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Abstract: Systems with redundant control actuators are sometimes arranged so
that a new actuator comes into play if the one normally used becomes saturated.
We call this ‘daisy-chaining’. Such an arrangement also provides a degree of fault-
tolerance against actuator failures. This paper points out that a similar property
is implicit in constrained predictive control, as it is usually formulated. Predictive
control therefore has a degree of implicit fault-tolerance. In order to obtain this
property the predictive control must have explicit constraints on the input levels
(actuator positions) and the usual disturbance model, which results in integral action
arising in the controller. The general considerations dealt with in the paper are
illustrated by a simplified example, based on the liquefaction of natural gas.
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1 Introduction

In systems with redundant actuators, ‘daisy-chaining’ refers to an arrangement in which one
actuator (manipulated variable) is used in normal operation, but another (or others) actuator
is brought into operation if the first one saturates or fails. Figures 1 and 2 show, in block-
diagram form, how this can be achieved. Figure 1 shows the use of a model of the saturation
characteristic of an actuator, while figure 2 shows the use of feedback of the actuator position —
for example, feedback of measured valve stem position, or of measured flow rate in a pipe. (It
will be seen from these examples that the term ‘actuator’ is used in this paper to mean either
a device, such as a valve or hydraulic ram, or the variable affected by such a device, such as a
flow rate or control surface angle; the appropriate meaning is problem-dependent.)
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+

Figure 1: Daisy-chained actuators

+

-
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Figure 2: Daisy-chained actuators with actuator position feedback

It is apparent from these figures how daisy-chaining works in case an actuator saturates. It is
probably less evident that these schemes are also effective in case the actuator used for normal
operation fails, for example by getting stuck at a constant value. Figure 1 requires integral action
in the controller to be effective in this case. The back-up actuator is not brought into operation
immediately, but a persistent error in the controlled output leads to an increasing control signal
from the integral action, until the daisy-chaining system ‘thinks’ that the normal actuator has
become saturated, whereupon the back-up actuator is brought into play. The scheme shown in
figure 2 does not necessarily need integral action to be effective in the event of failure, because
the discrepancy between the required and actual actuator settings is immediately apparent to
the daisy-chaining scheme. It should be pointed out that actuator position feedback can be
ineffective for dealing with certain kinds of actuator failures. For example, the effect of valve
stem travel being reduced from its normal range can be the same as that of a pipe becoming
clogged downstream of the valve, but only the first failure will be detected by valve stem position
feedback.
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Daisy-chaining can be implemented by software, or by clever electromechanical or even purely
mechanical arrangements. Conventional daisy-chaining must be deliberately added to a con-
trol system, may require additional hardware, and can provide only foreseen reconfiguration
possibilities.

Constrained predictive control is a technology which is increasingly used in the process industries
[1, 7]. The purpose of this paper is to demonstrate that constrained predictive control implicitly
has some daisy-chaining capability, whenever there is a degree of redundancy in the plant actu-
ators. Actually ‘daisy-chaining’ should be understood here in a slightly more general sense than
the one used above, to mean a transfer of control action from faulty actuators to healthy ones.
It may be, for instance, that in normal operations all the actuators are used to some extent.
In this case, ‘daisy-chaining’ refers to the possibility of using the healthy actuators to a greater
degree than normal when some actuators fail. In contrast with conventional daisy-chaining, the
capability arises inherently from the usual constrained predictive control problem formulation,
and can exploit any available redundancy, even in situations which had not been foreseen by the
designer. This property enhances considerably the robustness of constrained predictive control
schemes in the face of actuator saturation, and their tolerance to certain kinds of failure.

In this paper we first give a brief account of constrained predictive control, and discuss how
integral action arises in the usual versions of this. We then discuss systems with redundant
actuators, and concentrate on their steady-state characteristics. In section 4 we prove that a
redundantly-actuated system with constrained predictive control (and with certain assumptions)
cannot converge to an incorrect set-point, even if there are actuator failures, so long as those
failures are compatible with achieving the required set-point. Finally, the ideas of the paper are
illustrated by an example taken from gas liquefaction.

2 Constrained Predictive Control

In predictive control, an explicit ‘internal model’ is used to obtain predictions of plant behaviour
over some future time interval, assuming some trajectory of control variables. The control
variable trajectory is chosen by optimizing some aspect of system behaviour over this interval.
Only an initial segment of the optimized control trajectory is implemented, after which the
whole cycle of prediction and optimization is repeated, typically over an interval of the same
length. The necessary computations are performed on-line. The optimization problem solved
can include constraints, most often constraints on input levels and input rates of change, and
constraints on levels of outputs and possibly internal (unmeasured) variables. Predictive control
has hitherto been applied mostly in the process industries, where the explicit specification of
constraints allows operation closer to constraints than standard controllers would permit, and
hence operation at more profitable conditions.

