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Abstract

This paper considers the design of feedback controllers for linear, time-invariant, spatially distributed systems in an approach which
generalises the H∞-framework and in particular the H∞ loop-shaping method. To this end, we introduce a class of spatially distributed
system models called /nite dimensional, distributed, linear, time-invariant systems. Sensors and actuators are considered to be part of the
controller, rather than part of the plant, and thus the controller we wish to design is itself a spatially distributed system. Optimising over
placements and shapes of the sensor and actuator spatial distribution functions is an integrated part of the controller design procedure. As
an illustrative design example, we present the feedback stabilisation of an electrostatically destabilised, electrically conducting membrane.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Motivation

In this paper we propose a method for designing a feed-
back controller that robustly stabilises an open-loop unsta-
ble, linear, time-invariant (LTI), spatially distributed plant,
based around an extension of H∞ loop-shaping (Glover &
McFarlane, 1989; McFarlane & Glover, 1990, 1992) and
gap-metric ideas to the spatially distributed context. By a
spatially distributed system we mean a system whose input
and output signals may depend on spatial variables as well
as time. As a consequence, the controller we wish to design
is itself a spatially distributed system. The design of such a
controller proceeds as follows:

(i) calculate an approximate plant model in the class of
(/nite-dimensional, distributed, linear, time-invariant) FD-
DLTI systems (see De/nition 10) and associate a gap-metric
uncertainty ball with that /nite-dimensional plant model,
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(ii) calculate an optimally stabilising controller for the
approximate plant model, i.e., a controller that achieves the
largest possible stability margin, and
(iii) compute a controller whose spatial distribution func-

tions can be realised by the sensors and actuators available
and which has a su?ciently small gap distance to the opti-
mal controller of (ii). It is in this third step that the issue of
optimal sensor and actuator placement (and possibly shap-
ing) is addressed.

This paper is structured as follows. In Section 2 we collect
all the preliminary results needed for the design method.
Section 3 is devoted to the design method itself, and Section
4 gives a design example.

2. Preliminaries

2.1. Mathematical notation

Z+ denotes the set of positive integers, and C+ :=
{s∈C+ |Re(s)¿ 0}. The Laplace transform operator is
represented by L{:}. The symbol “]” stands for “countably
in/nitely many”. If G(s) is a real-rational transfer matrix,
then ‖G(s)‖H denotes the Hankel norm of G(s) (see, e.g.,
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Glover, 1984). Let U;Y be Hilbert spaces. For U, and
analogously for any other Hilbert space, let ‖:‖U, 〈:; :〉U
and IU denote norm, scalar product and identity operator
in U. The space of all bounded, linear operators from U
to Y; equipped with the induced norm ‖:‖ind, is denoted
by B(U;Y). The Hardy ∞-space H∞

B(U;Y)(C+) is the
Banach space of B(U;Y)-valued functions T of a com-
plex variable that are analytic on C+ and bounded in the
norm ‖T‖∞ := sups∈C+{‖T(s)‖ind}. The para-hermitian
conjugate is denoted as T∼(s) = (T(− Hs))∗, where (:)∗

denotes the adjoint and Hs represents the complex-conjugate
of s. Given the Hilbert space V and the (row) vector
v̂=(v̂1; : : : ; v̂n)∈Vn. Applying the Gram-Schmidt orthonor-
malisation procedure to v̂ yields the uniquely de/ned (row)
vector v = (v1; : : : ; vn)∈Vn. The map v̂ 
→ v shall be de-
noted by v = GSO(v̂). To distinguish signals and systems
in the time and frequency domain, subscripts ‘t’ are used to
indicate the time domain, and no subscripts are used in the
frequency domain.

2.2. View of spatially distributed systems

In this paper we consider feedback control systems whose
inputs, outputs, disturbances, etc. may be spatially dis-
tributed signals, i.e., signals that depend on spatial variables
as well as time. We seek to retain the spatial element of
signals in the de/nition of input-output performance mea-
sures by making use of the 2-norm for both the space- and
time-dependence of signals and thereby de/ne the induced
norm of a system. As we are concerned with LTI systems,
Fourier/Laplace transforms of signals may be taken with
respect to time, and systems can typically be represented as
integral operators with a frequency-dependent kernel.
As an example of a LTI spatially distributed system, con-

sider an elastic string stretched between x=0 and x=1 and
clamped at both ends. Denote the string’s deMection from
the equilibrium position by yt(x; t) and assume the string is
set in motion under the action of a distributed load ut(x; t)
(ut(x; t) ≡ 0 for t ¡ 0). The dynamics of the string are gov-
erned by the PDE

