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Abstract— This paper starts by presenting local stability con-
ditions for limit cycles of piecewise linear systems (PLS), based
on analyzing the linear part of Poincaré maps. Local stability
guarantees the existence of an asymptotically stable neighbor-
hood around the limit cycle. However, tools to characterize such
neighborhood do not exist. This work gives conditions in the
form of LMIs that guarantee asymptotic stability of PLS in a
reasonably large region around a limit cycle, based on recent
results on impact maps and surface Lyapunov functions (SuLF).
These are exemplified with a biological application: a 4th–order
neural oscillator, also used in many robotics applications like,
for example, juggling and locomotion.

I. INTRODUCTION

Piecewise linear systems (PLS) are characterized by a
finite number of linear dynamical models together with a
set of rules for switching among these models. This cap-
tures discontinuity actions in the dynamics from either the
controller or system nonlinearities. Although widely used
and intuitively simple, PLS are computationally hard and
only recently there has been some interesting results. In the
analysis of equilibrium points of PLS, [4], [7], [11] construct
piecewise quadratic Lyapunov functions in the state space,
and [2], alternatively, constructs Lyapunov functions on the
switching surfaces (SuLF) associated with the system.

Many PLS, however, have limit cycles. For a large class
of relay feedback systems [1], one of the simplest PLS,
there will be limit cycle oscillations. Such systems can be
found in numerous applications like electromechanical sys-
tems, simple models of dry friction, delta-sigma modulators,
automatic tuning of PID regulators. Walking can also be seen
as an oscillatory motion [12]. Walking robots are typically
designed to walk at some predetermined velocity which is to
be maintained even in the presence of external perturbations.
In biology, oscillations appear in several applications like
cell cycle [8], excitable cells like cardiac cells [8], circadian
rhythms [3], and neural oscillators [9]. Neural oscillators are
also used in many robotics applications like, for example,
juggling [14] and bipedal locomotion control [5]. Here, the
oscillator, composed of a PLS, is connected in feedback with
the robot to induce oscillations.

Local stability of limit cycles of PLS can easily be checked
by linearizing the Poincaré map. However, global stability
or even characterization of stability in regions around limit
cycles cannot, in general, be checked or found. Simulations
and experiments are typically the only way to have an
idea about the stability of the system. [13] constructs local

quadratic Lyapunov functions and then checks what regions
of stability they guarantee. This check, however, is in general
computationally hard and becomes impracticable for systems
of order higher than 2. The results in [7] do not apply since
Lyapunov functions cannot be constructed in the state space
to prove stability of limit cycles. We then turn to construct
Lyapunov functions on switching surfaces (SuLF). In the
past, such construction seemed like an impossible task since
impact maps, i.e., maps from one switch to the next, are,
in general, nonlinear, multivalued, and not continuous. The
work by [2], however, introduced a new and simple way to
construct SuLF by simply solving a set of LMIs, and proving
this way global stability of several classes of PLS.

There are, however, many applications that do not require
checking global stability, either because this is very expensive
or maybe the system is not defined everywhere. Models of
walking robots, for instance, are typically only defined in
some region of the state space. This paper investigates the
problem of constructing reasonably large regions of stability
around a limit cycle. Trajectories starting in this region are
guaranteed to converge asymptotically to the limit cycle.
This is done in two steps. First, impact maps are found
to be contractive in the large as possible set of switching
times. Then, invariant ellipsoids on switching surfaces are
characterized. The method is exemplified with a 4th–order
neural oscillator [9].

The remainder of this paper is organized as follows.
Section II describes the problem to be solved, and gives
existence and local stability results for limit cycles of PLS.
Section III presents the main result of this paper followed by
an example in section IV. Proofs of all results can be found
in section V. Finally, conclusions can be found in section VI.

II. PROBLEM DESCRIPTION

Piecewise linear systems (PLS) are characterized by a set
of affine linear systems

ẋ = Aix+Bi (1)

where x ∈ IRn is the state, together with a switching rule

i(x) ∈ {1, ...,M} (2)

that depends on present and possibly also on past values
of x. By a solution of (1)-(2) we mean functions (x, i)
satisfying (1)-(2), where i(t) is piecewise constant. t is a
switching time of a solution of (1)-(2) if i(t) is discontinuous



at t. We say a trajectory of (1)-(2) switches at some time t
if t is a switching time. In the state space, switches occur
at switching surfaces consisting of hyperplanes of dimension
n−1

Si = {x| Cix+di = 0}

where Ci is a row vector and i = {1, ...,N}.
This paper assumes that existence of solution is always

guaranteed for any initial condition. See [6] for conditions
on existence of solutions for PLS.

