one parameterization,
rather than the other. In this section, we will discuss one of the main benefits
of adopting the parameterization in (17), namely that an admissible affine dis-
turbance feedback control law can be found by solving a convex and tractable
optimization problem.

For notational convenience, we define the vector v ∈ R
mN and the strictly

block lower triangular matrix M ∈ R
mN×nN such that

M :=











0 · · · · · · 0
M1,0 0 · · · 0

...
. . .

. . .
...

MN−1,0 · · · MN−1,N−2 0











(19a)

and
v := vec(v0, . . . , vN−1), (19b)
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so that the control input sequence can be written as

u = Mw + v. (20)

For a given initial state x, we say that the pair (M,v) is admissible if the
control policy (17) guarantees that for all allowable disturbance sequences of
length N , the constraints (2) are satisfied over the horizon i = 0, . . . , N − 1 and
that the state is in the target set (3) at the end of the horizon. More precisely,
the set of admissible (M,v) is defined as

Πdf
N (x) :=























(M,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (19), x = x0

xi+1 = Axi + Bui + wi

ui =
∑i−1

j=0 Mi,jwj + vi

(xi, ui) ∈ Z , xN ∈ Xf

∀i ∈ Z[0,N−1], ∀w ∈ W























(21)

The set of initial states x for which an admissible control policy of the form (17)
exists is defined as

Xdf
N :=

{

x ∈ R
n
∣

∣

∣
Πdf

N (x) 6= ∅
}

. (22)

Before proceeding, it is important to note that one can easily find matrices
F ∈ R

t×mN , G ∈ R
t×nN , H ∈ R

t×n and a vector c ∈ R
t, where t := sN + r (for

completeness, the matrices and vectors are given in the Appendix), such that

one can rewrite the expression for Πdf
N (x) more compactly as

Πdf
N (x) =

{

(M,v)

∣

∣

∣

∣

∣

(M,v) satisfies (19)

Fv + (FM + G)w ≤ c + Hx, ∀w ∈ W

}

. (23)

4.1 Convexity of Πdf
N (x)

The main advantage of the disturbance feedback parameterization in (17) over
the state feedback parameterization in (5) is formalized in the following state-
ment:

Proposition 2 (Convexity). For a given state x ∈ Xdf
N , the set of admissible

affine disturbance feedback parameters Πdf
N (x) is convex and closed. Further-

more, the set of states Xdf
N , for which at least one admissible affine disturbance

feedback policy exists, is convex.

Proof. Consider the set

CN :=











(M,v, x)

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (19)

Fv + (FM + G)w ≤ c + Hx

∀w ∈ W











. (24)

It immediately follows that

CN =
⋂

w∈W

{

(M,v, x)

∣

∣

∣

∣

∣

(M,v) satisfies (19)

Fv + (FM + G)w ≤ c + Hx

}

.
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CN is closed and convex, since it is the intersection of an arbitrary collection
of closed and convex sets. The set Xdf

N is convex since it is a projection of

CN onto a suitably-defined subspace. Since the set Πdf
N (x) in (23) can similarly

be written as an intersection of closed and convex sets, it is also closed and
convex.

The above result is of fundamental importance. If W is convex and com-
pact, then it is conceptually possible to compute a pair (M,v) ∈ Πdf

N (x) in a
computationally tractable way, given the current state x.

Recall that aT w ≤ e for all w ∈ W if and only if sup
{

aT w | w ∈ W
}

≤ e,

where a is a vector of appropriate length, e is a scalar and sup
{

aT w | w ∈ W
}

is the value of the support function of W evaluated at a [35]; note that the
supremum is attained due to W being compact. Hence, one can eliminate the
universal quantifier in (23) to obtain the equivalent expression

Πdf
N (x) =

{

(M,v)

∣

∣

∣

∣

∣

(M,v) satisfies (19)

Fv + vec max
w∈W

(FM + G)w ≤ c + Hx

}

, (25)

where vecmaxw∈W(FM+G)w denotes row-wise maximization, i.e. if (FM+G)i

denotes the ith row of the matrix FM + G, then

vec max
w∈W

(FM + G)w := vec

(

max
w∈W

(FM + G)1w, . . . , max
w∈W

(FM + G)tw

)

.

(26)

Computing an (M,v) ∈ Πdf
N (x) is done by formulating the dual optimization

problem of each maximization problem maxw∈W(FM + G)iw, i = 1, . . . , t,
introducing some slack variables and solving a single, suitably-defined convex
programming problem. For example, if W is a closed and bounded polyhedron
given by a finite set of affine inequalities, then one can compute an admissible
pair (M,v) by solving a single linear program (LP), of which the number of
decision variables and number of constraints are polynomial functions of the
size of the data; the reader is referred to [5, Thm. 3.2] and [23, Thm. 4.2] for
details. Clearly, other suitable convex optimization problems can be derived for
alternative descriptions of the disturbance set W , but it is beyond the scope of
this paper to present all the details. However, for completeness we will proceed
to give some specific results for commonly-encountered descriptions of the set
of allowable disturbances.

Remark 4. Note that the proof of Proposition 2 does not require W to be
convex. However, convexity of W is important for the efficient computation of
an admissible pair (M,v).

4.2 Admissible Policies for Norm-Bounded Disturbances

It is particularly easy to find a pair (M,v) in (25) for the special case where the
disturbance set W (or, more generally, W) represents the affine map of a set of
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norm-bounded signals:

W = {w ∈ R
n | w = Ed + f, ‖d‖p ≤ 1} , (27)

where E ∈ R
n×l and f ∈ R

n. If this is the case, then an analytical expression
for the solution to the row-wise maximization in (25) is easily found. From the
definition of the dual norm [24], it immediately follows that if W is given as
in (27), then

max
w∈W

aT w = ‖ET a‖q + aT f, (28)

for any vector a ∈ R
n, where 1/p + 1/q = 1.

