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Remarks on “Robustness Analysis of Nonlinear Feedback
Systems: An Input–Output Approach”

Tryphon T. Georgiou and Malcolm C. Smith

Our previous paper [1, Sec. VII] contains two examples of adaptive
controllers (Examples 8 and 9) for which the nonlinear gap robustness
margin is zero and which are destabilized by arbitrarily small pertur-
bations in the gap metric. The proof that the robustness margin is zero
makes use of the fact that the parameter estimate�(t) tends to infinity
ast ! 1 when there is a constant input disturbance of size� > 0.
The purpose of this present note is: a) to complete the argument given
in [1] to prove the unboundedness of�(t) and b) to give an alternative
proof that the convergence of the statex(t) ! 0 is a consequence of
the unboundedness of�(t) in Example 9.

We begin with a). In [1, p. 1214], (32) and (33) and the following five
lines argue by contradiction. Assuming�(t) is bounded, it is claimed
that “(33) implies thatx(t)! 0” whence a contradiction is drawn via
(32). In fact, (33) alone is not sufficient for the convergence ofx(t) to
zero; (33) needs to be used in combination with the first-order equation
(32) to assert this convergence. In particular, assuming�(t) is bounded,
and using the fact that�(t) is monotonic, it can be shown with (32) that
x(t) is eventually monotonic, and hence from (33)x(t) ! 0. Rather
than fill out the somewhat lengthy details of this reasoning we prefer to
give an alternative direct proof of the unboundedness of�(t). To make
the result self-contained, we will restate it in the form of a lemma.

Lemma 1: Consider the equations

_x(t) = �+ a(�(t))x(t); (1)
_�(t) = x(t)2 (2)

where� > 0, x(0) = �(0) = 0, anda(�) is any continuous function.
Then,�(t) ! 1 ast ! 1.

Proof: Assume to the contrary that there existsM1 > 0 such that
�(t) �M1 for all t. Then, from (2), we see thatt

0
x2(�)d� �M1 for

all t, and sox(t) 2 L2[0; 1). Sincea(�) is continuous, there exists
M2 > 0 such thata(�(t)) � M2 for all t. It therefore follows from
(1) that

t

0

( _x(�)� �)2 d� �M
2

2M1

for all t. Hence
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2

2M1 �
t

0

_x(�)2 d� � 2�
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0

_x(�)d� + �
2
t

��2�(x(t)� x(0)) + �
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for all t. Thus

x(t) � �
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for all t. Hence,x(t) grows without bound ast ! 1 and cannot
belong toL2[0; 1). This is a contradiction which establishes the
lemma.

The lemma proves the relevant boundedness property of�(t) for [1,
Examples 8 and 9] witha(�) = �2 cos � anda(�) = �� respectively.
We are most grateful to R. Ortega [2] for pointing out the need to clarify
this step of our paper.

We now turn to b). The relevant fact is proved in the seven lines of
parenthetic comments in [1, p. 1216, lines 32–38]. We now restate the
claim in the form of a lemma and give an alternative proof.

Lemma 2: Let

_x(t) = � � �(t)x(t) (3)

where� > 0 andx(0) = �(0) = 0. Assume�(t) is continuous,
monotonically nondecreasing and�(t)!1 ast!1. Then,x(t)!
0 ast ! 1.

Proof: Define

t0 =
t

0

�(�)d� = : f(t):

For somet0 > 0, we have�(t0) > 0 which means thatf(t) is mono-
tonically (strictly) increasing on[t0; 1). Thus, we can change vari-
ables in (3) fromt to t0 on this interval. Writinĝx(t0) := x(f�1(t0)),
and noting thatdt0 = �(t)dt, (3) becomes

d

dt0
x̂(t0) =

�

�(f�1(t0))
� x̂(t0) := u(t0)� x̂(t0): (4)

Note thatu(t0) ! 0 monotonically ast0 ! 1. Let t00 = f(t0) and
define�1 := jx̂(t00)j and�2 := ju(t00)j. Then, fort0 � t00

jx̂(t0)j = e�t +t x̂(t00) +
t

t

e�t +�u(�) d�

� e�t +t �1 + �2:

We now claim that̂x(t0) ! 0 ast0 ! 1, i.e., given any� > 0 there
existst01 such thatjx̂(t0)j � � for all t0 � t01. To see this, chooset00 so

that�2 � �=2 and chooset01 = t00+ln(2�1=�) if 2�1=� > 1, otherwise,
chooset01 = t00. This ensures that for anyt0 � t01

jx̂(t0)j � e�t +t �1 + �2

� e�t +t �1 + �2 � �:

Hence, for allt � f�1(t01), jx(t)j � � which establishes the claim.
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Correction to “Passivity-Based Control of a Class of
Blondel–Park Transformable Electric Machines”

L. U. Gökdere, W. Brice, P. J. Nicklasson, R. Ortega, and
G. Espinosa-Pérez

In the above cited paper,1 , the third and fourth equations in the left
column of p. 634 must be corrected to

Le( _qe; qm) =
1

2
_qTe De _qe + �T _qe � V (qm)

Lm(qm; _qm) =
1

2
Dm _q2m:

Thus,Le contains the energy contributions of magnetic origin.
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