A. Limit Cycles

Unlike linear systems that only have a single equilibrium
point, PLS may exhibit multiple equilibrium points and/or
limit cycles. Here, we are interested in limit cycles. For
the remainder of the paper, assume the PLS (1)-(2) has a
limit cycle γ with period t∗, and that this limit cycle crosses
transversely1 k switching surfaces per cycle. For simplicity,
and without loss of generality, assume the trajectory of the
limit cycle evolves consecutively from system 1, to system
2, and so forth until it reaches system k and, finally, after
completing one cycle, returns to system 1. Assume also the
switching surfaces are ordered the same way (see figure 1).
This means the trajectory φ(t) of the limit cycle, starting
at x∗1 ∈ S1, satisfies φ(t∗1 ) = x∗2 ∈ S2. Then system 2 “takes
over” until φ(t∗1 + t∗2 ) = x∗3 ∈ S3, and so on. The last affine
linear system k takes the trajectory φ(t) from x∗k ∈ Sk back
to x∗1 ∈ S1, i.e., φ(t∗1 + t∗2 + · · ·+ t∗k ) = x∗k+1 = x∗1 ∈ S1. Note
that t∗ = t∗1 + t∗2 + · · ·+ t∗k . Note also that there is no loss
of generality in this characterization of a limit cycle. If, for
instance, the limit cycle crosses the same switching surface
more than once, we simply have Si = S j for some i, j. For
convenience, indexes k +1 and 1 represent the same object,
i.e., x∗k+1 = x∗1, Sk+1 = S1, etc.
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Fig. 1. Limit cycle γ

1) Existence of Limit Cycles: Next are conditions for the
existence of limit cycles of PLS. For simplicity, we will first
study the case where the limit cycle has only two switches per
cycle, i.e., k = 2. Then, the result is extended to k switches.
Also, for simplicity, assume the Ai matrices are invertible,
although this is not necessary.

1φ is transversal to S = {x| Cx = d} at p = φ(t) ∈ S if Cφ̇(t − 0) 6= 0.
This is necessary or otherwise the limit cycle would be unstable.

Proposition 2.1: Consider the PLS (1)-(2). Assume there
exists a periodic solution γ with two switches per cycle and
period t∗ = t∗1 + t∗2 > 0. Define

x∗1 =
(

I − eA2t∗2 eA1t∗1
)−1 [

eA2t∗2 (eA1t∗1 − I)A−1
1 B1

+(eA2t∗2 − I)A−1
2 B2

]

x∗2 =
(

I − eA1t∗1 eA2t∗2
)−1 [

eA1t∗1 (eA2t∗2 − I)A−1
2 B2

+(eA1t∗1 − I)A−1
1 B1

]

and g1(t
∗
1 , t∗2 ) = C1x∗1 + d1, g2(t

∗
1 , t∗2 ) = C2x∗2 + d2. Then the

following conditions hold
{

g1(t
∗
1 , t∗2 ) = 0

g2(t
∗
1 , t∗2 ) = 0

(3)

and the periodic solution is governed by system 1 on [0, t∗1 ),
and by system 2 on [t∗1 , t∗). Furthermore, the periodic solution
γ is obtained with either initial conditions x∗1, x∗2.