As an example, we give a detailed exposition for the ∞-norm case with f = 0
(as in (28), the extension to the case when f 6= 0 is trivial). Suppose that the
disturbance set W is the linear map of a hypercube, so that the disturbances
satisfy

W = {Ed | ‖d‖∞ ≤ 1} , (29)

then the row-wise maximization in (25) can be simplified using (28) (with q = 1)
to yield

Πdf
N (x) =

{

(M,v)

∣

∣

∣

∣

∣

(M,v) satisfies (19)

Fv + abs(FMJ + GJ)1 ≤ c + Hx

}

, (30)

where J := I ⊗ E ∈ R
Nn×Nl; note that abs(FMJ + GJ)1 is a vector formed

from the 1-norms of the rows of the matrix FMJ + GJ . The above expression
can be written in terms of a set of purely affine constraints by following a
standard procedure and introducing some slack variables to get

Πdf
N (x) =











(M,v)

∣

∣

∣

∣

∣

∣

∣

(M,v) satisfies (19) and ∃Λ ∈ R
t×nN s.t.

Fv + Λ1 ≤ c + Hx

−Λ ≤ (FMJ + GJ) ≤ Λ











. (31)

An admissible pair (M,v) can then be found by solving a single (Phase I) LP
with at most N2(mn+ sl)+N(m+ rl)+1 variables and 2N 2sl +N(s+2rl)+ r
inequality constraints, many of which may be eliminated by accounting for the
block lower triangular structure of M, F and G. The translation of the problem
into a form suitable to be passed to a standard LP solver is achieved by applying
some basic Kronecker product identities.

A similar process leads, in the case of 1-norm bounded disturbances to an-
other tractable LP. In the case of 2-norm bounds (e.g. if W is the affine map
of a Euclidean ball or an ellipsoid), this leads to a second order cone program
(SOCP) with a polynomial number of decision variables and constraints.

5 Equivalence between State and Disturbance

Feedback Parameterizations

One question that has not yet been answered in the literature, is whether the
disturbance feedback parameterization (17) is more conservative or less conser-

12



vative than the state feedback parameterization (5). We now show that these
parameterizations are actually equivalent:

Theorem 1 (Equivalence). The set of admissible states Xdf
N = Xsf

N . Ad-

ditionally, given any x ∈ Xsf
N , for any admissible (L,g) an admissible (M,v)

can be found which yields the same input and state sequence for all allowable
disturbance sequences, and vice-versa.

Proof. Xsf
N ⊆ Xdf

N : By definition, for a given x ∈ Xsf
N , there exists a pair (L,g)

that satisfies the constraints in (8). For a given disturbance sequence w ∈ W ,
the inputs and states of the system can be written as :

u = Lx + g (32)

x = B(Lx + g) + Ew + Ax (33)

= (I −BL)−1(Bg + Ew + Ax) (34)

where x0 = x, x := vec(x0, . . . , xN ), and the matrices A, B, and E (for com-
pleteness, these are given in the Appendix) are defined so that one can write

x = Ax + Bu + Ew. (35)

The matrix I − BL is always non-singular, since BL is strictly block lower
triangular. The control sequence can then be rewritten as an affine function of
the disturbance sequence w:

u = L(I −BL)−1(Bg + Ax) + L(I −BL)−1Ew + g, (36)

and an admissible (M,v) constructed by choosing

M = L(I −BL)−1E (37a)

v = L(I −BL)−1(Bg + Ax) + g. (37b)

This choice of (M,v) gives exactly the same input sequence as the pair (L,g),
so the state and input constraints in (21) are satisfied. The constraint (19) that
M be strictly block lower triangular is satisfied because M is chosen in (37)
as a product of the block lower triangular matrices (I − BL)−1 and L and the

strictly block lower triangular matrix E. Therefore, (M,v) ∈ Πdf
N (x) and thus

x ∈ Xsf
N ⇒ x ∈ Xdf

N .

Xdf
N ⊆ Xsf

N : By definition, for a given x ∈ Xdf
N , there exists a pair (M,v)

that satisfies the constraints in (21). For a given disturbance sequence w ∈ W ,
the inputs and states of the system can be written as :

u = Mw + v (38)

x = B(Mw + v) + Ew + Ax (39)

Recall that since full state feedback is assumed, the disturbances can be deter-
mined exactly from

wi = xi+1 − Axi − Bui, ∀i ∈ Z[0,N−1], (40)
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which can be written in matrix form as

w=



















0 I 0 · · · · · · 0

0 −A I 0
. . .

...

0 0 −A I
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 −A I



















x−

















I
0
...
...
0

















Ax+(I⊗B)u, (41)

or more compactly as
w = E†x − IAx + E†Bu, (42)

where I := [I 0 · · · 0]T . It is easy to verify that the matrices E† and IT

are left inverses of E and A respectively, so that E†E = I and IT A = I .

The input sequence can then be rewritten as

u = M(E†x − IAx + E†Bu) + v (43)

= (I −ME†B)−1(ME†x −MIAx + v). (44)

The matrix I −ME†B is non-singular because the product ME†B = M(I ⊗B)
is strictly block lower triangular. An admissible (L,g) can then be constructed
by choosing

L = (I −ME†B)−1ME† (45a)

g = (I −ME†B)−1(v −MIAx). (45b)

This choice of (L,g) gives exactly the same input sequence as the pair (M,v),
so the state and input constraints in (8) are satisfied. The constraint that L
be block lower triangular is satisfied because it is the product of block lower
triangular matrices. Therefore, (L,g) ∈ Πsf

N (x) and thus x ∈ Xdf
N ⇒ x ∈

Xsf
N .

In light of the discussion in Sections 3 and 4, it is crucial to note an impor-
tant consequence of Theorem 1. The problem of finding an admissible affine
state feedback control policy, which for a long time has been thought to be
extremely difficult to solve because it gives rise to a non-convex optimization
problem, can actually be solved efficiently using convex programming. This is
done by re-parameterizing the problem and interpreting it as finding an affine
disturbance feedback policy; given an admissible (M,v), an admissible (L,g) is
given by (45).

