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Abstract

This paper presents semi-global su�cient stability con-
ditions of limit cycles for relay feedback systems. Local
stability conditions exist. These are based on analyz-
ing the linear part of the Poincar�e map. We know that
when a certain limit cycle satis�es those local condi-
tions, a neighborhood around the limit cycle exists such
that any trajectory starting in this neighborhood con-
verges to the limit cycle as time goes to in�nity. How-
ever, tools to characterize this neighborhood do not
exist. In this work, we present conditions, in the form
of Linear Matrix Inequalities (LMIs), that guarantee
the stability of a limit cycle in a reasonably large set
around it. These results di�er from previous local re-
sults as they take into account the high order terms of
the Poincar�e map.

1 Introduction

Analysis of linear systems in relay feedback is a clas-
sic �eld. The early work was motivated by relays in
electromechanical systems and simple models of dry
friction. Applications of relay feedback range from sta-
tionary control of industrial processes to control of mo-
bile objects as used, for example, in space research. A
vast collection of applications of relay feedback can be
found in the �rst chapter of [9]. More recent exam-
ples include the delta-sigma modulator (as an alterna-
tive to conventional A/D converters) and the automatic
tuning of PID regulators. In the delta-sigma modula-
tor, a relay produces a bit stream output whose pulse
density depends on the applied input signal amplitude
(see, for example, [1]). As for the automatic tuning of
PID regulators, which are implemented in many indus-
trial controllers, the idea is to determine some points
on the Nyquist curve of a stable open loop plant by
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measuring the frequency of oscillation induced by a re-
lay feedback (see, for example, [2]). One problem that
needs to be solved here is the characterization of those
systems that will give a unique global attractive limit
cycle. This problem is important because it gives the
class of systems when relay tuning can be used.

Although relay feedback is frequently used in practice,
theoretical results exist only for very special cases. [4]
and [9] are references that survey a number of analysis
methods and results. An important property of relay
feedback systems is that they often tend to a limit cy-
cle. However, to tell in general if they actually converge
to a limit oscillation is still an open problem. Rigorous
results for analysis of local stability of relay feedback
systems can be found, for example, in [3, 6]. In [3],
necessary and su�cient conditions for local stability of
limit cycles are presented. [6] emphasizes fast switches
and their properties. For second-order systems, con-
vergence analysis can be done in the phase-plane [8, 5].
Stable second-order non-minimum phase processes can
in this way be shown to have a globally attractive limit
cycle. In [7] it is proved that this also holds for pro-
cesses having an impulse response su�ciently close, in
a certain sense, to a second-order non-minimum phase
process.

Even though results like the ones in [3] provide partic-
ularly elegant mathematical solutions to many prob-
lems, they do have shortcomings. The linear di�erence
equations used to describe the process are only approxi-
mations to the true behavior since all the nonlinearities
were neglected. In many problems, like the sigma-delta
modulator, it is important to verify at least semi-global
stability and robustness of nonlinear oscillations. This
can be done by taking explicitly into account the non-
linearities of the system. But, the methods available do
not allow, in general, to verify these properties. In this
paper, we will give semi-global su�cient stability con-
ditions of limit cycles for relay feedback systems based
on estimating those neglected nonlinearities. That is,
we will present conditions that, when satis�ed, guar-
antee the stability of a limit cycle in a reasonable large
region around it. These conditions will be given in the
form of linear matrix inequalities (LMIs) which can be
e�ciently solved using available computational tools.
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The remainder of this paper is organized as follows.
Section 2 starts by reviewing some local stability results
of limit cycles for relay feedback systems. In this same
section, the problem we propose to solve is described in
some detail. Section 3 presents the main result of this
paper in one theorem followed by an example in section
4. The main result is proven in Section 5. Finally,
conclusions and future work are discussed in Section 6.