Example 2.1: For visualization purposes, consider two
affine linear systems in IR2, ẋ = Aix+Bi where

A1 = A2 =

(

−1 0
0 −2

)

, B1 =

(

−3
−2

)

, and B2 =

(

2
2

)

together with a switching rule with memory that uses system
1 until the trajectory intersects the switching surface S1, and
then uses system 2 until the trajectory intersects the switching
surface S2, and so on. The switching surfaces are given by
C1 = (−1 1), d1 =−1, C2 = (1 0), and d2 =−1. Solving (3)
numerically yields t∗1 = 1.24, t∗2 = 1.35, x∗1 = x∗3 = (1 0.87)′,
x∗2 = (−1.84 −0.84)′. The resulting periodic solution γ can
be seen in figure 2.
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Fig. 2. Periodic solution of a second-order PLS

This result can be generalized to the case where a periodic
solution γ switches among k systems instead of just two. For
simplicity of notation let Ei = eAit

∗
i and zi = A−1

i Bi. Define

x∗1 =
(

I −Ek · · ·E1

)−1

[

k−1

∑
i=1

Ek · · ·Ei+1(Ei − I)zi +(Ek − I)zk

]

where x∗1 was found based on the switching sequence
{1,2, ...,k}. To find, x∗j , j = 2, ...,k, consider the switching
sequence { j, ...,k,1, ..., j−1}, i.e., just replace the indexes in
x∗1 the following way: 1 by j, 2 by j+1 (or by 1 if j+1 > k),
up to k by j−1. Finally, define g j = C jx

∗
j +d j.



Proposition 2.2: Consider the PLS (1)-(2). Assume there
exists a periodic solution γ with k switches per cycle
and period t∗ = t∗1 + t∗2 + · · · t∗k > 0. Consider the functions
g1,g2, ...,gk defined as above. Then the following conditions
hold



















g1(t
∗
1 , t∗2 , ..., t∗k ) = 0

g2(t
∗
1 , t∗2 , ..., t∗k ) = 0

...
gk(t

∗
1 , t∗2 , ..., t∗k ) = 0

(4)

and the periodic solution is governed by system 1 on [0, t∗1 ),
and by system i on [t∗1 + · · ·+ t∗i−1, t

∗
1 + · · ·+ t∗i ), i = 2, ...,k.

Furthermore, the periodic solution γ can be obtained with
the initial condition x∗1 ∈ S1.

As in the case where k = 2, (4) is a set of transcendental
equations. Closed form solutions can only be given for very
special cases and, even numerically, this is a hard problem.
An alternative is to simulate the system for some time to
get approximate values for t∗1 , t∗2 , ..., t∗k , and then use some
numerical algorithm to precisely compute t∗1 , t∗2 , ..., t∗k .

2) Local Stability: Consider the Poincaré map T from
some point in a small neighborhood of x∗1 in S1, to the point
where the trajectory returns to S1. The limit cycle is locally
stable if the eigenvalues of the Jacobian of T are inside the
unit disk.

Proposition 2.3: Consider the PLS (1)-(2). Assume there
exists a limit cycle γ with period t∗. The Jacobian of the
Poincaré map T is given by W = WkWk−1 · · ·W2W1 where

Wi =

(

I −
viCi+1

Ci+1vi

)

eAit
∗
i

with vi = Aix
∗
i+1 +Bi, i = 1, ...,k. The limit cycle γ is locally

stable if W has all its eigenvalues inside the unit disk. It is
unstable if at least one of the eigenvalues of W is outside the
unit disk.

Example 2.2: Returning to example 2.1, W can be com-
puted from W1 and W2, yielding

W = 10−3
(

0 0
−0.29 0.32

)

which has all its eigenvalues inside the unit disk. Therefore
the limit cycle in example 2.1 is locally stable.

If, with the above proposition, a limit cycle γ is proven
locally stable, then there exist a neighborhood in S1 around
x∗1 such that any trajectory starting in this neighborhood will
converge asymptotically to the limit cycle γ . However, the
proposition does not characterize in any way this neighbor-
hood since it only considers the Jacobian of the Poincaré
map and neglects all other high-order terms. Those high-
order terms carry the necessary information to characterize
the stable neighborhood. Next, we show how to characterize
a reasonably large stable region around a locally stable limit
cycle (see figure 3).
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Fig. 3. Region of stability around a limit cycle

III. MAIN RESULTS

This section is divided in two parts. First, it focuses on the
analysis of a single impact map. Then, it uses this information
to analyze the limit cycle.

A. Analysis of a single impact map

Lets start by parameterizing vectors xi ∈ Si at switching
surfaces. Write xi = x∗i + Πi∆i, where Πi = C⊥

i (C⊥ stands
for the orthogonal complement of C) and ∆i ∈ IRn−1.