Many formulations of predictive control assume that a linear time-invariant model is available
in the form of a (multivariable) step or impulse response, and that predictions are generated by
convolution: suppose that the multivariable step response sequence is given by {gi : i = 0, 1, . . .},
that the (control) input vector at time k is u(k) and that the (to be controlled) output vector
at time k is y(k). Also let ∆u(k) = u(k)− u(k − 1) be the change in the input at time k. Then
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the output is given by

y(k) =
k∑

i=−∞
gk−i∆u(i) + d(k) (1)

where it has to be assumed that the open-loop system is asymptotically stable for this to be
valid, and d(k) is assumed to be a disturbance acting on the output.

In this case predictions of the output are computed by

ŷ(k + j|k) =
k+j∑

i=k+j−N
gk+j−i∆u(i) + d̂(k + j|k) (2)

where N is a relatively large integer, and d̂(k + j|k) is some estimate of d(k + j). Usually the
disturbance is estimated as

d̂(k|k) = y(k)− ŷ(k) (3)

and it is assumed that future disturbances are the same as the current one:

d̂(k + j|k) = d̂(k|k). (4)

The convolution model is an inefficient one, since the same model can be represented much more
compactly in either transfer function or state-space form. Furthermore, representing the system
by a model of this kind removes the restriction to stable models. However, the representation
chosen for the model is not important here. Later we shall assume a state-space model.

Predictive control works by choosing control actions to minimise some cost function, such as

J(k) =
N2∑
i=N1

||ŷ(k + i|k)− r(k + i)||2Q +
Nu∑
i=1

||∆u(k + i)||2R (5)

subject to constraints such as

|∆uj(k + i)| ≤ Vj (6)
|uj(k + i)| ≤ Uj (7)
|ŷj(k + i|k)| ≤ Yj (8)

where r(k) is some set-point trajectory for y(k). It is assumed that the control signals are
constant after the end of the optimisation horizon, namely that ∆u(k + i) = 0 for i > Nu.

The cost function penalises non-zero changes ∆u(k) in the control signals, rather than the control
signals u(k) themselves, since the required steady-state values of u(k) are not known in advance.
Penalising non-zero u(k) would ‘drag’ the control signals away from the required steady-state
values, thus preventing integral action, for instance.

When a linear model and quadratic cost is used, the resulting controller is linear time-invariant
providing that either no constraints are active, or that a fixed set of constraints is active. (For
each such set, a different linear control law results.) Thus the control law can be a linear law for
long periods of time. However, when hard constraints are approached the controller can behave
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in a very nonlinear way. In particular, it may react mildly to a disturbance which drives the
system away from constraints, but very sharply to a disturbance of similar magnitude but in
the opposite direction, which drives the system towards constraints.

Predictive control, as described above, exhibits ‘integral action’, namely it has the capability
of tracking constant set-point vectors without error in the steady-state, and of asymptotically
rejecting constant disturbances [2]. In order to understand the ‘daisy-chaining’ property later,
it is important to understand how this ‘integral action’ property of predictive control arises.
It is often stated, erroneously, that the property is due to the inherent ‘integration’ in the
predictive control law, since this computes the increments ∆u(t), whereas the control applied to
the plant is u(t). This is manifestly false, since this integration is exactly offset by the additional
‘differentiation’ inherent in computing ∆u instead of u.

It is, in fact, the combination of penalising ||∆u|| (rather than ||u||) in the objective function,
and the disturbance model which produces the integral action. The penalisation of ||∆u||, rather
than ||u||, allows the optimal solution to be unprejudiced by any prior judgement about the
required steady-state actuator settings. It is certainly necessary to the emergence of the integral
action property, but it is far from being sufficient. Suppose that the controlled output vector
y settles to a value different from the set-point vector. The predictive control applies a set
of actuator settings which, according to its internal model, should cause the output vector to
equal the set-point vector. An output disturbance is therefore estimated (as the difference
between the two), and is assumed to persist unchanged into the future. The actuator settings
are therefore adjusted, to correct for this perceived error. If an error still persists, this process
is repeated, with the actuator settings increasing, until the output vector reaches the set-point
vector. The fact that only differences in the input vector appear in the cost function implies
that the optimization is indifferent to the steady-state settings of the actuators, and hence this
process is not inhibited by the optimization. There is, therefore, no explicit integrating element
in the predictive controller, but the same effect is achieved by an ‘integration’ of the estimated
output disturbance, and computation of the control vector to counteract this increasing estimate.