It is important to note that Theorem 1 may not hold under certain struc-
tural constraints on (L,g) and/or (M,v). In some cases it is possible to prove
inclusion in one direction, but it is not always obvious whether inclusion holds
in the opposite direction. This is because the nonlinear transformations in (37)
and (45) only allow a limited number of structural constraints to be preserved.
For example, in [31] the case when Li,j = 0 for all i 6= j is considered (this
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corresponds to affine state feedback with no memory) and in [41, Sect. 7.5] the
constraint that Li,i = Lj,j for all i 6= j is added; in both these cases it is possible
to show that affine disturbance feedback of the form (17) subsumes affine state
feedback, but a proof in the opposite direction is lacking. Problems are also
encountered if one enforces similar linear constraints on M; in some cases it is
easy to find counter-examples to an equivalence claim.

The availability of the equivalence statement in Theorem 1 allows one to
make a number of strong system-theoretic statements about system (1) in closed-
loop with a controller that has been derived from an admissible affine distur-
bance feedback control policy. As will be seen in the sequel, the proofs of some
statements are relatively straightforward if one is allowed to move freely between
state and disturbance feedback parameterizations. An interesting topic for fur-
ther research would be to determine which linear constraints on the structure
of (L,g) or (M,v) can be added, while still being able to prove equivalence as
in Theorem 1 and derive all of the system-theoretic results given in Sections 6
and 7.

We conclude this section by comparing Theorem 1 with Proposition 2. This
leads immediately to the following result that, in the light of Proposition 1, is
rather surprising:

Corollary 1 (Convexity of Xsf
N ). The set of states Xsf

N , for which an ad-
missible affine state feedback policy of the form (5) exists, is a convex set.

6 Geometric and Invariance Properties

It is well-known that the set of states for which an admissible open-loop input
sequence exists (i.e. when L = 0 and M = 0) may collapse to the empty set
if the horizon is sufficiently large [51, Sect. F]. Furthermore, unless additional
assumptions are made, the use of a finite planning horizon does not allow one
to guarantee that if one can find an admissible feedback policy at the initial
time instant, then one can find an admissible feedback policy at all future time
instants. Likewise, putting arbitrary structural constraints on the feedback
components L or M may also lead to infeasibility or instability of the closed-
loop system.

The aim of this section is to provide conditions under which constraint sat-
isfaction problems will not occur (stability will be considered in Section 7).
Once an admissible affine feedback policy has been computed, there are many
ways in which the control policy may be applied to the system. In this section,
we will restrict ourselves to time-varying, receding-horizon and time-optimal
implementations.

Before proceeding, we introduce the following standard assumption (c.f. [45]):

Assumption 1 (Terminal constraint). The state feedback gain matrix K
and terminal constraint Xf have been chosen such that:

• Xf is contained inside the set of states for which the constraint (2) is
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satisfied under the control u = Kx, i.e.

Xf ⊆ {x | (x, Kx) ∈ Z } = {x | (C + DK)x ≤ b} . (46)

• Xf is robust positively invariant for the closed-loop system x+ = (A +
BK)x + w, i.e.

(A + BK)x + w ∈ Xf , ∀x ∈ Xf , ∀w ∈ W. (47)

Under some additional, mild technical assumptions, it is easy to compute a K
and a polytopic Xf that satisfies Assumption 1 if W is a polytope, an ellipsoid
or the affine map of a p-norm ball. The reader is referred to [9,10,35,38,49] and
the references therein for details.

6.1 Monotonicity of X
sf
N and X

df
N

We are now in a position to give a sufficient condition under which one can
guarantee that Xsf

N (equivalently, Xdf
N ) is non-empty and the size of Xsf

N is
non-decreasing (with respect to set inclusion) with horizon length N :

Proposition 3 (Size of Xsf
N ). If Assumption 1 holds, then the following set

inclusion holds:

Xf ⊆ Xsf
1 ⊆ · · · ⊆ Xsf

N−1 ⊆ Xsf
N ⊆ Xsf

N+1 ⊆ · · · , (48)

where each Xsf
i is defined as in (9) with N = i.

Proof. The proof is by induction. Let x ∈ Xsf
N , (L,g) ∈ Πsf

N (x) and w ∈ W .

It is simple to construct a pair (L̄, ḡ) ∈ Xsf
N+1 by selecting ḡ ∈ R

m(N+1) and

L̄ ∈ R
m(N+1)×n(N+2) such that the final stage input will be uN = KxN ; such a

pair is given by ḡ := vec(g, 0) and

L̄ :=











L0,0 0 · · · 0 0
...

. . .
. . .

...
...

LN−1,0 · · · LN−1,N−1 0 0
0 · · · 0 K 0











. (49)

From the definition of Πsf
N (x), it follows that xN ∈ Xf . Note also that since

Xf ⊆ XK , it follows that (xN , uN) ∈ Z . Since Xf is robust positively invariant
for the closed-loop system x+ = (A+BK)x+w, it follows that xN+1 = AxN +

BuN + wN ∈ Xf , ∀wN ∈ W . It then follows from the definition of Πsf
N+1(x)

that (L̄, ḡ) ∈ Πsf
N+1(x), hence x ∈ Xsf

N+1. The proof is completed by verifying,

in a similar manner, that Xf ⊆ Xsf
1 ⊆ Xsf

2 .

Remark 5. For many examples, some of the inclusions in (48) are strict, rather

than satisfied with equality. Note also that if Xsf
N = Xsf

N+1, for some N , then

Xsf
i = Xsf

N for all i > N .
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Remark 6. Note that we cannot use the same method of proof as in [46, Thm. 2],
since we are not considering the same problem of finding a sequence of time-
varying nonlinear state feedback control laws. By restricting the control laws to
be affine, the arguments in [46, Thm. 2] cannot be applied (a similar problem
is encountered in open-loop robust MPC, where L = 0 [45, 51]). Instead, the
proof follows a procedure similar to the one often employed to prove recursive
feasibility and monotonicity of the value function in predictive control [45].
However, in contrast to [45], we are interested in proving monotonicity of the

set of admissible states Xsf
N . Hence, rather than using a shifted version of the

input sequence, we append the input sequence with the terminal control law
u = Kx.