Consider impact map i, i.e., the map from some Ui ⊂ Si to
the next switch at Si+1. The set Ui, to be found later, must be
such that impact map i is a contraction and continuous in Ui,
and x∗i ∈Ui. Let Ti be the set of all switching times of points
in Ui. Since x∗i ∈Ui, t∗i ∈Ti. The set Ui will be found in two
steps. Step 1 finds the largest set of switching times Ti for
which the impact map is a contraction. Step 2 characterizes
the set Ui as the largest ellipsoid around x∗i where the impact
map is continuous and each point in Ui has a switching time
in Ti. We start with Step 1.

Although typical impact maps are nonlinear and hard to
characterize, we found [2] that they can be expressed as a
linear transformation parametrized by the switching time.
Define x∗i (t) as the trajectory of (1), starting at x∗i , for all
t ≥ 0 and

Hi(t) = Π′
i+1

[

I +
(x∗i (t)− x∗i+1)Ci+1

di+1 −Ci+1x∗i (t)

]

eAitΠi

for all t ∈Ti (note that at t = t∗i , H(t) is defined by the limit
as t → t∗i ). Then, for any Πi∆i ∈Ui −x∗i there exists a t ∈ Ti
such that the impact map is given by

∆i+1 = Hi(t)∆i (5)

Such t is the switching time associated with ∆i+1.
To check contraction of impact maps, let Vi be polynomial

Lyapunov functions defined on IRn−1, with Vi(0) = 0 and
Vi(∆) > 0, ∆ 6= 0. Contraction of impact map i follows if

Vi(∆i)−Vi+1(Hi(t)∆i) > 0 (6)

for all Πi∆i ∈ Ui − x∗i and corresponding switching time
t = t(∆i). The above inequality can be relaxed to an LMI
parametrized by t. For instance, if Vi is chosen quadratic,
i.e., Vi(x) = x′Pix, Pi > 0, then contraction follows if

Pi −H ′
i (t)Pi+1Hi(t) > 0 (7)



for all t ∈Ti. If Vi is chosen as another higher-order polyno-
mial Lyapunov function, then (6) can be relaxed to an LMI
by expressing (6) as a sum of squares (see [10] for details).
Therefore, Step 1 finds the largest set of switching times Ti
such that (7) is satisfied.

The first part of Step 2 consists of finding the largest
ellipsoid in Si around x∗i where impact i is continuous. Note
that, by assumption, the limit cycle is transversal at switching
surfaces. Thus, by the implicit function theorem, each impact
map i is guaranteed to be continuous in some neighborhood
of x∗i . Define Ct = Ci+1eAitΠi and dt = di+1 −Ci+1x∗i (t). For
any P > 0, let ‖x‖2

P = x′Px.
Lemma 3.1: Given Pi = P′

i > 0 and a set of switching times
Ti = [ti−, ti+], define

Rc
i = min

t∈Ti

∣

∣ḋt

∣

∣

√

ĊtP−1
i

Ċt

Then, the impact from {x∗i + Πi∆i : ‖∆i‖Pi
< Rc

i and t ∈ Ti}
to Si+1 is continuous.

Remember that the proofs of all results can be found in
section V. The second part of Step 2 consists of finding a set
of initial conditions characterized by an ellipsoid in Si such
that every point in that set has switching times in Ti. There
are many ways to find such ellipsoids. Next, we present two.

Lemma 3.2: Let Pi = P′
i > 0 and r > 0, and define

R̄i = min
t−t∗i ∈[−r,r]

∣

∣

∣

dt
t−t∗i

∣

∣

∣
r

‖C′
t‖P−1

i

Let Ri = min{R̄i,R
c
i }. Then, ‖∆i‖Pi

< Ri implies |t − t∗i | ≤ r.
In many situations (especially when A is Hurwitz), the

following lemma gives a less conservative Ri.
Lemma 3.3: Given Pi = P′

i > 0 and a set of switching times
Ti = [ti−, ti+], define

R̄i = inf
t 6∈Ti

|dt |

‖C′
t‖P−1

i

Let Ri = min{R̄i,R
c
i }. Then, ‖∆i‖Pi

< Ri implies t ∈ Ti.
Hence, we pick the largest Ri from lemmas 3.2 and 3.3.