3 Redundantly-actuated systems

Some control systems have redundant actuators, in the sense that there are more degrees of
control freedom than control objectives. Examples of this arise in some modern aircraft, for
example, with conventional control surfaces, such as rudders, sometimes consisting of several
parts, and others, such as elevators and ailerons, being independently actuated, so that elevators
can be used to produce roll torques and ailerons can be used to provide pitching moments
(the opposite of their usual functions). Also, wing spoilers (air brakes) are commonly used
asymmetrically to enhance the rolling moment at low speeds [3].

Examples in the process industries are less apparent, because such redundancy is less commonly
designed in deliberately, except perhaps in some safety-critical sectors such as nuclear power
plant. But inevitably there is considerable redundancy in a complex plant: malfunctioning of
one valve may be compensated by another in a different part of the plant, or by changing the
speed of a compressor, for example.

Of course it is rare for a control actuator to be completely redundant, in the sense that it has
no function in normal operation. (Deliberate provision of back-up capability in safety-critical
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applications is an exception.) But there may be redundancy with respect to certain control
objectives. In particular, redundancy with respect to steady-state set-point tracking objectives
is quite common, and it is redundancy in this sense that we will concentrate on in this paper.

Let us denote a steady-state (constant) value of the plant input vector, namely of the plant ac-
tuators. Similarly let ds denote the value of a plant disturbance vector, again assumed constant,
and let ys denote the resulting steady-state value of the vector of controlled outputs — which
we assume here to be constant. In general us, ds and ys are related by some nonlinear function
Ps:

ys = Ps(us, ds). (9)

We assume here that any factors affecting the steady-state, other than the actuators, are included
in the disturbance vector ds, and for simplicity we also assume that the steady-state map Ps
does not change with time.

Consider the set U(Ps, ys, ds) of all constant input vectors which result in the steady-state output
vector ys in the presence of the disturbance vector ds:

U(Ps, ys, ds) = {us : ys = Ps(us, ds)}. (10)

This set may consist of a single point, or a set of isolated points, or a continuum of points. For
the purposes of this paper, we shall say that the plant is redundantly actuated if U(Ps, ys, ds)
is a manifold of dimension at least 1. Actually we will not need most of the properties of a
manifold, such as smoothness at each point. In practical cases the set will be differentiable at
least once in the neighbourhood of feasible plant operating points. If the plant is redundantly
actuated, we shall call U(Ps, ys, ds) the steady-state manifold. The dimension of the manifold
measures the degree of redundancy: it is a 1-dimensional curve if there is 1 redundant actuator,
a 2-dimensional surface if there are 2 redundant actuators, etc.

If the plant behaviour is linear, has m independently manipulated actuators, ` disturbances,
and p controlled outputs to be held at set-points, then Ps is a p × (` + m) matrix. Let it be
partitioned as Ps = [Psu, Psd], so that ys = Psuus+Psdds. If m ≥ p and rank(Psu) = p, then the
steady-state manifold U(Ps, ys, ds) is an affine variety of dimension p−m, which is a translation
of the null space of Psu.

Suppose that the plant behaviour is linear. Let rs be a constant set-point vector, and let us0 be
the point in U(Ps, rs, ds) at which the plant is supposed to operate under normal conditions. If
u is the actual value of the input vector (not necessarily constant with time), it will be helpful
to consider the difference u − us0. Let the orthogonal projection of u − us0 onto U(Ps, rs, ds)
be v, and w = (u − us0) − v. That is, w is the ‘component’ of u − us0 in the steady-state
manifold, and v is the ‘component’ orthogonal to this manifold. If u settles to a constant value
us1, with corresponding values of v and w being vs and ws, respectively, then ||vs|| = 0 indicates
that the set-point vector is being tracked without error, and ||ws|| then measures the extent
of any actuator reconfiguration that has taken place in order to achieve this. If the behaviour
is nonlinear then one needs to define u and v with respect to the local tangent space of the
steady-state manifold, and a suitable replacement for ||ws|| remains to be investigated — for
some purposes the chordal distance in the Euclidean ‘input space’ will be appropriate, whereas
for others a geodesic distance in the manifold may be more suitable.
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4 The Daisy-Chaining Property

We focus here on daisy-chaining in response to actuator failures. Let us call the particular
steady-state manifold obtained when ys = rs the set-point manifold. The constraints on input
levels restrict the feasible region of this set-point manifold. Call this feasible region U1. In the
case of independent constraints on each component of the input vector, U1 is a hyper-rectangle.
Actuator failures also restrict the attainable region of the set-point manifold. Call this attainable
region U2. In the case of the i’th actuator being stuck at a particular value, U2 is a section of
the set-point manifold, orthogonal to the i’th basis vector. If the intersection of U1 and U2 is
not empty we say that the actuator failure is compatible with the set-point specification.