The next result follows immediately:

Corollary 2 (Size of Xdf
N ). If Assumption 1 holds, then the following set

inclusion holds:

Xf ⊆ Xdf
1 ⊆ · · · ⊆ Xdf

N−1 ⊆ Xdf
N ⊆ Xdf

N+1 ⊆ · · · , (50)

where each Xdf
i is defined as in (22) with N = i.

Remark 7. Corollary 2 should be compared with the equivalent result in [32,
Thm. 2]. The proof given here is more transparent, due to the application of
Theorem 1 and Proposition 3.

Remark 8. On examination of the proof of Proposition 3, it is obvious that (48)
still holds under some constraints on the structure of L, e.g. if Li,j = 0 for
some i 6= j. However, it is important to note that the method of proof for
Proposition 3 is only valid for a limited number of structural constraints on L.
If L is required to be block-Toeplitz and banded (for example, if Li,j = 0 and
Li,i = Lj,j for all i 6= j), then the method of proof given for Proposition 3 is
clearly not applicable and the result may therefore not hold, in general. Simi-
larly, it is important to note that (50) may not hold if we enforce any additional,
linear constraints on the structure of M, such as requiring that M be banded
and/or block-Toeplitz.

6.2 Time-varying Control Laws

In this section we consider what happens if one were to implement an admissible
affine disturbance feedback policy in a time-varying fashion. In other words,
given any (M,v) ∈ Πdf

N (x(0)) and the stabilizing state feedback gain K ∈ R
m×n,

consider the following time-varying affine disturbance feedback policy:

u(k) =

{

vk +
∑k−1

j=0 Mi,jw(j) if k ∈ Z[0,N−1]

Kx(k) if k ∈ Z[N,∞)

(51)

Recall that the realized disturbance sequence w(·) can of course be recovered
using the relation w(k) = x(k + 1) − Ax(k) − Bu(k). Obviously, Theorem 1
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implies that we could also have defined an equivalent, time-varying affine state
feedback policy. However, because of Propositions 1 and 2, it is more practical
to think in terms of disturbance feedback policies when it comes to computation
and implementation.

The next result follows immediately, by employing the state feedback pa-
rameterization (5) and recalling Theorem 1:

Proposition 4 (Time-varying control). Let Assumption 1 hold, the initial

state x(0) ∈ Xdf
N and (M,v) ∈ Πdf

N (x(0)). For all allowable infinite disturbance
sequences, the state of system (1), in closed-loop with the feedback policy (51),
enters Xf in N steps or less and is in Xf for all k ∈ Z[N,∞). Furthermore,
the constraints in (2) are satisfied for all time and for all allowable infinite
disturbance sequences.

6.3 Receding Horizon Control Laws

We now consider what happens when the disturbance feedback parameteriza-
tion (17) is used to design a receding horizon control (RHC) law. In RHC, an
admissible feedback policy is computed at each time instant, but only the first
component of the policy is applied to the system. An important issue in RHC
is whether one can ensure feasibility/constraint satisfaction for all time, despite
the fact that a finite horizon is being used and only the first part of the policy
is implemented at each sample instant [45].

Consider the set-valued map κN : Xsf
N → 2R

m

(2R
m

is the set of all subsets
of R

m), which is defined by considering only the first portion of an admissible
state feedback parameter (L,g), i.e.

κN (x) :=
{

u ∈ R
m
∣

∣

∣
∃(L,g) ∈ Πsf

N (x) s.t. u = L0,0x + g0

}

. (52)

An admissible RHC law µN : Xsf
N → R

m is defined as any selection from the
set-valued map κN (·), i.e. µN (·) has to satisfy

µN (x) ∈ κN (x), ∀x ∈ Xsf
N . (53)

The resulting closed-loop system is then given by

x+ = Ax + BµN (x) + w. (54)

Note that the RHC law µN (·) is time-invariant and is, in general, a nonlinear
function of the current state. As discussed in Section 3 it is not always possible
to compute an affine or linear RHC law µN (·) off-line such that µN (x) ∈ κN (x)

for all x ∈ Xsf
N . Instead, the selection of an element from κN (x) has to be done

on-line at each sample instant, given a measurement of the current state x. Due
to the non-convexity of Πsf

N (x), computing an admissible (L,g) is very difficult.
However, by a straightforward application of Theorem 1 it follows that

κN (x) =
{

u ∈ R
m
∣

∣

∣
∃(M,v) ∈ Πdf

N (x) s.t. u = v0

}

. (55)
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This fact, combined with the discussion in Section 4 implies that, in order to
efficiently compute an admissible RHC input µN (x) at each time instant, one can
select an element from κN(x) by solving a tractable and convex programming
problem to obtain an admissible (M,v) and letting µN (x) = v0.

The following result is easily proven using standard methods in RHC [45],
by employing the state feedback parameterization (5):

Proposition 5 (RHC). If Assumption 1 holds, then the set Xsf
N is robust

positively invariant for the closed-loop system (54), i.e. if x ∈ X sf
N , then Ax +

BµN (x)+w ∈ Xsf
N for all w ∈ W . Furthermore, the constraints (2) are satisfied

for all time and for all allowable disturbance sequences if and only if the initial
state x(0) ∈ Xsf

N .

Obviously, guaranteed invariance of the closed-loop system is not the only
desirable result when designing and implementing an RHC law. Section 7 pro-
vides some results that allow one to set up a convex and tractable optimization
problem, the solution of which can be used to define a continuous RHC law
µN (·), while also providing a guarantee that the resulting closed-loop system is
stable.

6.4 Minimum-time Control Laws

We conclude this section by deriving some results when an admissible affine
control policy is used to define a robust minimum-time control law.