Next, we summarize both Step 1 and Step 2.
Theorem 3.1: Consider impact map i. Assume (6) is sat-

isfied for all t ∈ [ti−, ti+]. Let Ri be the largest from both
lemmas 3.2 and 3.3. Then, the impact map in the domain
{x∗i +Πi∆i : ‖∆i‖Pi

< Ri} is a contraction.

B. Regions of stability for limit cycles

Assume the PLS (1)-(2) has a locally stable limit cycle γ
with period t∗, and that this limit cycle crosses transversely
k switching surfaces per cycle. To analyze the limit cycle,
all k impact maps associated with the limit cycle need to be
simultaneously analyzed.

Theorem 3.2: Let Ti be the largest sets such that

Vi(∆i)−Vi+1(Hi(ti)∆i) > 0, ti ∈ Ti, i = 1, ...,k (8)

Find Ri to be the largest between lemmas 3.2 and 3.3, i =
1, ...,k. Let R = min{Ri}. Then trajectories starting inside of
any of the ellipses defined by {x∗i +Πi∆i : ‖∆i‖Pi

< Ri} ⊂ Si,
i = 1, ...,k, converge asymptotically to the limit cycle γ .

Condition (8) can be reduced to k infinite dimensional
LMIs. Note that each of these LMIs is parametrized by a
single switching time ti. Thus, each can be gridded individ-
ually to obtain a set of finite dimensional LMIs [2].

IV. EXAMPLE

This is an example of a biological application known as
a neural oscillator. It consists of two neurons in mutual
inhibition producing a limit cycle oscillation [9]. In robotics,
this oscillator is also used in feedback with systems requiring
an oscillatory behavior [5], [14] . The neural oscillator is a
4th–order system with states x = (x1 x2 x3 x4)

′ given by














ẋ1 = −10x1 −20x2 −20[x3]
+ +10

ẋ2 = 5[x1]
+ −5x2

ẋ3 = −20[x1]
+ −10x3 −20x4 +10

ẋ4 = 5[x3]
+ −5x4

where [u]+ = max{0,u} is an on/off controller, and x1,x3
are the firing rates of each neuron. Due to the on/off
nonlinearities, the state space is divided in four regions
where the system is (affine) linear. The system has a lo-
cally stable limit cycle that switches four times per cycle
with period t∗ ≈ 0.16 + 0.29 + 0.16 + 0.29. The intersection
of the limit cycle with the switching surfaces occurs at
x∗1 ≈ (0.34 0.35 0 0.06)′, x∗2 ≈ (0 0.26 0.4 0.14)′, x∗3 ≈
(0 0.06 0.34 0.35)′ and x∗4 ≈ (0.4 0.14 0 0.26)′. Since the
switches do not depend on the state variables x2 and x4, for
visualization purposes the limit cycle can be projected onto
the x1,x3 subspace (see the left side of figure 4). Note that
in IR4 the limit cycle does not actually crosses itself.
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Fig. 4. Limit cycle of the neural oscillator projected onto the x1,x3 subspace
(left); Minimum eigenvalues of conditions (7) for each impact map (right).

Step 1 consists of finding the largest switching time
sets for which conditions (8) are satisfied. Using quadratic
SuLF, conditions (7) were satisfied on T1,T3 = [0,0.32] and
T2,T4 = [0.08,0.45], which can be seen on the right side of
figure 4. Note that impact maps 1 and 3 and impact maps 2
and 4 coincide since there is a symmetry in the system around
the axes x1 = x3 and x2 = x4. Step 2 consists of finding the
maximum possible R using lemmas 3.2 and 3.3. The regions



of stability can be seen on the left of figure 4 (projected onto
the x1,x3 subspace), defining reasonably large regions around
the limit cycle.

V. PROOF OF RESULTS

This section is dedicated to prove all the propositions
and lemmas in the paper, starting with propositions 2.1, 2.2,
and 2.3, and then lemmas 3.1, 3.2, and 3.3.