We assume that the controlled plant is linear and described by:

x(k + 1) = Apx(k) + Bpv(k) (11)
y(k) = Cpx(k) (12)

The internal model used by the predictive controller assumes a constant output disturbance:

z(k + 1) = Amz(k) + Bmu(k) (13)
d(k + 1) = d(k) (14)

y(k) = Cmz(k) + d(k) (15)

As in [6], the constant disturbance is modelled as a constant state, in order to discuss its
estimation in a standard way. Assuming a constant input disturbance would be more natural
for dealing with actuator failures, but we assume output disturbances for consistency with
popular versions of predictive control, such as DMC and GPC.

Notice that the controller produces a control signal u(k), whereas the plant receives the control
signal v(k). We model actuator failures as:

v(k) = Su(k) + β (16)

where S is a square matrix and β is a constant vector. This allows failures to zero, to non-zero
values, and actuator gain changes (but not changes in actuator dynamics). Jammed actuators
are represented by S = diag{1−si}, βi = siγi, and si ∈ {0, 1}, where γi is the value at which the
i’th actuator is jammed. Notice also that for the time being we assume possibly quite different
dynamics in the internal model and the plant.

We take the cost function to be as defined in (5), and we assume for simplicity that the only
constraints are on the values of the control signal: u(k) ∈ U , where U is a compact, convex
set. We further assume that the constraints on the real plant are the same as those known to
the predictive controller: v(k) ∈ U . Now we assume that there is an actuator failure which is
compatible with the set-point specification, namely that there exists us ∈ U , such that

xs = Apxs + Bp(Sus + β) (17)
rs = Cpxs (18)

Finally we assume that Q > 0, so that any deviation from the set-point is penalised.

With these assumptions, we will show that, with large enough Nu and N2, the only possible
equilibrium of the closed-loop system is at ys = rs. This is analogous to the basic property
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of integral control. To do this we will first show that at an equilibrium the predictor correctly
predicts the steady-state plant output, and then that the optimiser can ‘see’ a better solution,
unless it is already at the set-point. Finally we shall show that the presence of input constraints
implies that the plant moves away from the equilibrium, unless it is already at the set-point.

Lemma 1 Suppose that the controller output is constant, u(k) = ū, that the plant is at an
equilibrium x(k) = x̄, y(k) = ȳ, and that a standard, asymptotically stable Luenberger observer
is used to estimate the model state [z(k)T , d(k)T ]T . Then the output predicted by the internal
model converges to ȳ.

Remark 1 Note that this would be a completely standard result if we assumed that the plant
and model were the same, namely Ap = Am, etc. But we do not assume this here.

Proof: The standard Luenberger observer is[
ẑ(k + 1|k)
d̂(k + 1|k)

]
= (A − LC)

[
ẑ(k|k − 1)
d̂(k|k − 1)

]
+ Bu(k) + Ly(k) (19)

where

A =

[
Am 0
0 I

]
, B =

[
Bm
0

]
, C = [Cm, I].

Since we assume that the observer is asymptotically stable, the estimated state converges (with
k) to [z̄T , d̄T ]T , for some pair z̄, d̄. Hence the estimated output converges to ŷ = C[z̄T , d̄T ]T .
Now, if L is partitioned conformally with [zT , dT ]T , so that L = [LTz , LTd ]T , then from (19) it
follows that Ldŷ = Ldȳ. Now, assuming that Ld is nonsingular, it follows that ŷ = ȳ. Note that
this is a harmless assumption, since if Ld were singular, then an arbitrarily small perturbation
would make it nonsingular without losing asymptotic stability of the observer. (Also note, as
pointed out by [6], that if the plant is open-loop stable and the observer used is a Kalman filter,
then Ld = I.) Hence the predicted value of the output for all future times converges to ȳ, since
this is obtained by iterating (19), which has a fixed point at (z̄, d̄, ū, ȳ). 2

Now we show that, if the actuator failure is compatible with the set-point specification, then
there is always an output disturbance estimate which makes the control signal required (by
the plant) from the controller, us, consistent with the set-point, rs. This establishes that an
equilibrium solution exists which gives the correct set-point, and is consistent with the model
and constraints known to the controller. For simplicity we assume that the model does not
contain any integrators.