@2yt(x; t)
@t2

+ �
@yt(x; t)
@t

− �
@2yt(x; t)
@x2

= ut(x; t); (1)

x∈ (0; 1), t¿ 0, together with the boundary conditions
yt(0; t) = yt(1; t) = 0. In (1), �¿ 0 is a frictional coef-
/cient, and �¿ 0 represents the tension per unit mass
of the string. At any given time instant we assume that
the system’s spatially distributed input signal, ut(x; t), is
square-integrable in x over the spatial domain Di = (0; 1),
i.e., ut(:; t)∈L2(Di)=:U for /xed t. Bringing in the
time dependence, we consider ut(:; t)=: ut(t) to belong
to the Lebesgue space of U-valued, square-integrable
functions, L2U[0;∞), which is de/ned as L2U[0;∞) :=
{ut(t)∈U for all t ∈ [0;∞) | ∫∞

0 〈ut(t); ut(t)〉U dt ¡∞}.
Similarly, a suitable space for the output signal, yt(x; t), is
L2Y[0;∞), where Y := L2(Do) with Do = (0; 1).

Thus we consider the system (1) as de/ning an op-
erator from L2U[0;∞) to L2Y[0;∞). Taking Laplace
transforms of (1) with zero initial conditions gives
((s2 + �s) − �d2=dx2)y(x; s) = u(x; s), x∈ (0; 1), s∈C,
plus the boundary conditions y(0; s) = y(1; s) = 0. After
taking Laplace transforms, the input and output signal
spaces become the Hardy 2-spaces H 2

U(C+) and H 2
Y(C+),

respectively. The system’s frequency-domain input-output
relationship is given by y(s) = P∞(s)u(s), where P∞(s)
is an in/nite-dimensional integral operator depending on s.
The kernel of P∞(s) is given by

P∞(x; �; s) =
∞∑
k=1

2 sin(k�x) sin(k��)
s2 + �s+ !2

k
; !k := k�

√
�; (2)

and represents the string’s Laplace-transformed Green’s
function.

Remark 1. The theory developed in this paper applies to
any kind of LTI spatially distributed system and can still
be used if no explicit expression of the system’s Green’s
function is known. In the present example the system’s
Laplace-transformed Green’s function was introduced pri-
marily to motivate the de/nition of FDDLTI systems in
De/nition 10 below. In the case study of Section 4 the
system’s Green’s function will be used to compute the
gap distance between the in/nite-dimensional system and a
/nite-dimensional system approximation exactly. When the
Green’s function is not known, one can use approximative
methods instead (see Reinschke, 1999).

2.3. Stability of feedback systems

We present in this Section 2.3 only those de/nitions and
the background theory that are needed to develop the design
method. For a full development of an input-output approach
to LTI spatially distributed systems see Reinschke (1999)
and Reinschke, Cantoni and Smith (2001).
To be able to state mathematically rigorous results on the

robust stability of feedback loops, we need to assume that
all spatially distributed systems under consideration belong
to the following class of systems.

De�nition 2. LetU;Y be Hilbert spaces.St(U;Y; [0;∞))
is de/ned to be the set of closed, linear, shift-invariant,
causally extendible (see Reinschke et al. (2001)) op-
erators Pt : dom(Pt) ⊆ L2U[0;∞) → L2Y[0;∞). The
frequency-domain equivalent of St(U;Y; [0;∞)) shall be
denoted by S(U;Y;C+) and is given by S(U;Y;C+) :=
{P(s) |L{Ptut}(s) = P(s)L{ut}(s); Pt ∈St(U;Y;
[0;∞)), ut ∈ dom(Pt)}.

Remark 3. Throughout the remainder of this paper, except
for Section 4.1, we will work in the frequency-domain,
interchanging the time-domain operator Pt : dom(Pt) ⊆
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Fig. 1. Standard distributed feedback con/guration [P;C ] with external
disturbance signals d1; d2.

L2U[0;∞) → L2Y[0;∞) with its frequency-domain equiva-
lent P : dom(P) ⊆ H 2

U(C+) → H 2
Y(C+).