2 Previous work and problem description

Consider a linear time-invariant system P in feedback
with a relay (see �gure 1) given by8<

:
_x = Ax+Bu

y = cx

u = �sgn (y)
(1)

where x 2 IRn and u 2 [�1; 1] if y = 0. De�ne the set
S as

S = fx 2 IRn : cx = 0g

P
yu

-1

1

Figure 1: Relay Feedback System

In this paper, we assume A is diagonalizable, i.e.,
there exists a set of n linearly independent vectors
vi 2 Cn, each of which is an eigenvector of A.
Without loss of generality, assume A has the form
A = diag(�1 � � ��mA1 � � �Ap) where �i, 1 � i � m,
are all the real eigenvalues of A, and matrices Ai =�

�i �i
��i �i

�
, 1 � i � p, correspond to the complex

eigenvalues �i � j�i of A. This form can always be
obtained for a diagonalizable matrix by means of a

similarity transformation. Let I2 =

�
1 0
0 1

�
and QT

denote the transpose of Q.

For simpli�cation of results, and especially of proofs,
throughout the this paper it is assumed that A�1 exists.
In practice, if this is not the case, we just need to make
the appropriate modi�cations by noticing that (eAt �

I)A�1 =
R t
0
eA�d� .

For a large class of processes, there will be limit cycle
oscillations. The next theorem, proven in [3], gives
necessary conditions for such limit cycles to occur.

Theorem 2.1 Consider the relay feedback system (1).

Assume there exists a symmetric periodic solution 

with period 2t�. Then the following conditions hold

g(t�) = c(eAt
�

+ I)�1(eAt
�

� I)A�1B = 0 (2)

and

y(t) = c(eAtx� � (eAt � I)A�1B) > 0 for 0 � t < t�

Furthermore, the periodic solution  is obtained with

the initial condition

x(0) = x� = (eAt
�

+ I)�1(eAt
�

� I)A�1B

In general, numerical procedures are needed to �nd the
values of t� that satisfy (2). Once t� and the vector x�

are found, they characterize a certain limit cycle  with
period 2t� and a point x� that belongs to . We can
now apply the following theorem from [3] which gives
a necessary and su�cient condition for local stability
of the limit cycle .

Theorem 2.2 Consider the relay feedback system (1).

Assume there exists a symmetric periodic solution 

with period 2t�. Let x� 2 S be the initial state that

generates the periodic motion. The Jacobian of the

Poincar�e map is given by

W =
�
I �

vc

cv

�
eAt

�

where v = Ax� �B. The limit cycle  is locally stable

if and only if W has all its eigenvalues inside the unit

disk.

This theorem gives local stability conditions for a given
limit cycle. For instance, if  is proven to be a stable
limit cycle then we know that there exist a neighbor-
hood around x� such that any trajectory starting in
this neighborhood will converge to the limit cycle .
But, the theorem does not characterize in any way this
neighborhood. This is because it only considers the Ja-
cobian of the Poincar�e map and neglects all its high or-
der terms. Those high order terms carry the necessary
information to characterize the stable neighborhood.

In this paper, the characterization of a stable region
around x� of a locally stable limit cycle is consid-
ered. Semi-global su�cient conditions for the stability
of limit cycles for relay feedback systems will be pre-
sented, i.e., conditions that, when satis�ed, provide us
with a reasonable large set of initial conditions such
that any trajectory starting in that set converges to 
as time goes to in�nity.

3 Main results

Consider a locally stable limit cycle , with period 2t�,
obtained with the initial condition x� 2 S. This means
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that the trajectory starting at x� intersects for the �rst
time the switching surface S at �x� in t� time. Now,
if x� is perturbed by � such that x� + � 2 S then
the trajectory, starting at x� + �, will intersect S at
�(x� + �1) in t� + � time. Consider then the map
x� +�! x� +�1 de�ned by �1 = T (�) (this map is
known as the Poincar�e map). Throughout this paper,
it will be assumed that this map is always continuous
and smooth in the regions of interest. The map T can
be decomposed into linear and high order terms (see
�gure 2).

zw
F (  )δ

∆ 1∆

M

Figure 2: The T map

Assume j�j � r for some r > 0 (that is, we start with
the assumption that the time perturbation � 2 [�r; r]).
We have the following linear relation�

�1

z

�
=M

�
�
w

�
(3)

where M is a (3n � 1) � (3n � 1) constant matrix
(for a given r > 0), and w = F (�)z where F (�) =
diag(F1(�); F2(�)) represents the high order terms of
T . We have the following quadratic inequality relating
w and z

kK�1wk2D1
� kzk2D1

where K is a constant diagonal matrix (again, for a
given r > 0) and D1 > 0 is a diagonal matrix. Consider
the n � (n � 1) matrix � (with �T� = I) that maps
one-to-one and onto vectors from IRn�1 to S.

The following theorem is the main result of this paper.
Under certain conditions (given in the form of LMIs)
it provides a stable region �
 2 S for T ; that is, it
characterizes a region for which any trajectory starting
in it converges to the limit cycle  as time approaches
in�nity. This theorem provides then tools to analyze
semi-global stability of relay feedback systems, adding
more information to the previous local results in the
sense that a reasonable large stable region around 

can now be characterized.

Theorem 3.1 Consider the relay feedback system (1).

Assume there exists a locally stable limit cycle , with

period 2t� obtained with the initial condition x� 2 S.

Pick 0 � � < 1. Given r > 0, if�
�D 0
0 K�2D1

�
�MT

�
D 0
0 D1

�
M > 0

is satis�ed for some diagonal matrices D;D1 > 0 with

D1 = diag(Da; Db) and where both Da and Db have

the form diag(d1; :::; dm; d
c
1I2; :::; d

c
pI2) then there exist

a stable region �
 � S for which any trajectory starting

in this region will converge to the limit cycle , where
�
 = fx 2 IRn

j x = x� +�T�; � 2 
g with 
 = f� 2

IRn�1
j k�kD � Rg and

R = min
�2[�r;r]

 
j�c e

A�
�I
�

�x�j

k�ceA��kD�1

!
r

A note on the initial choices of � and r. The parameter
0 � � < 1 gives a measure on how fast the trajectory
converges to x�. A smaller � implies a faster conver-
gence. This means, we are more likely to �nd a larger
stable region with a larger � than with a smaller one.
Thus, it is desirable to pick � as close to 1 as possible,
say 0:999 � � �. Now, for r > 0 it is clear that a larger
r implies a larger R and consequentially a larger re-
gion �
 � S. Therefore, we are interested in �nding the
largest r > 0 such that the conditions of the theorem
are still satis�ed. We have then a one parameter search
over r > 0. Note also that due to the symmetry of S
around the origin, the region f�xj x 2 �
g is also a
stable region.

4 Example

Consider the following transfer function of a linear sys-
tem

P (s) = �
(s+ 2:56)(s� 1:56)

(s+ 1)(s+ 2)(s+ 3)

which can be written in the state space form (1) with

A =

2
4 �1 0 0

0 �2 0
0 0 �3

3
5 ; B =

2
4 1
�1
1

3
5

and c = [2 2 � 1]. Assume this system is in relay
feedback. Solving (2) for t� > 0 we get t� = 1:4. This
corresponds to x� = [0:60 � 0:44 0:32]T 2 S. There-
fore, the closed loop system has a limit cycle obtained
with the initial condition x� 2 S and with period 2t�.
From theorem 2.2, we �nd that this limit cycle is locally
stable. We are now ready to characterize a reasonable
large region of stability around the limit cycle.

Solving the LMIs in theorem 3.1, we get

D =

�
5592 0
0 2562

�

and R = 51:59. Both D and R de�ne a stable region

 in S that can be seen in �gure 3 (the stable region
is inside the ellipse centered at x�).
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Figure 3: Stable region centered at x
�

denoted here by �

5 Proof of results

The proof of theorem 3.1 is divided in three lemmas.
The �rst lemma estimates the map T (the Poincar�e

map). The second lemma proves that this map is stable
in a region 
 characterized by j�j � r; that is, it is
shown that �k converges to zero as k ! 1 where
T (�k) = �k+1 for any point �0 2 
. Finally, the
third lemma gives a complete characterization of this
region 
 in terms of r.