Proof of proposition 2.1: Let’s first find g1. Integrating (1)
for the first system yields

x(t) = eA1t(x(0)+A−1
1 B1)−A−1

1 B1

If x(0) = x∗1 ∈ S1 is a point in γ then

x∗2 = eA1t∗1 (x∗1 +A−1
1 B1)−A−1

1 B1

where x∗2 ∈ S2. In a similar way, for the second system

x∗3 = eA2t∗2 (x∗2 +A−1
2 B2)−A−1

2 B2

Replacing x∗2 in the previous equation and noticing that x∗3 =
x∗1 yields

x∗1 = eA2t∗2
(

eA1t∗1 (x∗1 +A−1
1 B1)−A−1

1 B1 +A−1
2 B2

)

−A−1
2 B2

which, after solving for x∗1, gives the desired result. Since
x∗1 ∈ S1, g1 = C1x∗1 + d1 = 0. x∗2 and g2 can be found in a
similar way.

Proof of proposition 2.2: Integrating the linear dynamics
between two switching surfaces yields

x∗i+1 = Eix
∗
i +(Ei − I)zi

To find x∗k+1 as a function of x∗1, solve recursively:

x∗k+1 = Ekx∗k +(Ek − I)zk

= Ek

(

Ek−1x∗k−1 +(Ek−1 − I)zk−1

)

+(Ek − I)zk

= EkEk−1x∗k−1 +Ek(Ek−1 − I)zk−1 +(Ek − I)zk

= Ek · · ·E1x∗1 +Ek · · ·E2(E1 − I)z1 + · · ·+EkEk−1

(Ek−2 − I)zk−2 +Ek(Ek−1 − I)zk−1 +(Ek − I)zk

The desired result can be obtained by noticing x∗k+1 = x∗1 and
solving for x∗1. g1 can be found by computing g1 = C1x∗1 +
d1 = 0, since x∗1 ∈ S1. The rest of the proof follows in a
similar way.

Proof of proposition 2.3: Theorem 3.1 in [1] proves this
proposition for k = 1. Following a similar argument, consider
a trajectory with initial condition x(0) = x∗1. Then, the solu-
tion at time t∗1 is x(t∗1 ) = x∗2 = eA1t∗1 (x∗1 + A−1

1 B1)−A−1
1 B1.

Now, let x(0) = x∗1 + δ1x∗1 where δ1x∗0 is chosen so that
x(0) ∈ S1. Thus, from the proof of theorem 3.1 in [1],

x(t∗1 +δ1t∗1 ) = x∗2 +W1δ1x∗1 +O(δ 2
1 )

Similarly,

x(t∗2 +δ2t∗2 ) = x∗3 +W2δ2x∗2 +O(δ 2
2 )

with initial condition x∗2 + δ2x∗2 = x∗2 +W1δ1x∗1 + O(δ 2
1 ). Ne-

glecting high-order terms, we get δ2x∗2 = W1δ1x∗1. Replacing
in the above equality yields

x(t∗2 +δ2t∗2 ) = x∗3 +W2W1δ1x∗1 +O(δ 2
1 )

Repeating this procedure k − 2 times, we get to the last
system, system k. Letting the initial condition to system k
be x∗k +δkx∗k = x∗k +Wk−1 · · ·W2W1δ1x∗1 +O(δ 2

1 ) leads to

x(t∗k +δkt∗k ) = x∗k+1 +Wkδkx∗k +O(δ 2
k )

= x∗1 +WkWk−1 · · ·W2W1δ1x∗1 +O(δ 2
1 )

where we used the fact x∗k+1 = x∗1. This proves the proposi-
tion.

Proof of lemma 3.1: Since the limit cycle is transversal
at switching surfaces, impact map i is continuous in some
neighborhood of x∗i in Si. Any trajectory starting in this
neighborhood intersects Si+1 transversally. The idea is to find
which points in Si result in tangent trajectories at Si+1. Let
y(t) = Ci+1x(t)− di+1 with x(0) = x∗i + Πi∆i ∈ Si. Thus, the
points that result in tangent trajectories are those that ẏ(t) = 0.
Note that y(t) =Ci+1x(t)−di+1 =Ci+1eAitΠi∆i +Ci+1x∗i (t)−
di+1 = Ct∆i −dt . Hence, ẏ(t) = 0 are those points such that
Ċt∆i = ḋt . The final step is to find the largest ellipsoid ‖∆i‖Pi

that does not intersect the hyperplane Ċt∆i = ḋt . The radius
of such ellipse is given by Rc

i . The proof, omitted here, is
based on making the ellipse tangent to the hyperplane.