Consider the spatially distributed feedback system of
Fig. 1, which we denote by [P;C ], where P : domP ⊆
H 2

U(C+) → H 2
Y(C+) and C : domC ⊆ H 2

Y(C+) →
H 2

U(C+) are linear, shift-invariant operators.

De�nition 4. Let U;Y be Hilbert spaces. Suppose that
P ∈S(U;Y;C+) and C ∈S(Y;U;C+). The feedback
con/guration [P;C ] in Fig. 1 is said to be stable if

FP;C :=

(
IU C

P IY

)
: dom(P)× dom(C)

→ H 2
[UY ]

(C+) :
(
e1
−e2

)

→
(
d1
−d2

)

has a bounded inverse on H 2
[UY ]

(C+).

Right coprime factorisations, the gap-metric �g(:; :) and
the stability margin bP;C , which are to be introduced
next, are de/ned in complete analogy to the standard
lumped-parameter case (Georgiou & Smith, 1990).

De�nition 5. Let U, Y be Hilbert spaces, and as-
sume P ∈S(U;Y;C+). Two (operator-valued) func-
tions M ∈H∞

B(U;U)(C+) and N ∈H∞
B(U;Y)(C+) are called

(strongly) right coprime if there exist (operator-valued)
functions X̃ ∈H∞

B(U;U)(C+) and Ỹ ∈H∞
B(Y;U)(C+) such that

X̃M − ỸN = IU. A factorisation of the form P = NM−1

is called a right coprime factorisation (RCF) of P if M
and N are (strongly) right coprime; the factorisation is
called a normalised RCF if, in addition, [MN ] is inner, i.e.,
M∼M +N∼N = IU.

Remark 6. Given two systems P1;P2 ∈S(U;Y;C+) with
P1 = N1M−1

1 being a normalised RCF and P2 = N2M−1
2

being a (not necessarily normalised) RCF, the gap distance
between the two systems can be calculated using the Ober–
Sefton formula (Sefton & Ober, 1993; see also Reinschke
et al., 2001).

�g(P1;P2) = inf
Q;Q−1∈H∞

B(U;U)(C+)

∥∥∥∥∥
[
M1

N1

]
−
[
M2

N2

]
Q

∥∥∥∥∥
∞
:

De�nition 7. Let U, Y be Hilbert spaces. Suppose that
P ∈S(U;Y;C+) and C ∈S(Y;U;C+), and assume the

feedback con/guration [P;C ] in Fig. 1 to be stable.

bP;C :=

∥∥∥∥∥
[
IU

P

]
(IU − CP)−1[IU C ]

∥∥∥∥∥
−1

∞
is called the stability margin of the feedback con-
/guration [P;C ]. The optimal stability margin for a
given plant P ∈S(U;Y;C+) is de/ned as bopt(P) :=
supC∈S(Y;U;C+)bP;C .

The following theorem states a su?cient condition for
the stability of feedback loops with simultaneous plant and
controller uncertainties, both uncertainties being measured
in the gap-metric.

Theorem 8 (Foias, Georgiou, & Smith, 1993). Let P ∈
S(U;Y;C+) and C ∈S(Y;U;C+), where U;Y are
Hilbert spaces. Assume b1 and b2 to be ;xed, non-negative
numbers such that b21 + b22¡ 1. Then [P;C ] being sta-
ble with b1

√
1− b22 + b2

√
1− b21¡bP;C implies that

[P1;C1] is stable for all P1 ∈S(U;Y;C+) and all
C1 ∈S(Y;U;C+) which satisfy �g(P;P1)6 b1 and
�g(C ;C1)6 b2.

The equivalence between gap uncertainty balls and
coprime factor uncertainty balls holds for LTI spatially
distributed systems (cf. Reinschke, 1999) as it does for
LTI lumped-parameter systems (Georgiou & Smith, 1990;
Sefton & Ober, 1993).

Theorem 9. Let U;Y be Hilbert spaces, Bncfu(P; b) :=
{P̂ ∈S(U;Y;C+) | P̂ = (N + #N )(M + #M )−1 is a RCF

with ‖#M

#N
‖∞¡b} and Bg(P; b) := {P̂ ∈S(U;Y;C+) |

�g(P; P̂)¡b}. For all b: 0¡b6 1 we have Bg(P; b) =
Bncfu(P; b).