We start by de�ning the Poincar�e map for the relay
feedback system (1). Let the map T = T (x) : S ! S

be the map of a point x belonging to the switching
surface S to the intersection of the trajectory, starting
at x and owing with the system P , with the switching
surface S and reecting the symmetry of S about the
origin.

Consider the relay feedback system (1). Assume there
exists a locally stable limit cycle , with period 2t�,
obtained with initial condition x� 2 S. Note that  is
a symmetric limit cycle about the origin. This means
that if x� 2 S is part of the limit cycle , then so it
is �x�. Let's now analyze the trajectory of the limit
cycle starting at x� 2 S. Integrating the �rst equation
of (1) with initial condition x� and u(0+) = �1, we get

x(t) = eAt(x� �A�1B) +A�1B (4)

Let t� > 0 be the �rst time the trajectory x(t) intersects
S, that is, the smallest t� > 0 that satis�es

� x� = x(t�) = eAt
�

(x� �A�1B) +A�1B (5)

Since x(t�) 2 S, we have cx(t�) = 0, or ceAt
�

(x� �
A�1B) + cA�1B = 0.

Consider the discrete-time system

xk+1 = T (xk) (6)

where x0 2 S is a vector close enough to x�. Since the
limit cycle is locally stable, it implies that the sequence

x 0
x 1

x 3

-x 1

x 2

-x 3

S

*x

*-x

u(t)=1

u(t)=-1

γ

Figure 4: Convergence of a trajectory x(t) to the limit

cycle 

fxkg converges to x� as k ! 1 (see �gure 4). The-
orem 3.1 characterizes a region �
 � S for which any
x0 2 �
 results in trajectories that converge to the limit
cycle as time goes to in�nity. The proof of the theorem
is then based on showing that T is stable in a certain
region �
 � S.

Note that x� is an equilibrium point of (6). We will
study this system when we perturb it by �� 2 S from
x�. So, let x0 = x�+�. Applying T to x0 we get x1 =
T (x0) = x� +�1. In general, we have xk = T (xk�1) =
x�+�k. Note that ��k 2 S, and S is a subspace of IRn

of dimension n�1. Therefore, ��k has only n�1 degrees
of freedom. A di�eomorphism � : IRn�1

! S � IRn

can then be constructed such that ��k = ��k where
�k 2 IRn�1. Here � is a n � (n � 1) matrix that can
be chosen such that �T� = I . In this case, �k =
�T ��k. Since x

� is �xed, we will consider, without loss
of generality, the discrete-time system �k+1 = T (�k).
Note that 0 is now the equilibrium point of this system.

We are now ready for our �rst lemma where we estimate
the map T .

Lemma 5.1 Assume that j�j � r where r > 0. The

map �k+1 = T (�k) can be decomposed (see �gure 2)

in its linear part given by (3) where M is a (3n� 1)�
(3n � 1) matrix that depends on r, plus its high order

terms w = F (�)z where F (�) is a nonlinear function

of � and r. Moreover,

kK�1wk2D1
� kzk2D1

where K is a constant diagonal matrix (for a given r >

0), and D1 = diag(Da; Db) > 0 with both Da and Db

having the form diag(d1; :::; dm; d
c
1I2; :::; d

c
pI2) > 0.

Proof: We have already seen what happens to the
trajectory if we start at x�. In this case, we have that
T (0) = 0. If we perturb x� by �� such that x�+ �� 2 S,
then the point x� + �� is mapped into �(x� + ��1) 2 S
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in t� + � time. We have then the following equations�
�(x� + ��1) = eA(t�+�)(x� + ���A�1B) +A�1B

ceA(t�+�)(x� + ���A�1B) + cA�1B = 0

Using (5) and the fact that ��k = ��k, we can write
the last equations as�

�1 = ��T eAt
�

(eA� � I)�x� ��T eAt
�

eA���
�c(eA� � I)�x� + �ceA��� = 0

(7)

where, for simplicity, we write �x� = x� � A�1B and
�c = ceAt

�

.