Given a maximum horizon length Nmax and the set N := {1, . . . , Nmax}, let

N∗(x) := min
N

{

N ∈ N
∣

∣

∣
Πsf

N (x) 6= ∅
}

(56)

be the minimum horizon length for which an admissible affine state feedback
policy of the form (5) exists. Consider also the set-valued map κ : X → 2R

m

,
defined as

κ(x) :=

{

κN∗(x)(x) if x /∈ Xf

Kx if x ∈ Xf

(57)

where κN∗(x)(x) is given by (52) with N = N∗(x), K ∈ R
m×n and

X := Xf ∪

(

⋃

N∈N

Xsf
N

)

. (58)

Let the time-invariant robust time-optimal control law µ : X → R
m be any

selection from κ(·), i.e.
µ(x) ∈ κ(x), ∀x ∈ X . (59)

Note that κ(·) is defined everywhere on X and that the state of the closed-loop
system

x+ = Ax + Bµ(x) + w (60)
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will enter Xf in less than Nmax steps if this is possible, even if Assumption 1
does not hold.

Similar to the discussion in Section 6.3, it is possible to efficiently compute
an admissible µ(x) by recalling (55) and the discussion in Section 4. However,
this time it involves solving at most Nmax tractable and convex optimization
problems at each time step in order to compute N ∗(x) and select an element
from κN∗(x)(x).

Proposition 6 (Minimum-time control). If Assumption 1 holds, then X =

Xsf
Nmax

and X is robust positively invariant for the closed-loop system (60), i.e. if
x ∈ X , then Ax+Bµ(x)+w ∈ X for all w ∈ W . The state of the closed-loop sys-
tem enters Xf in Nmax steps or less and, once inside, remains inside for all time
and for all allowable disturbance sequences. Furthermore, the constraints (2) are
satisfied for all time and for all allowable disturbance sequences if and only if
the initial state x(0) ∈ X .

Proof. The proof is straightforward and closely parallels that of Propositions 3
and 5. However, this time one has to show that if (L,g) is admissible at the
current time instant, then a truncated version of (L,g) is admissible at the next
time instant. More precisely, if (L,g) is admissible at the current time instant
and L := [Im(N−1) 0]L and g := [Im(N−1) 0]g, then (L,g) will be admissible at
the next time instant.

Proposition 6 should be contrasted with Proposition 4. Whereas (51) is a
time-varying feedback policy that is dependent on current and past values of
the state and input, (57) is a time-invariant feedback policy that is dependent
only on the current state. Note also that (51) does not guarantee that the state
of the system will enter Xf in less than Nmax steps if this is possible, whereas
under the time-optimal control policy u = µ(x) the state of the system will
enter Xf in less than Nmax steps if this is possible.

7 Uniqueness, Continuity and Stability of RHC
Laws

We next consider the important problem of how to synthesize an RHC law such
that the closed-loop system is robustly stable. We choose to minimize the value
of a cost function that is quadratic in the disturbance-free states and control
inputs and demonstrate that this allows for the synthesis of a continuous control
law that guarantees that the closed-loop system is input-to-state stable (ISS).
As in Section 6, we rely heavily on Theorem 1 in order to derive these results,
choosing to work with whichever of our two parameterizations is most natural
in each context.

Before proceeding, we note that alternative cost functions are certainly pos-
sible; the reader is referred to [29] where a worst-case quadratic cost function is
used and the disturbance is negatively weighted as in H∞ control.
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7.1 Cost Function

We define an optimal policy pair (L∗(x),g∗(x)) ∈ Πsf
N (x) to be one which

minimizes the value of a cost function that is quadratic in the disturbance-free
state and input sequences. We thus define:

VN (x,L,g,w) :=

N−1
∑

i=0

1

2
(‖xi‖

2
Q+‖ui‖

2
R)+

1

2
‖xN‖2

P

where x̃0 = x, x̃i+1 = Ax̃i + Bũi + wi and ũi =
∑i

j=0 Li,jx̃j + gi for i =
0, . . . , N − 1; the matrices P , Q and R are positive definite, and ui is given by
(5). We define an optimal policy pair as

(L∗(x),g∗(x)) := argmin
(L,g)∈Πsf

N
(x)

VN (x,L,g,0). (61)

The receding horizon control policy µN : Xsf
N → R

m is defined by the first part
of the optimal affine state feedback control policy, i.e.

µN (x) := L∗
0,0(x)x + g∗0(x) (62)

and the closed-loop system then becomes

x+ = Ax + BµN (x) + w. (63)

As mentioned in Section 6.3, it is important to note that µN (·) is nonlinear,
in general, and that it is a time-invariant state feedback control law. The
difficulty with the control law in (62) is that it is difficult to compute due to the

non-convexity of the admissible set Πsf
N (x) and the non-convexity of the function

(L,g) 7→ VN (x,L,g, 0), hence it is also not obvious whether or not µN (·) is
unique or continuous, even if we require L0,0 = 02. However, by exploiting the
equivalent affine disturbance feedback parameterization (17), we will show that
the value of the RHC law µN (x), given the current value for x, can be calculated
using convex optimization techniques. Furthermore, if W is a polytope or the
affine map of a 1-norm or ∞-norm ball, then the resulting control law µN (·) is
unique and continuous.