2.4. FDDLTI systems

Returning to the vibrating string example in Section
2.2, note that the integral operator P(N )(s) with the kernel
P(N )(x; �; s) :=

∑N
k=1 �k(x)(s

2 + �s + !2
k)

−1�k(�), where
�k(:) = �k(:) =

√
2 sin(k�:), represents a /nite-rank approx-

imation of P∞(s) whose kernel is given by (2). We now
introduce a class of /nite-rank systems which represents a
natural generalisation of the system described by P(N )(s).

De�nition 10. Let U := L2(Di) and Y := L2(Do). A
FDDLTI system is a LTI operator Pt :L2U[0;∞) →
L2Y[0;∞) (possibly unbounded) whose frequency do-
main input-output relationship is given by y(x; s) =∫
Di d�P(x; �; s)u(�; s), x∈Do, where the kernel P(x; �; s)
has the form

P(x; �; s) = E�(x)P(s)(E�(�))T: (3)

In (3), E�(x) := (�1(x); : : : ; �p(x)) and E�(�) :=
(�1(�); : : : ; �m(�)) are /nite-dimensional row vectors of
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real-valued spatial functions, with {�1; : : : ; �p} ⊂ Y,
〈�k ; �l〉Y = �kl, {�1; : : : ; �m} ⊂ U, 〈�k ; �l〉U = �kl, and
P(s) is a proper, real-rational, (p × m)-transfer matrix
with (minimal) state-space representation [A; B; C; D], i.e.,
P(s) = C(sI − A)−1B+ D.

Remark 11. Note that using sets of orthonormal spatial
projection functions in the spatial vectors E� and E� does
not restrict the class of kernels P(x; �; s) in De/nition 10.
If one starts from an approximate, /nite-dimensional plant
model that was obtained using the Finite Element Method
or some other Galerkin-type approximation method with
non-orthonormal spatial projection functions, one can sub-
sequently orthonormalise the spatial projection functions us-
ing the Gram–Schmidt orthonormalisation procedure and
absorb the constant Gram–Schmidt matrices into P(s).

As one might expect from the de/nition of FDDLTI systems,
the computation of a RCF, the optimal stability margin and a
stabilising (distributed) controller achieving the optimal sta-
bility margin carries over from lumped-parameter systems
to FDDLTI systems, with minor modi/cations only.

Theorem 12. Let U;Y be Hilbert spaces and assume
that P is an FDDLTI system as de;ned in De;ni-
tion 10. Let P(s) = N (s)(M (s))−1 be a (normalised)
RCF of the lumped-parameter transfer matrix P(s).
Then P = NM−1 is a (normalised) RCF of the FD-
DLTI system P if N ∈H∞

B(U;Y)(C+) has the kernel
N (x; �; s) := E�(x)N (s)(E�(�))T, D∈H∞

B(U;U)(C+) has
the kernel D(x; �; s) := E�(x)(M (s) − Im)(E�(�))T and
M := IU +D∈H∞

B(U;U)(C+).

Proof. Extend the orthonormal sets {�1; : : : ; �m} ⊂ U
and {�1; : : : ; �p} ⊂ Y to complete orthonormal se-
quences {�k}k∈Z+ ⊂ U and {�j}j∈Z+ ⊂ Y. De/ne the
(in/nite-dimensional) vectors E�

⊥
:= (�p+1; �p+2; : : :) and

E�
⊥
:= (�m+1; �m+2; : : :). Now observe that, for any ’∈U,

N (s)’ = E�N (s)〈E�; ’〉U, M(s)’ = E�M (s)〈E�; ’〉U +
E�

⊥〈E�⊥ ; ’〉U, and M−1(s)’ = E�M−1(s)〈E�; ’〉U +
E�

⊥〈E�⊥ ; ’〉U. It follows thatN (s)M−1(s)’=E�N (s)M−1

(s)〈E�; ’〉U = P(s)’, i.e., P =NM−1.
To show that [MN ] = [ IU+DN ]∈H∞

B(U; [UY ])
(C+) satis/es

M∼(3!)M(3!)+N∼(3!)N (3!)= IU for all !∈R, de/ne
W (3!) :=M∼(3!)M(3!) +N∼(3!)N (3!) and note that
W (3!) has the kernel

W(x; �; 3!) = [E�(x) E�
⊥
(x)]

×
[
M∼(3!) 0

0 I]

][
M (3!) 0

0 I]

]

×
[
(E�(�))T

(E�
⊥
(�))T

]

+E�(x)N∼(3!)N (3!)(E�(�))T

= [E�(x) E�
⊥
(x)]

×
[
M∼(3!)M (3!) + N∼(3!)N (3!) 0

0 I]

]

×
[
(E�(�))T

(E�
⊥
(�))T

]
:

Since M∼(3!)M (3!) + N∼(3!)N (3!) = Im for all !∈R,
it follows that W (3!) = IU for all !∈R.

