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Abstract

We show how stability of models can be guaranteed when using the class of identification
algorithms which have become known as ‘subspace methods’. In many of these methods
the ‘A’ matrix is obtained (or can be obtained) as the product of a shifted matrix with a
pseudo-inverse. We show that whenever the shifted matrix is formed by introducing one
block of zeros in the appropriate position, then a stable model results. The cost of this is
some (possibly large) distortion of the results, but in some applications that is outweighed
by the advantage of guaranteed stability.

Keywords: Subspace methods, Identification, Stability, Multivariable systems, State-space
models, Discrete-time.

1 Introduction

So-called ‘subspace methods’ have proved extremely successful at black-box identification of
multivariable linear state-space models from data, and are consequently of great current interest
[6, 7, 8, 10, 11, 13]. In this paper we show that stability of the models obtained can be guaranteed
very simply and in a uniform manner for many of the published variations of subspace methods.

Our use of the phrase ‘subspace method’ is wider than its use by some authors. We include in
it all state-space identification methods which are based more or less explicitly on realization
theory of linear systems. In particular, we include those methods which begin by forming Hankel
matrices from impulse response or covariance estimates, such as [5, 6, 16], and methods based
on Hankel matrices built up from input and output data [7, 8, 11, 12, 13]. This latter class of
methods apparently has its origins in [4, 1]; an important feature of this class, and one which
is regarded by some as the distinguishing characteristic of ‘subspace methods’, is that a state
sequence is estimated from the input-output data before the system matrices are estimated. This
idea seems to have been introduced in [7, 15].

All subspace methods yield discrete-time state-space models such as

x(t + 1) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)
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(where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp); many of them incorporate extensions to models
with both measured and unmeasured inputs, stochastic models, etc, but we do not need the
details here. These algorithms frequently estimate the ‘A’ matrix by exploiting some kind of
‘shift-invariance’ property. In [6, 16] this is the shift-invariance of the extended observability
matrix

Ω =













C

CA

CA2

...













(3)

or of the extended controllability matrix

Γ =
[

B,AB,A2B, . . .
]

. (4)

‘Shift-invariance’ here means that

ΩA = Ω↑ (5)

and

AΓ = Γ← (6)

where

Ω↑ =













CA

CA2

CA3

...













(7)

and

Γ← =
[

AB,A2B,A3B, . . .
]

. (8)

Many subspace algorithms form a finite estimate Ω̂ of Ω and obtain an estimate Â of A as

Â = Ω̂†Ω̂↑ (9)

where (.)† denotes the Moore-Penrose pseudo-inverse. In Kung’s algorithm [6] an estimate Γ̂ of
Γ is also available, and it is possible to use

Â = Γ̂←Γ̂† (10)

In some subspace algorithms a similar, but less complete, shift-invariance is used. Let Xt =
[x(t), x(t + 1), . . .], and let Ut and Yt be defined similarly. Then

[

X←t
Yt

]

=

[

A B

C D

] [

Xt

Ut

]

(11)

where X←t = Xt+1. In [7, 8, 11] and the ‘elementary MOESP’ algorithm of [13] an estimate X̂t

is first obtained, and the model is estimated from

[

Â B̂

Ĉ D̂

]

=

[

X̂←t
Yt

] [

X̂t

Ut

]†

(12)

2



In this case the method we propose does not work, because Â 6= X̂←t X̂
†
t , but alternative solution

strategies are available, with which our method can be applied. Typically these involve ‘backing
off’ to estimate A and C from an estimate of the extended observability matrix, as in equation
(9) above [12]. The ‘ordinary MOESP’ algorithm of [13] uses such a strategy. In the ‘purely
stochastic’ case, when there are no measured inputs, equation (12) reduces to

[

Â

Ĉ

]

=

[

X̂←t
Yt

]

X̂
†
t (13)

In this case our method of guaranteeing stability can be applied.

From the above it is seen that the estimate Â can always be obtained in the form Â = Z←Z† or
Â = Z†Z↑ for some matrix Z. When Z has finite dimensions the definitions of Z ↑ and Z← are
ambiguous. In this paper we show that stability is guaranteed if Z ↑ is obtained by introducing
a block of zeros at the bottom, or if Z← is obtained by introducing a block of zeros on the right.
This result is quite surprising, since it is always enough to introduce only one block of zeros,
irrespective of how many blocks there are altogether, and of the data they contain.

Previous proofs of stability in subspace methods, in so far as they exist at all, have relied on
asymptotic arguments, as the number of data points is increased. But these do not hold for finite
amounts of data, and it is not uncommon for unstable models to result. Vaccaro [9] suggested
tapering the data in Kung-type algorithms, in order to obtain several properties, including
stability. In [2] it is shown that stability can be guaranteed (and further properties obtained) in
Kung’s algorithm by extending the estimated impulse response (which forms the data in that
case) by sufficiently many zeros.