Remark 9. If the terminal weight P satisfies the discrete algebraic Riccati equa-
tion P = Q + AT PA − AT PB(R + BT PB)−1BT PA and Assumption 1 is sat-
isfied with K = −(R + BT PB)−1BT PA, then it follows from the principle of
optimality that

(L∗(x),g∗(x)) = argmin
(L,g)∈Πsf

N
(x)

1

2

∞
∑

i=0

x̂T
i Qx̂i + ûT

i Rûi, ∀x ∈ Xsf
N , (64)

2Since the current state x is known, we could have set L0,0 = 0 without loss of generality.
However, the presentation of the results in this paper is simplified by not having this constraint.
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where x̂0 = x, x̂i+1 = Ax̂i + Bûi, the control ûi =
∑i

j=0 Li,j x̂j + gi for all
i ∈ Z[0,N−1] and ûi = Kx̂i for all i ∈ Z[N,∞). Note also that with this choice of
P and K, it follows that

µN (x) = Kx, ∀x ∈ Xf . (65)

Before proceeding, we also define the value function V ∗
N : Xsf

N → R≥0 to be

V ∗
N (x) := min

(L,g)∈Πsf

N
(x)

VN (x,L,g, 0). (66)

We will demonstrate that if W is a polytope or the affine map of a 1-norm
or ∞-norm ball, then the value function V ∗

N (·) is Lipschitz continuous, and
use it to prove that the resulting closed-loop system is ISS. We will also prove
the surprising result that V ∗

N (·) is convex, despite the fact that the function
(L,g) 7→ VN (x,L,g, 0) is non-convex, in general.

7.2 Exploiting Equivalence to Compute the Value of the
RHC Law

For the equivalent affine disturbance feedback parameterization (17), we define
a cost function JN (·) analogous to that defined in (7.1), i.e.

JN (x,M,v,w) :=
1

2

N−1
∑

i=0

(x̄T
i Qx̄i + ūT

i Rūi) +
1

2
x̄T

NP x̄N (67)

where x̄0 = x, x̄i+1 = Ax̄i + Būi + wi and ūi =
∑i−1

j=0 Mi,jwj + vi for i =
0, . . . , N − 1; the matrices P , Q and R are the same as in (7.1).

If we define

(M∗(x),v∗(x)) := argmin
(M,v)∈Πdf

N
(x)

JN (x,M,v,0) (68)

and
v∗(x) =: vec(v∗

0(x), . . . , v∗N−1(x)), (69)

then the proof of the following result follows by a straightforward application
of Theorem 1.

Proposition 7 (Equivalence for computation of RHC law). The RHC law
µN (·), defined in (62), is given by the first part of the optimal control sequence
v∗(·), i.e.

µN (x) = v∗0(x) = L∗
0,0(x)x + g∗0(x), ∀x ∈ Xsf

N . (70)

The minimum value of JN (x, ·, ·, 0) taken over the set of admissible affine dis-
turbance feedback parameters is equal to V ∗

N (x), defined in (66), i.e.

V ∗
N (x) = min

(M,v)∈Πdf

N
(x)
JN (x,M,v, 0). (71)
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Remark 10. Clearly, (L∗(x),g∗(x)) is found by letting (M,v) = (M∗(x),v∗(x))
in (45).

The above result is important because it allows one to efficiently compute the
value of the RHC law given the current state. Together with the discussion in
Sections 4.1 and 4.2, the above result implies that for a given x ∈ Xsf

N , the value
of the RHC law u = µN (x) can be computed via the minimization of a convex
function over a convex set. In particular, we remark that if W is the affine map of
a 1-norm ball, ∞-norm ball or a polytope, then the optimization problem in (68)
can be written as a convex quadratic program (QP) in a tractable number of
variables and constraints. If W is an ellipsoid or the affine map of a Euclidean
ball, then the optimization problem in (68) becomes a tractable SOCP. In all
these cases, the number of decision variables and constraints in the optimization
problem is O(N2). The reader is referred to [20,22] for a detailed discussion of
an efficient interior point QP implementation that exploits the structure in (68)
when the disturbance is ∞-norm bounded.

7.3 Continuity of the RHC Law and Value Function

It is often also a requirement that the control law be unique and continuous in
order to avoid undesirable closed-loop behavior, such as chatter. Furthermore,
if the value function is continuous, then one can also derive a number of suitable
stability results. Hence, we present the following result:

Proposition 8 (Continuity of RHC law and value function). If W is
the affine map of a 1-norm ball, ∞-norm ball or a polytope, then the receding
horizon control law µN (·) in (62) is unique and Lipschitz continuous on Xsf

N .
Furthermore, the value function V ∗

N (·) in (66) is strictly convex and Lipschitz

continuous on Xsf
N .

Proof. Note that JN (x,M,v, 0) = JN (x, 0,v, 0) for all M. Hence, if we define
the set

VN (x) :=
{

v ∈ R
Nm

∣

∣

∣
∃M such that (M,v) ∈ Πdf

N (x)
}

, (72)

then it follows from (68) that

v∗(x) = argmin
v∈VN (x)

JN (x, 0,v, 0) (73)

and from Proposition 7, we obtain

V ∗
N (x) = min

v∈VN (x)
JN (x, 0,v, 0). (74)

Recalling the discussion in Sections 4.1 and 4.2, it is easy to show that if W
is the affine map of a 1-norm ball, ∞-norm ball or a polytope, then CN , which
was defined in (24), is a polyhedron. Since VN (x) is the projection of CN onto
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a subspace, VN (x) is also a polyhedron and there exist matrices S and T and a
vector d such that

VN (x) =
{

v ∈ R
Nm | Sv ≤ d + Tx

}

. (75)

It is also easy to verify that

JN (x, 0,v, 0) =
1

2
‖Bv + Ax‖2

Q +
1

2
‖v‖2

R, (76)

where the block diagonal matrices Q ∈ R
nN×nM and R ∈ R

mN×mN are defined
as Q := [ I⊗Q 0

0 P
] and R := I ⊗ R; the block matrices A and B are given in

the Appendix. Note that (x,v) 7→ JN (x, 0,v, 0) is a strictly convex quadratic
function. Hence, it is straightforward to show that the optimization problems
in (73) and (74) are strictly convex QPs of the same structure as in [4]. By
applying the results in [4], it follows that v∗(·) and hence µN (·) are continu-

ous, piecewise affine functions on Xsf
N and V ∗

N (·) is a strictly convex, piecewise

quadratic function on Xsf
N . Lipschitz continuity follows from the assumption

that Z is compact, hence Xsf
N is also compact.