Proof of lemma 3.2: From above, and using the fact y(t) =
0, it follows that Ct∆i = dt . Dividing and subtracting the right
side of the equality by t − t∗i , and taking the absolute value
leads to

∣

∣

∣

∣

dt

t − t∗i

∣

∣

∣

∣

|t − t∗i | =
∣

∣Ct∆i

∣

∣ ≤ ‖C′
t‖P−1

i
‖∆i‖Pi

or

|t − t∗i | ≤
‖C′

t‖P−1
i

∣

∣

∣

dt
t−t∗i

∣

∣

∣

‖∆i‖Pi
=

1
f (t)

‖∆i‖Pi

for all ∆i and t = t̃(∆i). It is easy to see that if ∆i = 0 then
t − t∗i = 0. Now, due to the fact that f (t) is continuous on
[t∗i − r, t∗i + r] (for small enough r), one can find an R̂ > 0
small enough such that

‖∆i‖Pi
≤ R̂ ⇒ |t − t∗i | ≤ r (9)

because a small increase in ‖∆i‖Pi
must correspond to a small

increase in |t− t∗i |. Let R̂ = mint−t∗i ∈[−r,r] f (t)r̂ where 0 < r̂ ≤

r is small enough. Then ‖∆i‖Pi
≤ R̂ ⇒ |t − t∗i | ≤ r̂.

Now, if we increase r̂ to r, we have |t − t∗i | ≤ r which
means that (9) is not violated. Therefore we found R̄i =
mint−t∗i ∈[−r,r] f (t)r for which ‖∆i‖Pi

< Ri ⇒ |t − t∗i | ≤ r.

Proof of lemma 3.3: Let R̄i ≥ 0 be such that R̄2
i (CtP

−1
i C′

t)≤
d2

t for all t 6∈ [ti−, ti+]. By contradiction, we want to show



that ‖∆i‖Pi
≥ Ri if t 6∈ [ti−, ti+]. Following a similar argument

from the previous proof, y(t) = 0 ⇒ Ct∆i = dt . For some
t 6∈ [ti−, ti+], a possible parametrization of ∆i is

∆i =
P−1

i C′
t

CtP−1
i

C′
t
dt +C⊥

t zi

where zi ∈ IRn−2. Then

∆′
iPi∆i = dt

CtP
−1
i

CtP−1
i

C′
t
Pi

P−1
i C′

t

CtP−1
i

C′
t
dt +2

CtP
−1
i

CtP−1
i

C′
t
PiC

⊥
t zi

+(C⊥
t zi)

′PiC
⊥
t zi

=
d2

t

CtP−1
i

C′
t
+2

Ct

CtP−1
i

C′
t
C⊥

t zi +(C⊥
t zi)

′Pi(C
⊥
t zi)

≥ R2
i

where in the first term we used the assumption that d2
t ≥

R2
i (CtP

−1
i C′

t), the second term is zero since CtC
⊥
t = 0 by

definition, and in the last term Pi > 0.

A geometric interpretation of the above proof is as follows.
Given Ri ≥ 0, the set {x∗i + Πi∆i : ‖∆i‖Pi

< Ri} defines an
ellipsoid in the switching surface Si (see figure 5). Let
t 6∈ [ti−, ti+]. The set Ct∆i = dt defines an n−2 dimensional
hyperplane in Si. Draw the two hyperplanes parallel to
the hyperplane Ct∆i = dt and tangent to the ellipsoid, i.e.,

the hyperplanes Ct∆i = ±dx, where dx = Ri

√

CtP−1
i

C′
t . To

guarantee that the hyperplane Ct∆i = dt does not intersect
the ellipsoid it is necessary and sufficient that dt ≥ dx.

x*

∆ itC      = −dx

∆ iC      = dt x

∆ tiC      = dt

i

Fig. 5. Geometric interpretation of lemma 3.3

VI. CONCLUSIONS

This paper presented conditions that characterize regions
of stability around locally stable limit cycles of piecewise
linear systems (PLS). These help better understand numerous
technological and biological applications that exhibit limit
cycle oscillations. The results were divided in two steps. Step
1 found the largest sets of switching times for each impact
map. Then, Step 2 searched for reasonable large regions at
each switching surface, characterizing a contraction region
around the limit cycle.
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