Lemma 2 There exists a pair (zs, ds), such that

zs = Amzs + Bmus (20)
rs = Cmzs + ds (21)

providing that (I −Am)−1 exists, where us is defined in (17).

Proof: Rewrite the equations as[
I −Am 0
Cm I

] [
zs
ds

]
=

[
Bmus
rs

]
(22)
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from which the result is obvious. 2

Remark 2 If the model does contain integrators, then a solution will exist providing that[
Bmus
rs

]
∈ span

[
I −Am 0
Cm I

]
(23)

This is a compatibility condition relating the (failed) plant and the model, which essentially says
that the integrators in the plant must be modelled correctly, or at least ‘compatibly’.

We now need a slightly different Lemma, which says that, if the plant-controller combination is
sitting at an equilibrium, away from the set-point, then a pair (zf , uf ) exists which is predicted
to drive the output to the set-point, in the presence of the currently estimated disturbance d̄.
It is easy to see that such a pair must solve the equation:[

I −Am −Bm
Cm 0

] [
zf
uf

]
=

[
0

rs − d̄

]
(24)

and so a solution will certainly exist if[
0

rs − d̄

]
∈ span

[
I −Am −Bm
Cm 0

]
(25)

However, we need the solution to be feasible, that is, we also need uf ∈ U . It seems necessary
to introduce this as an independent assumption, unless stronger assumptions are made about
the closeness of the model to the plant. In the following Lemmas we proceed to make a rather
strong assumption in this respect: we assume that the plant and model matrices are identical.

Lemma 3 Suppose that the plant and model are described by (11–12) and (13–15), respectively,
and that Am = Ap, Bm = Bp, and Cm = Cp. Suppose also that (I − S)β = β. Then under the
conditions described in Lemma 1 the estimated output disturbance is

d̄ = Cp(I −Ap)−1Bp(I − S)(β − ū). (26)

Remark 3 The assumption on S and β is valid if one or more actuators are jammed. In this
case S is an orthogonal projector, and β is orthogonal to the range space of S, so that Sβ = 0
and (I − S)β = β.

Remark 4 Note that Cp(I−Ap)−1Bp = Psu, as defined in the previous section. So we can also
write d̄ = Psu(I − S)(β − ū).

Proof: From (11–12) and (16) we have

ȳ = Cp(I −Ap)−1Bp(Sū+ β) (27)

and from (13–15) we have

ȳ = Cp(I −Ap)−1Bpū+ d̄. (28)
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Hence

d̄ = Cp(I −Ap)−1Bp[β − (I − S)ū] (29)
= Cp(I −Ap)−1Bp(I − S)(β − ū). (30)

2

Lemma 4 Suppose that the assumptions of Lemma 3 hold. Suppose further that the plant
actuator failure is compatible with the set-point specification and that Sus+(I−S)ū ∈ U (where
us is defined in (17) and U is the set of admissible inputs). Then there exists an admissible uf ,
as defined above.

Remark 5 The assumption that Sus+ (I−S)ū ∈ U is rather restrictive. It holds, for example,
if U is defined by component-wise restrictions on the magnitudes of actuator positions: U−i ≤
ui(k) ≤ U+

i . It should be possible to relax this assumption, and to exploit the assumption that
U is a convex set which contains the points us, ū, Sus + β, and Sū+ β.

Proof: From (24), Lemma 3, and (17–18) we have

Psuuf = rs − d̄ (31)
= Psu(Sus + β)− Psu(I − S)(β − ū) (32)
= Psu[Sus + (I − S)ū] (33)

Hence uf = Sus + (I − S)ū is a solution, and uf ∈ U . 2

Remark 6 It may seem that this proof requires the controller to ‘know’ about the actuator
failure, since we have used rs = Psu(Sus + β). But this is not so. All that is required is that
an admissible control input exists which the controller predicts would hold the plant at rs in the
absence of disturbances. Sus+β is such an input, and the controller can find it without knowing
S or β.

Lemma 5 Suppose that the predictive controller and plant together are at an equilibrium as
defined in Lemma 1. Let the corresponding value of the cost (5) be J̄ . Then, for large enough
Nu and N2, there exists a sequence of admissible control moves {∆u(k+ i) : i = 0, . . . , Nu}, with
associated cost Ju(k), such that Ju(k) < J̄ . (In this case an admissible control move ∆u(k) is
one which results in u(k) ∈ U .)