The next step consists of computing the linear and high

order terms of both equations. Let F1r = eAr+e�Ar

2

and F2r =
eAr�e�Ar

2r
. The �rst equation of (7) can be

rewritten as

�1 = �L�+ l� � �T eAt
�

F1(�)�� ��T eAt
�

F2(�)�x
��

where �L = ��T eAt
�

F1r�, l = ��T eAt
�

F2r�x
�, F1(�) =

eA� �F1r, and F2(�) =
eA��I

�
�F2r. The second equa-

tion can be written as

�� = ���� �cF2(�)�x
�� � �cF1(�)��

where � = �cF2r�x
� and � = �cF1r�.

So, we have �
�1

��

�
= L

�
�
�

�
+ �(�; �)

where L =

�
�L l

�� 0

�
and

�(�; �) =

�
K11

K12

�
F (�)

�
��
�x��

�

with K11 = ��T eAt
�

(1 1), K12 = ��c (1 1), and
F (�) = diag(F1(�); F2(�)).

The next step will be to write the previous map in
the form of the one in �gure 2. Let w = F (�)z with

z =

�
��
�x��

�
=

�
z1
z2

�
, and

0
@�1

z1
z2

1
A =M

�
�
w

�
where

M =

0
@ �L� l �

�
lK12

�
+K11

� 0
��x� �

�
�x�K12

�

1
A

We are now interested in estimating kwkD2
, for some

D2 = DT
2 > 0, since F (�) is a nonlinear function of �.

For some D1 = DT
1 > 0 and D2 = DT

2 > 0 we have

kwk2D2
= kD

1=2
2 F (�)D

�1=2
1 D

1=2
1 zk22

� �2
max(D

1=2
2 F (�)D

�1=2
1 )kzk2D1

If D1; D2 > 0 are picked such that they are diagonal
with the structure diag(Da; Db) and with both Da and
Db having the form diag(d1; :::; dm; d

c
1I2; :::; d

c
pI2) > 0

then FF T is a diagonal matrix that we write as FF T =
diag(f1; :::; f2n). Therefore, we have

kwk2D2
� �max(D2F (�)F

T (�)D�1
1 )kzk2D1

� max
�2[�r;r]

�max(D2F (�)F
T (�)D�1

1 )kzk2D1

= �max(D2K
2D�1

1 )kzk2D1

where K2 = diag(max� f1(�); :::;max� f2n(�)). Since
all the matrices in �max are diagonal, with D1 =
diag(d11; :::; d

1
2n), D2 = diag(d21; :::; d

2
2n), and K2 =

diag(k21 ; :::; k
2
2n), the last inequality can be reduced

to kwk2D2
� pkzk2D1

where p = maxi

n
d2
i

d1
i

k2i

o
. In

fact, p =
d2
i

d1
i

k2i for all i or otherwise there would ex-

ist at least one i such that
d2
i

d1
i

k2i < p. Then one

could decrease d1i and obtain a smaller kzkD1
. Hence,P

i p
d1
i

k2
i

w2
i � pkzk2D1

or kK�1wk2D1
� kzk2D1

.

So, in lemma 5.1, the Poincar�e map T of a certain relay
feedback system was decomposed in its linear part plus
its high order terms around x�. Now, we are interested
in posing the following question: if we start at a certain
point x0 2 S, with �0 2 
 (where, for now, 
 � IRn�1

is a region characterized by j�j � r), will the sequence
fxkg converge to x� as k ! 1? Or, equivalent, will
the sequence f�kg converge to zero as k ! 1? To
answer this question we will use the following result:

Proposition 5.1 Let T : 
 ! 
 be a function where


 is a closed subset. If

kT (�)kD � �k�kD (8)

for all � 2 
, some 0 � � < 1, and some D = DT > 0,
then the sequence f�kg de�ned as �k = T (�k�1) and
�0 2 
 will converge to zero as k !1.