Theorem 13. For the FDDLTI plant P ∈S(U;Y;C+)
with kernel P(x; �; s) = E�(x)P(s)(E�(�))T, P(s)∈Cp×m,
let P(s) = N (s)(M (s))−1 be a normalised RCF. Then the
optimal stability margin can be evaluated as bopt(P) =√
1−

∥∥∥M (s)
N (s)

∥∥∥2
H
, and a (stabilising, distributed) controller

Ĉ ∈S(Y;U;C+) achieving the optimal stability margin
is given by the kernel Ĉ(�; x; s) = E�(�)Ĉ(s)(E�(x))T,
where Ĉ(s) is a solution to the lumped-parameter
H∞-optimisation

Ĉ(s) = arg min
C(s) stblsng

∥∥∥∥∥
[
Im

P(s)

]
(Im − C(s)P(s))−1

× [Im C(s)]

∥∥∥∥∥
∞
:

Proof. Let E�(x), E�(�), E�
⊥
(x) and E�

⊥
(�) be de/ned as

in the proof of Theorem 12. Now take a C ∈S(Y;U;C+)
and write its kernel as

C (�; x; s) = [E�(�) E�
⊥
(�)]

[
C11(s) C12(s)

C21(s) C22(s)

]

×
[
(E�(x))T

(E�
⊥
(x))T

]
;

where C(s) :=

[
C11(s) C12(s)

C21(s) C22(s)

]
is partitioned compati-

bly with the spatial vectors E�, E�
⊥
, E� and E�

⊥
. One can

show that bP;C as de/ned in De/nition 7 satis/es

b−1
P;C =

∥∥∥∥∥∥∥∥




Im 0m×]

0]×m I]

P 0p×]




×
[

(Im − C11P)−1 0m×]

C21P(Im − C11P)−1 I]

]−1

×
[

Im 0m×] C11 C12

0]×m I] C21 C22

]∥∥∥∥∥∥∥
∞

: (4)
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By swapping the second and the third row as well as the
second and the third column on the RHS of (4) and using
the substitution S(s) := (Im − C11(s)P(s))−1, we obtain

(bopt(P))−1 = inf
C∈S(Y;U;C+)

b−1
P;C

= inf
C11
C12
C21
C22

∥∥∥∥∥∥∥∥∥∥

S SC11 0m×] SC12

PS PSC11 0p×] PSC12

−−− −−− −−− −−−
C21PS C21PSC11 + C21 I] C21PSC12 + C22

∥∥∥∥∥∥∥∥∥∥
∞

:

Since matrix dilations are not norm-decreasing, we can put
C21(s) := 0]×m, C12(s) := 0m×] and C22(s) := 0]×]. In
doing so, we get

(bopt(P))
−1 = inf

C11

∥∥∥∥∥∥∥∥∥∥

[
Im

P

]
(Im − C11P)

−1[Im C11] 0

−−−−−−−−−−−−− −−−
0 I]

∥∥∥∥∥∥∥∥∥∥
∞

=max{(bopt(P))−1; 1}= (bopt(P))
−1: (5)

We thus have bopt(P) = bopt(P) =

√
1−

∥∥∥M (s)
N (s)

∥∥∥2
H
(the lat-

ter equality having been proved in McFarlane and Glover,
1990), and an optimal distributed controller Ĉ achieving a
stability margin of bopt(P) is given by the kernel Ĉ (�; x; s)=
E�(�)Ĉ(s)(E�(x))T with Ĉ(s) as stated in the theorem.

Theorem 14 in conjunction with Assumption 1, to be stated
next, says how, under certain conditions, the gap between
an in/nite-dimensional, distributed LTI system, P∞, and a
FDDLTI system, P, can be computed.