Proof: In Lemma 1 we established that, if the plant-controller combination is at an equilibrium,
then the predicted output converges to the actual plant output. Therefore J(k) converges (as k
increases) to J̄ = (N2 −N1)||ȳ − rs||2Q > 0 if ȳ 6= rs.

Suppose that the plant (and hence model) is open-loop stable and that u(k + i) = uf for all
i > 0 (which is admissible), so that

Ju(k) =
N2∑
i=N1

||ŷ(k + i|k)− rs||2Q + ||uf − ū||2R (34)
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and hence

J̄ − Ju(k) = (N2 −N1)||ȳ − rs||2Q −
N2∑
i=N1

||ŷ(k + i|k) − rs||2Q − ||uf − ū||2R.

(35)

The first term in this expression increases linearly with N2−N1, while the second term converges
to some finite limit as N2 increases, since ŷ(k + i|k) converges exponentially (with i) to rs.
Therefore J̄ − Ju(k) > 0 for N2 large enough (assuming N1 fixed).

Now suppose that the plant (and model) is unstable. Then the unstable modes must be driven
to their new equilibrium values within Nu steps, and the control must remain at uf thereafter.
Note that without constraints this could certainly be done if Nu were at least as large as the
number of unstable modes. With constraints on u(k) it may be necessary to have a value of Nu

larger than this, but there always exists some value of Nu for which it is possible. So in this
case we have

J̄ − Ju(k) = (N2 −N1)||ȳ − rs||2Q −
N2∑

i=Nu+1

||ŷ(k + i|k)− rs||2Q −

Nu∑
i=N1

||ŷ(k + i|k) − rs||2Q −
Nu∑
i=1

||∆u(k + i)||2R. (36)

Now the first two terms correspond to the first two terms in (35). The last two terms are new,
but again are fixed for a fixed control sequence, so that again J̄−Ju(k) > 0 if N2 is large enough.
2

Remark 7 For more general constraint sets, involving state constraints, it would also be neces-
sary to postulate large enough N1 to ensure feasibility, and to consider questions of constrained
stabilizability — see [8].

Remark 8 In general a large enough value of N2 is also necessary to ensure closed-loop stability.
Following the work of [8] and later developments, there seems little reason for using N2 < ∞
nowadays [4, 5].

Remark 9 If the controller applied a control sequence that converged on Sus + (I − S)ū, the
value of uf found in the proof of Lemma 4, then the plant would be driven to the correct set-
point, since then we would have Suf = Sus. However, the controller is very likely to find what
it thinks is a better steady-state control input. Any input which differs from this value of uf by
an element of the kernel of Psu will be predicted to give the same steady-state output. In most
cases there will be a compact set of such inputs which will be admissible.

So far we have shown that if the plant-controller combination is at an incorrect equilibrium
(ȳ 6= rs) then the controller will eventually change the control sequence which it computes, and
will therefore apply a new control signal u(k + 1) to the plant. Since the plant has an actuator
failure, however, it could happen that the control signal received by the plant does not change
(namely Su(k + 1) + β = Sū+ β), so that the plant could remain at the incorrect equilibrium.
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In particular, this will occur if the controller attempts to drive the plant to the set-point by
manipulating the failed actuator, which would be quite likely if the controller did not have a
model of actuator constraints. As can be seen from Lemma 3, the estimated disturbance d̄ can be
attributed to an input disturbance in a direction orthogonal to the range of S — not surprisingly,
since that is exactly what an actuator failure is. It is therefore natural that the controller should
try to correct for this by altering the input in the same direction, which unfortunately has no
effect on the faulty plant. Now we show that this situation cannot persist indefinitely if the set
of admissible controls, U , is bounded. Again, we make two assumptions to simplify the proof:
that only one actuator has failed, and that the open-loop controller has no periodic modes.
Both can probably be relaxed. Recall that, providing the solution remains unconstrained, the
predictive controller is a linear, time-invariant system — see [9], for example.

Lemma 6 Suppose that the predictive controller and plant together are at an equilibrium as
defined in Lemma 1. Assume that the open-loop predictive controller, when all constraints are
inactive, has no periodic modes. Assume also that dim(I − S) = 1. Then, if U is bounded, the
plant cannot remain at the equilibrium indefinitely (unless ȳ = rs).