Another important property, which will play an important role in the next
section in proving stability, is whether the control law vanishes at the origin and
whether the minimum of V ∗(·) is at the origin. For this purpose, we present the
following result:

Lemma 1 (Values at the origin). If Assumption 1 holds, then V ∗
N (0) = 0

and µN (0) = 0.

Proof. Proposition 3 implies that the origin is in the interior of Xsf
N . Note that

if x ∈ Xf , then (L,g) is admissible if g = 0, Li,i = K for i = 0, . . . , N − 1 and
Li,j = 0 for all i 6= j. Hence, V ∗

N (0) ≤ VN (0,L, 0, 0) = 0. Since V ∗
N (x) ≥ 0 for

all x ∈ Xsf
N , it follows that V ∗

N (0) = 0, hence µN (0) = 0.

7.4 Input-to-State Stability (ISS) for RHC

Since the disturbance is non-zero, it is not possible to guarantee that the origin
is asymptotically stable, as in conventional RHC without disturbances [45];
without the introduction of further assumptions on the disturbance, the best one
can hope for is to guarantee stability and/or attractiveness of a set containing
the origin [44]. One way of ensuring robust stability of a set containing the origin
is to minimize a suitably-defined worst-case cost [31] or include the current state
of the model as an optimization variable [47]. However, since we are minimizing
the value of a cost function in the disturbance-free state and control sequences
and the current state is fixed, we have to use a different notion of stability. One
such alternative is input-to-state stability (ISS), which has already been proven
to be effective in the study of RHC laws with input constraints only [25,26,34],
RHC laws with discontinuities and output feedback [48] and in the analysis and
synthesis of RHC laws with robust constraint satisfaction guarantees [30,39,43].
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Consider a nonlinear, time-invariant, discrete-time system of the form

x+ = f(x, w), (77)

where x ∈ R
n is the state and w ∈ R

l is a disturbance that takes on values
in a compact set W ⊂ R

l containing the origin. It is assumed that the state
is measured at each time instant, that f : R

n × R
l → R

n is continuous and
that f(0, 0) = 0. Given a disturbance sequence w(·), where w(k) ∈ W for all
k ∈ Z[0,∞), let the solution to (77) at time k be denoted by φ(k, x, w(·)). For
systems of this type, a useful definition of stability is input-to-state stability:

Definition 1 (ISS). For system (77), the origin is input-to-state stable (ISS)
with region of attraction X ⊆ R

n, which contains the origin in its interior,
if there exist a KL-function β(·) and a K-function γ(·) such that for all initial
states x ∈ X and disturbance sequences w(·), where w(k) ∈ W for all k ∈ Z[0,∞),
the solution of the system satisfies φ(k, x, w(·)) ∈ X and

‖φ(k, x, w(·))‖ ≤ β(‖x‖, k) + γ
(

sup
{

‖w(τ)‖
∣

∣ τ ∈ Z[0,k−1]

})

(78)

for all k ∈ N.

Note that input-to-state stability implies that the origin is an asymptotically
stable point for the undisturbed system x+ = f(x, 0) with region of attraction
X , and also that all state trajectories are bounded for all bounded disturbance
sequences. Furthermore, every trajectory φ(x, k, w(·)) → 0 if w(k) → 0 as
k → ∞. The reader is referred to [28, 33, 54] and the references therein for a
thorough treatment of ISS.

In order to be self-contained, we introduce the following useful result, which
is easily proven as in [28, Lem 3.5]:

Lemma 2 (ISS-Lyapunov function). For the system (77), the origin is ISS
with region of attraction X ⊆ R

n if the following conditions are satisfied:

• X contains the origin in its interior and Xf is robust positively invariant
for (77), i.e. f(x, w) ∈ X for all x ∈ X and all w ∈ W .

• There exist K∞ functions α1(·), α2(·) and α3(·), a K-function σ(·), and a
continuous function V : X → R≥0 such that for all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (79a)

V (f(x, w)) − V (x) ≤− α3(‖x‖) + σ(‖w‖) (79b)

Remark 11. A function V (·) that satisfies the conditions in Lemma 2 is called
an ISS-Lyapunov function.

The above result leads immediately to the following, which hints at why
Proposition 8 was given:
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Lemma 3 (Lipschitz Lyapunov function for undisturbed system). Let
X ⊆ R

n contain the origin in its interior and be a robust positively invariant
set for (77). Furthermore, let there exist K∞-functions α1(·), α2(·) and α3(·)
and a function V : X → R≥0 that is Lipschitz continuous on X such that for
all x ∈ X ,

α1(‖x‖) ≤ V (x) ≤α2(‖x‖) (80a)

V (f(x, 0)) − V (x) ≤− α3(‖x‖) (80b)

The function V (·) is an ISS-Lyapunov function and the origin is ISS for the
system (77) with region of attraction X if either of the following conditions are
satisfied:

(i) f : X × W → R
n is Lipschitz continuous on X × W .

(ii) f(x, w) := g(x) + w, where g : X → R
n is continuous on X .

Proof. Let LV be the Lipschitz constant of V (·).
(i) Since ‖V (f(x, w)) − V (f(x, 0))‖ ≤ LV ‖f(x, w) − f(x, 0)‖ ≤ LV Lf‖w‖,

where Lf is the Lipschitz constant of f(·), it follows that V (f(x, w)) − V (x) =
V (f(x, 0))−V (x)+V (f(x, w))−V (f(x, 0)) ≤ −α3(‖x‖)+LV Lf‖w‖. The proof
is completed by letting σ(s) := LV Lfs in Lemma 2.

(ii) Note that ‖V (f(x, w)) − V (f(x, 0))‖ ≤ LV ‖w‖. The proof is completed
as for (i), but by letting σ(s) := LV s in Lemma 2.

Remark 12. If X in Lemmas 2 and 3 is compact, then the condition that α1(·),
α2(·) and α3(·) be of class K∞ can be relaxed to the condition that they only
be of class K.