2 Guaranteeing stability

Suppose that Z ∈ RNp×n is a matrix which is partitioned into blocks, each of size p × n:

Z =













Z1

Z2

...
ZN













(14)

and let Z↑o denote the matrix which is formed when each block is shifted upwards by p rows and
a block of zeros is introduced at the bottom:

Z↑o =

















Z2

Z3

...
ZN

0

















. (15)

Also let Z† denote the Moore-Penrose pseudo-inverse of Z, so that Z †Z = In. (We assume that
Np ≥ n.)
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Theorem 2.1 If

Â = Z†Z↑o (16)

then

|λ(Â)| ≤ 1 (17)

holds for any eigenvalue λ(Â) of Â.

Proof: Let Z have the QR factorization [3]

Z = QR (18)

=













Q1

Q2

...
QN













R (19)

where QT Q = I and R ∈ RNp×n is upper-triangular. Then

Z↑o = Q↑oR (20)

=

















Q2

Q3

...
QN

0

















R (21)

and

Z† = R†QT . (22)

Now let w be an eigenvector of Â, such that Âw = λw. Then

λRw = RÂw (23)

= R(R†QT Q↑oR)w. (24)

Let ||.|| denote the Euclidean norm for vectors and the compatible (induced) norm for matrices.
Then

|λ| × ||Rw|| = ||RR†QT Q↑oRw|| (25)

≤ ||RR†|| × ||QT Q↑o|| × ||Rw|| (26)

= ||Rw||. (27)

Hence |λ| ≤ 1.

The last equality follows because

RR† =

[

In 0
0 0

]

(28)

and because of the following lemma:

Lemma 2.2 ||QT Q↑o|| = 1
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Proof: Consider

(QT Q↑o)
T (QT Q↑o) = (Q↑o)

T Q↑o (29)

=
N

∑

k=2

QT
k Qk (30)

= I − QT
1 Q1. (31)

Since the rows of Q1 are orthonormal, QT
1 Q1 is an orthogonal projector [3], so all of its eigenvalues

take the values 0 or 1. Hence the eigenvalues of I−QT
1 Q1 take the values 1 or 0. But the singular

values of QT Q↑o are the nonnegative square roots of the eigenvalues of (QT Q↑o)
T (QT Q↑o), and

||QT Q↑o|| is given by its largest singular value. Hence the lemma is proved.

Of course the following also holds, with

Z = [Z1, Z2, . . . , ZN ] (32)

Z←o = [Z2, . . . , ZN , 0]. (33)

Theorem 2.3 If

Â = Z←o Z† (34)

then

|λ(Â)| ≤ 1 (35)

holds for any eigenvalue λ(Â) of Â.

Proof: As for Theorem 2.1, taking transposes of everything.

The estimates of A prescribed by Theorems 2.1 and 2.3 are just least-squares solutions of the
equations ZA = Z↑o and AZ = Z←o . In practice these equations are inconsistent (because the
data in Z is not generated by a linear system of the assumed order, and/or is corrupted by noise),
and one could consider other solutions. In particular, a Total Least Squares (TLS) solution [3]
has been suggested in [12]. It is interesting to note that our ‘trick’ does not guarantee stability
if the TLS solution is taken.

3 Conclusions

Common practice seems to be to take

Z =













Z1

Z2

...
ZN−1













(36)

instead of (14) and

Z↑ =













Z2

Z3

...
ZN













(37)
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instead of (15), and indeed consistency of the resulting estimates can be demonstrated under
certain assumptions [14]. Anecdotal evidence (see [12] for example) suggests that this gives more
accurate results, for example in the sense of estimating the locations of lightly-damped poles
more accurately. This is not surprising, since our procedure distorts the results by using a block
of zeros in place of a block of data. Of course one expects this distortion to be very small if N

is large, and if the real system generating the data is stable.

It is quite easy to generate examples for which the use of (36) and (37) leads to unstable models,
but it must be admitted that this is most likely to occur when the real system has poles close
to the stability boundary, and this is precisely the case when our procedure is least likely to be
useful. In particular, it is probably not suitable for applications such as high-resolution spectral
analysis, because the bias introduced by it is likely to be excessive for those applications.

But we do not advocate that our procedure should be used routinely in all applications. It
should be most useful in those applications in which some loss of accuracy is acceptable in
return for guaranteed stability. This is likely to be the case in many applications in which
subspace algorithms run on-line and unsupervised, such as adaptive control or fault monitoring.
If they are used to provide the ‘internal model’ in a standard predictive control, or an ‘internal
model control’ scheme, for example, then internal instability will result if the model produced
is unstable, with much more disastrous results than would arise from some small bias on the
model. It is also possible to use our method in parallel with a standard algorithm, using its
results only if the standard algorithm yields an unstable model. Such an implementation would
not destroy the consistency available with the standard algorithms (where this is achieved),
because the probability of our modification being invoked will reduce to zero as the length of
data increases.
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