Proof: Lemma 5 shows that a feasible input trajectory exists which would move the plant away
from the equilibrium, if the internal model were correct. We assume that the predictive controller
finds this solution and applies its initial move to the plant. Either the plant moves away from
the equilibrium, or not. If not, the controller is effectively running open-loop, with the constant
plant output appearing as a constant disturbance. Under the assumed conditions the open-loop
controller is linear, time-invariant, and all inputs to it are constant. Its output therefore either
converges to a constant, diverges, or converges to a periodic trajectory. Lemma 5 has already
shown that it cannot converge to a constant. By assumption we exclude the possibility of a
periodic trajectory. Its output must therefore diverge.

Since the set of admissible inputs, U , is bounded, the controller output u(k) will eventually reach
the boundary of U . As stated earlier, up to this point the changes in the controller output will
be in span(I − S), and by assumption this is a 1-dimensional subspace. But Lemma 4 showed
that uf = Sus + (I − S)ū is a feasible steady-state input which would hold the plant at the
correct steady-state. Either the controller immediately applies an input signal to the plant for
which teh change is not in span(I − S), in which case the plant output changes, or it maintains
a constant input (which is at the boundary of U) for some time, in which case it will eventually
compute a different input signal, by Lemma 5; this change in this signal will necessarily be not
in span(I − S), so the plant output will change. 2

Remark 10 With more than one actuator failure one would have to deal with the possibility of
the input ‘wandering around’ on the boundary of U while remaining in span(I − S).

Remark 11 The assumption on periodic modes of the controller can probably be removed. But
with more elaborate disturbance models, one might deliberately introduce periodic modes into the
controller.

Putting everything together we have proved the following:
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Theorem 1 Assume a plant defined by (11–12) with an actuator failure defined by (16), and a
predictive controller which minimises (5) subject to the constraints u(k) ∈ U , using the internal
model (13–15) and a Luenberger observer. U is a bounded, compact, convex set. A constant
set-point is demanded, which is consistent with U , and the actuator failure is compatible with
this set-point. Then, under the assumptions made in Lemmas 2, 3, 4, 5, and 6, the only possible
equilibrium point of the closed-loop system is at the correct set-point.

Remark 12 We have not shown that the closed loop will necessarily converge to the correct
set-point, but in a sense that is a different issue. We have been guided by the analogy with
integral action, where the essential property is again that convergence to the wrong set-point is
impossible.

The essential ingredients of the property we have proved are the disturbance model, which gives,
in essence, ‘integral action’, and a model of actuator constraints, which gives the ‘reconfigura-
tion’, or ‘daisy-chaining’. Note that this reconfiguration occurs without any re-estimation of the
internal model. Of course any additional information, such as direct measurement of the i’th
actuator’s setting, or model re-estimation showing that the i’th actuator has become ineffective,
can be used to make the reconfiguration occur more quickly.

5 Example

Figure 3 shows a simplified version of an ‘auto-cascade’ refrigeration process used for liquefying
natural gas [10]. A mixture of two refrigerants is compressed by the compressor A and partially
condensed in the condenser B. We shall call the refrigerants #1 and #2. (One can think of
#1 as mostly propane and #2 as mostly methane, but the simple two-stage process we describe
would not work with any practical refrigerants) The remaining vapour (mostly #2) is cooled
in the heat exchanger C and condensed in heat exchanger D. The condensate from B (mostly
#1) is cooled in heat exchanger C and expanded to low pressure through valve E, causing
its temperature to fall (to about −40 ◦C). The condensed #2 is expanded to low pressure
through valve F , its temperature falling (to about −160 ◦C) in consequence. After expansion,
the resulting two-phase (vapour/liquid) #2 passes through heat exchanger D again, where the
liquid phase evaporates, obtaining the required enthalpy of evaporation from the natural gas
and from the #2 liquid coming from C, thus cooling them. The #2 vapour is then mixed with
the two-phase #1 coming from valve E and passes through heat exchanger C, where the liquid
#1 evaporates, cooling the incoming natural gas, the #2 vapour flowing from B, and the #1
liquid flowing from B. Finally the vapour mixture is returned to the compressor A. Note that
the streams running from left to right in figure 3 become cooler through the process, whereas
the stream running from right to left becomes warmer. (This simplified process is not, in fact,
thermodynamically feasible, because the range of temperatures is too great to be attained by
only two stages of heat exchange with practical refrigerants. In practice more heat exchangers
are used, with more complex mixtures of refrigerants.)