Finally, we add the following assumption, which will allow the value function
defined in (66) to be used as an ISS-Lyapunov function:

Assumption 2 (Terminal cost). The terminal cost F (x) := xT Px is a Lya-
punov function in the terminal set Xf for the undisturbed closed loop system
x+ = (A + BK)x in the sense that

F ((A + BK)x) − F (x) ≤ −xT (Q + KT RK)x, ∀x ∈ Xf . (81)

We can now state our final result:

Theorem 2 (ISS for RHC). Let W be the affine map of a 1-norm ball,
∞-norm ball or a polytope and the RHC law µN (·) be defined as in (62). If
Assumptions 1 and 2 hold, then the origin is ISS for the closed-loop system (63)

with region of attraction Xsf
N . Furthermore, the input and state constraints (2)

are satisfied for all time and for all allowable disturbance sequences if and only
if the initial state x(0) ∈ Xsf

N .

Proof. For the system of interest, we of course let f(x, w) := Ax + BµN (x) +
w. Lemma 1 implies that f(0, 0) = 0 and Proposition 8 implies that f(·) is

continuous on Xsf
N .
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Combining Proposition 8 with Lemma 1, it follows that V ∗
N (·) is a continuous,

positive definite function. Hence, there exist K∞-functions α1(·) and α2(·) such
that (80a) holds with V (·) := V ∗

N (·) [33, Lem. 4.3].
Using standard techniques [44, 45], it is easy to show that V (·) := V ∗

N (·) is
a Lyapunov function for the undisturbed system x+ = Ax + BµN (x). More
precisely, the methods in [44,45] can be employed to show that (80b) holds with
α3(z) := (1/2)λmin(Q)z2.

It follows from Proposition 5 that Xsf
N is robust positively invariant for

system (63). Proposition 3 implies that the origin is in the interior of Xsf
N .

Finally, recall from Proposition 8 that µN (·) and V ∗
N (·) are Lipschitz continuous

on Xsf
N . By combining all of the above, it follows from Lemma 3 that V ∗

N (·) is
an ISS-Lyapunov function for system (63).

Remark 13. Given the same assumptions as in Theorem 2, it can be shown [44,
45] that the origin is an exponentially stable equilibrium (in the classical Lya-
punov sense) for the undisturbed system x+ = Ax + BµN (x) with region of

attraction Xsf
N .

8 Conclusions

We have shown that the affine state feedback parameterization of Section 3
is equivalent to the affine disturbance feedback parameterization of Section 4.
This has the important consequence that, under suitable assumptions on the
disturbance and cost function in a given finite horizon optimal control problem,
an admissible and optimal state feedback control policy can be found by solving
a tractable and convex optimization problem. This is a surprising result, since
the set of admissible affine state feedback parameters is non-convex, in general.

In addition, if the optimal control problem involves the minimization of a
quadratic cost and the solution is to be implemented in a receding horizon fash-
ion, then one can choose the terminal cost and terminal constraint to guarantee
that the closed-loop system is input-to-state stable and that the state and input
constraints are satisfied for all time and for all disturbance sequences. Though
the conditions to guarantee this are similar to well-known ones in the receding
horizon literature, many parts of the proofs of the results are non-standard and
rely heavily on the application of the equivalence result of Theorem 1.

A number of open research issues remain to be explored. For example, in this
paper it was shown that the proposed disturbance feedback parameterization is
equivalent to affine state-feedback with memory. It would be interesting to see
if it is possible to derive an equivalent convex re-parameterization in the case
where the control at each stage is an affine function of the current state only.

This paper only considered the regulation problem with state feedback. In
order to be practically useful, the results in this paper need to be extended to
handle the cases of output feedback, setpoint tracking and offset-free control.

It may be possible to extend the continuity and stability results in Proposi-
tion 8 and Theorem 2 to cover a broader class of disturbances, such as ellipsoidal
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or 2-norm bounded disturbances. However, the arguments used for doing so are
likely to differ substantially from those given here.

The results in this paper on computational tractability may also be extended
to exploit any additional structure inherent in the optimal control problem for
specific classes of disturbances and cost functions. Some results along these lines
are already available for a class of finite horizon optimal control problems with
∞-norm bounded disturbances [20,22] and the minimization of the finite-horizon
`2 gain of a system [29].

Finally, it is worth mentioning that the results regarding the convexity of
the affine disturbance feedback parameterization are easily extended to the case
where the disturbance is Gaussian with a known mean and covariance. Since
one can no longer guarantee that the set of admissible states is non-empty
due to the fact that the disturbance sequence is no longer bounded, the original
problem definition has to be changed by requiring that the given state and input
constraints only hold with pre-specified probabilities. Methods for converting
probabilistic constraints to second-order cone constraints can be found in [12,
pp. 157–8] and [55,57]. Once the conversion to second-order cone constraints has
been done, an admissible affine disturbance feedback policy can then be found
by solving a single, tractable second-order cone program. Though it is possible
to set up tractable and convex optimization problems that are equivalent to a
class of finite horizon optimal control problems with Gaussian disturbances, a
lot of work remains to be done regarding the derivation of meaningful results
regarding closed-loop stability and constraint satisfaction.
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Appendix

Let the matrices A ∈ R
n(N+1)×n and E ∈ R

n(N+1)×nN be defined as

A :=















In

A
A2

...
AN















, E :=















0 0 · · · 0
In 0 · · · 0
A In · · · 0
...

...
. . .

...
AN−1 AN−2 · · · In















. (82)

We also define the matrices B ∈ R
n(N+1)×mN , C ∈ R

t×n(N+1) and D ∈ R
t×mN

as

B := E(IN ⊗ B), C :=

[

IN ⊗ C 0
0 Y

]

, D :=

[

IN ⊗ D
0

]

. (83)

It is easy to check that (21) is equivalent to (23) with

F := CB + D, G := CE, H := −CA, c :=

[

1N ⊗ b
z

]

. (84)
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