To see this, assume (8) is satis�ed. Take any �0 2 
.
Then k�kkD = kT (�k�1)kD � �k�k�1kD � � � � �

�kk�0kD. Now, as k !1, the quantity �k approaches
zero. This means that k�kkD can be made arbitrarily
small by choosing k su�ciently large.

In our case, the function is T (�) = �1 (estimated in
lemma 5.1) and the set 
 = f� 2 IRn�1

j k�k2D � Rg

where R > 0, unknown for now, depends on r. Note
that we can de�ne an equivalent subset of S using the
di�eomorphism �, that is, �
 = fx 2 IRn

j x = x� +
�T�; � 2 
g � S.

The following lemma gives conditions in the form of
LMIs that, when satis�ed, guarantee the stability of T
in 
.
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Lemma 5.2 Let 0 � � < 1. The map T is stable in 

if there exists an r > 0 such that�

�D 0
0 K�2D1

�
�MT

�
D 0
0 D1

�
M > 0

for some diagonal matrices D;D1 > 0.

Proof: To prove the stability of T in 
 we need to
show that

k�1k
2
D � �k�k2D

for all � 2 
 and some diagonal matrix D > 0. Using
the S-procedure, this is true if

�k�k2D � k�1k
2
D � kzk2D1

� kK�1wk2D1

is satis�ed for all � 2 IRn�1, w 2 IRn and some
diagonal positive de�nite matrices D 2 IRn�1�n�1,
D1 2 IR2n�2n. The desired result can be obtained by
using (3) and simple manipulation of the last inequal-
ity.

We are left with the characterization of 
. Note
that the assumption of the time perturbation � being
bounded by r > 0 de�nes automatically a region �
 � S

for which the trajectory starting at any point in this
region takes less than t�+ r time and more than t�� r

time to intersect for the �rst time the switching surface
S. The next lemma gives an estimative on the size of
this region.

Lemma 5.3 For any D = DT > 0 and r > 0, there
exists an R > 0 such that if k�kD � R then j�j � r.

Such R > 0 is given by

R = min
�2[�r;r]

 
j�c e

A�
�I
�

�x�j

k�ceA��kD�1

!
r

Proof: Let r > 0. From the second equation of (7)

we have
����c eA��I�

�x�
��� j�j = j�ceA���j or

j�j �
k�ceA��kD�1

j�c e
A��I
�

�x�j
k�kD =

1

f(�)
k�kD

for all � and � = ~�(�). It is easy to see that if � = 0
then � = 0. Now, due to the fact that f(�) is continuous
on [0; r] (by initial assumption in the paper), one can

�nd an R̂ > 0 small enough such that

k�kD � R̂) j�j � r (9)

because a small increase in k�kD must correspond to a

small increase in j�j. Let R̂ = min�2[�r;r] f(�)r̂ where

0 < r̂ � r is small enough. Then k�kD � R̂) j�j � r̂.

Now, if we increase r̂ to r, we have j�j � r which
means that (9) is not violated. Therefore we found
R = min�2[�r;r] f(�)r for which k�kD � R ) j�j � r.

6 Conclusions and future work

This paper presented conditions for semi-global stabil-
ity of limit cycles for relay feedback systems. These
conditions were given in the form of linear matrix in-
equalities, which can be solved using available and e�-
cient computational tools. The idea behind the devel-
opment of these conditions consisted of three steps:

1. separation of the Poincar�e map in its linear part
plus its high order terms (�rst part of lemma 5.1);

2. estimation of those high order terms (second part
of lemma 5.1);

3. characterization of a reasonable large region in
the state space for which any trajectory starting
in this region converges to the locally stable limit
cycle (lemmas 5.2 and 5.3).

There are still many open problems following this work.
One is the extension of the results from this paper to
other types of nonlinearities (like saturations, etc.). To
be more general, these results should be extended to
cover stability analysis of limit cycles for uncertain sys-
tems in relay feedback, piecewise linear systems, and
certain classes of piecewise nonlinear systems.
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