The available control inputs are the settings of the two valves E and F , the power supplied to
the compressor A, and the setting of the valve G regulating the flow of liquid natural gas (LNG).
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Figure 3: Process for liquefying natural gas

For successful operation, it is important to control the composition and flow rate of the liquid
in each of the evaporators, and to supply power to the compressor at a rate which maintains
the required pressure ratio. If there is a shortage of liquid in the evaporators then the suction
pressure falls and the compressor must raise the vapour through a larger pressure ratio, which
is inefficient. On the other hand, if there is too much liquid in an evaporator then unevaporated
liquid leaves the evaporator, which then gains enthalpy of evaporation at an unintended, and
hence unproductive, point in the cycle. The composition on entry to each evaporator must
also be correct, so that the profile of its evaporation curve will yield a positive temperature
difference between the cooling and warming streams along the length of each heat exchanger
[11]. The temperature of the LNG being delivered to storage also needs to be controlled within
tight limits,

In practice, control is effected by regulating the level of liquid in the condenser B, the pressure
ratio across the compressor A, and the temperature of the LNG being sent to storage. Since
there are 4 control actuators and 3 controlled variables, the set-point manifold in this case is
a 1-dimensional curve. The normal operating point on this curve is established by economic
considerations, which usually require the production rate of LNG to be maximised, so the plant
is run as near as possible to full capacity.

Suppose that valve E sticks in a ‘too-closed’ position. The mass flow rate through evaporator C
reduces, causing the liquid level in B to rise. The plant can be returned to its set-point vector
by reducing the compressor power (which essentially determines the product of refrigerant mass
flow rate and pressure ratio) and closing valve F , producing the correct value of the pressure
ratio, but at a reduced refrigerant flow rate. Now the rate of heat transfer from the natural gas
to the refrigerant is reduced, so the LNG temperature rises, but this can be corrected by closing
valve G so that the LNG delivery rate is reduced. Thus the correct set-points are held and the
plant continues to operate, but at a less profitable level.

In [12] it is shown, for a nonlinear model of a more elaborate, 3-stage, version of this process,
that such a valve failure is indeed corrected in the anticipated manner. In this case the prediction
horizon was N2 = 40 (with N1 = 1) and the control horizon was Nu = 8, the control update
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time being 10 seconds.

In this process, failure of valve E is less likely to occur than blockage of the pipe downstream
of the valve, for example by ingress of water vapour and subsequent freezing. The effect on
the process would be similar to the scenario examined above. However, whereas a valve failure
may be detectable by valve stem position feedback, and hence corrected more quickly than
by ‘integrating’ an estimated flow disturbance, a pipe blockage could not be detected in such a
direct manner. Hence a pipe blockage could only be corrected by the predictive control analogue
of the arrangement of figure 1.

The changes in the control actuator settings, and the reduced delivery rate, are signals which
indicate that there is a problem, although it has otherwise been masked by successful reconfig-
uration of the controls. If the stuck position of valve E is too far away from its usual setting, so
that the reconfiguration takes the process away considerably from its normal operating condi-
tion, then controlling the level in B and the pressure ratio may not hold the compositions and
flow rates at satisfactory levels, in which case some ‘higher-level’ action may need to be taken
to compute new set-points for the controlled variables.

In [13] it is shown that similar reconfiguration occurs in a realistic model of rudder failure in an
aircraft, when predictive control is used.

6 Conclusion

The fact that constrained predictive controllers exhibit daisy-chaining when actuators saturate
is no surprise. Indeed it has long been claimed as one of the benefits of the technology, that
it can accommodate constraints on control signals. This paper has concentrated on showing
that predictive controllers also exhibit ‘daisy-chaining’, or actuator reconfiguration, in response
to some actuator failures. This has been previously reported [7], but the phenomenon has
apparently not previously been analysed.

The paper has introduced formal definitions of the notions of redundant actuation and the
steady-state manifold, in order to make precise treatment of the associated phenomena possible.
A quantitative measure of actuator reconfiguration has been proposed, for the linear case at least,
essentially by introducing coordinates for actuator settings in and orthogonal to the steady-state
manifold.

It has been shown that, if an actuator failure occurs which is compatible with the set-point
specification, then a constrained predictive controller with a model of the actuator saturation
characteristics, and a disturbance model which gives rise to integral action, will reconfigure
the actuators so as to track the set-point without error — although we have not examined
convergence to the correct set-point in these circumstances.

Constrained predictive controllers therefore have a considerable degree of fault-tolerance built
into them. Unlike the conventional schemes for daisy-chaining, such as those shown in figures
1 and 2, this can be achieved without special-purpose devices or algorithms, and can offer
protection even against unanticipated failures.
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