Assumption 1. Given two LTI spatially distributed systems
P∞;P ∈S(U;Y;C+), where U;Y are Hilbert spaces. As-
sume {�j}j∈Z+ ⊂ Y and {�k}k∈Z+ ⊂ U to be complete
orthonormal sequences. For given p;m∈Z+, de/ne the spa-
tial function vectors E�(x) := (�1(x); : : : ; �p(x)), E�

⊥
(x) :=

(�p+1(x); �p+2(x); : : :), E�(�) := (�1(�); : : : ; �m(�)),
E�

⊥
(�) := (�m+1(�); : : :).

(i) There is a stable C∞ ∈S(Y;U;C+) stabilising P∞.
(ii) P is a FDDLTI system with kernel P(x; �; s) =

E�(x)P(s)(E�(�))T.
(iii) 〈E�; (IU − C∞P∞)−1E�

⊥〉U = 0, 〈E�⊥ ;
(IU−C∞P∞)−1E�〉U=0, 〈E�;P∞(IU−C∞P∞)−1E�

⊥〉Y
=0 as well as 〈E�⊥ ;P∞(IU − C∞P∞)−1E�〉Y = 0.
(iv) There exist integers p0; m0 such that (iii) holds

for all p;m with p¿p0 and m¿m0. Furthermore,
‖〈E�⊥ ;P∞E�

⊥〉Y‖∞ → 0 as p;m→ ∞.

Theorem 14. (a) Let Assumption 1 (i) hold. Then a RCF
of P∞ is given by P∞ = N∞(M∞)−1, where M∞ :=
(IU − C∞P∞)−1 and N∞ := P∞(IU − C∞P∞)−1.

(b) Let Assumption 1 (i) to (iii) hold and let P(s) =
N (s)(M (s))−1 be a normalised RCF. With M∞;N∞

as de;ned in (a), call M∞
11 := 〈E�;M∞E�〉U, M∞

22 :=
〈E�⊥ ;M∞E�

⊥〉U, N∞
11 := 〈E�;N∞E�〉Y and N∞

22 :=
〈E�⊥ ;N∞E�

⊥〉Y. Then we have

�g(P∞;P)

=max

{
inf

Q11 ;Q
−1
11 ∈H∞

m×m(C+)

∥∥∥∥∥
[
M

N

]
−
[
M∞
11

N∞
11

]
Q11

∥∥∥∥∥
∞
;

inf
Q22 ;Q

−1
22 ∈H∞

]×](C+)

∥∥∥∥∥
[
I]×]

0]×]

]
−
[
M∞
22

N∞
22

]
Q22

∥∥∥∥∥
∞

}
; (6)

provided the RHS of (6) is less than one. If furthermore
Assumption 1(iv) holds, then as p;m→ ∞ we have

inf
Q22 ;Q

−1
22 ∈H∞

]×](C+)

∥∥∥∥∥
[
I]×]

0]×]

]
−
[
M∞
22

N∞
22

]
Q22

∥∥∥∥∥
∞

→ 0: (7)

Proof. (a)M∞ and N∞ satisfy N∞(M∞)−1 =P∞(IU −
C∞P∞)−1(IU − C∞P∞) = P∞. This factorisation is co-
prime since [IU −C∞] is a stable left inverse of [M

∞

N∞ ]: [IU −
C∞][M

∞

N∞ ] = [IU − C∞][ IUP∞ ](IU − C∞P∞)−1 = (IU −
C∞P∞)(IU − C∞P∞)−1 = IU.
(b) Let P = NM−1 be a normalised RCF as described

in Theorem 12. Then the integral operators M and N have
kernels of the form

M(�; ,; s) = [E�(�) E�
⊥
(�)]

[
M (s) 0

0 I]

][
(E�(,))T

(E�
⊥
(,))T

]
;

N(x; ,; s) = [E�(x) E�
⊥
(x)]

[
N (s) 0

0 0

][
(E�(,))T

(E�
⊥
(,))T

]
:

Taking into account Assumption 1(iii), the kernels of M∞

and N∞ can be written as

M∞(�; ,; s) = [E�(�) E�
⊥
(�)]

[
M∞
11 (s) 0

0 M∞
22 (s)

]

×
[
(E�(,))T

(E�
⊥
(,))T

]
;

N∞(x; ,; s) = [E�(x) E�
⊥
(x)]

[
N∞
11 (s) 0

0 N∞
22 (s)

]

×
[
(E�(,))T

(E�
⊥
(,))T

]
:

In the Ober–Sefton gap formula (cf. Remark 6) write
Q as Q(s) = [E� E�

⊥
]Q(s)〈[E� E�⊥ ]; :〉U, where Q(s)=
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〈[E� E�⊥ ];Q(s)[E� E�⊥ ]〉U, to obtain

�g(P∞;P) = inf
Q;Q−1∈H∞

]×](C+)

∥∥∥∥∥∥∥∥∥∥∥




M 0

0 I]

N 0

0 0


−




M∞
11 0

0 M∞
22

N∞
11 0

0 N∞
22


Q
∥∥∥∥∥∥∥∥∥∥∥
∞

;

from which (6) follows by a similar argument to that in
the proof of Theorem 13 (see Reinschke, 1999, for details).
Finally, (7) can be veri/ed by noting that if Assumption
1(iv) holds, then

inf
Q22 ;Q

−1
22 ∈H∞

]×](C+)

∥∥∥∥∥
[
I]

0

]
−
[
M∞
22

N∞
22

]
Q22

∥∥∥∥∥
∞

6

∥∥∥∥∥
[
I]

0

]
−
[
M∞
22

N∞
22

]∥∥∥∥∥
∞

→ 0 as p;m→ ∞:

Remark 15. Suppose Assumption 1(iii) is relaxed in
the following way: 〈E�; (IU − C∞P∞)−1E�

⊥〉U6 j,
〈E�⊥ ; (IU−C∞P∞)−1E�〉U6 j, 〈E�;P∞(IU−C∞P∞)−1

E�
⊥〉Y6 j as well as 〈E�⊥ ;P∞(IU−C∞P∞)−1E�〉Y6 j.

If Assumptions 1(i) and (ii) hold with - := (‖[IU −
C∞]‖−1

∞ − 2j)−1¿ 0, then it can be shown that for �¿ 4
the following inequality holds instead of equality (6):

�g(P∞;P)6 �j- +

max

{
inf

Q11 ;Q
−1
11 ∈H∞

m×m(C+)

∥∥∥∥∥
[
M

N

]
−
[
M∞
11

N∞
11

]
Q11

∥∥∥∥∥
∞
;

inf
Q22 ;Q

−1
22 ∈H∞

]×](C+)

∥∥∥∥∥
[
I]×]

0]×]

]
−
[
M∞
22

N∞
22

]
Q22

∥∥∥∥∥
∞

}
:

2.5. Controller structure

Given a LTI spatially distributed plant P : dom(P) ⊆
H 2

U(C+) → H 2
Y(C+), we wish to design a spatially dis-

tributed feedback controller C : dom(C) ⊆ H 2
Y(C+) →

H 2
U(C|+) that is FDDLTI, i.e., its frequency-domain

kernel takes the form C (�; x; s) = E�
c
(�)C(s)(E�

c
(x))T,

where E�
c
(:) = (�c1(:); : : : ; �

c
mc(:))∈Umc and E�

c
(:) =

(�c1(:); : : : ; �
c
pc(:))∈Ypc , and C(s) is a proper, real-rational,

(mc × pc) transfer matrix. The spatial functions �c1(:); : : : ;
�cpc(:) represent the pc spatial distribution functions of the
sensors whilst �c1(:); : : : ; �

c
mc(:) are the mc spatial distribu-

tion functions of the actuators. The dynamic parts of the
sensors and actuators are assumed to be absorbed into C(s).
We will furthermore assume that the locations and spatial
shapes of the sensors and the actuators are determined by
a parameter vector / = (�1; : : : ; �n�) which can be varied
(continuously) within the set of all “feasible” parameter
vectors, *. The parameter dependence of the spatial func-
tions in the controller’s kernel may be indicated by writing

C (�; x; s) = E�
c
(�;/)C(s)(E�

c
(x;/))T; /∈*:

The controller’s frequency-domain input-output relationship
is given by u(�; s) =

∫
Do dxC(�; x; s)y(x; s), �∈Di. In our

design framework we will seek to optimise the locations
and shapes of the sensor and actuator spatial distribution
functions (i.e., optimise over the parameter vector /∈*)
as well as the (lumped) controller transfer matrix, C(s),
connecting the sensors and actuators.

3. Coprime factor synthesis

3.1. Controller design procedure

Step 1: Let P∞ ∈S(U;Y;C+) be an open-loop unsta-
ble, linear, time-invariant, (typically in/nite-dimensional)
spatially distributed plant model for which we wish to de-
sign a stabilising feedback controller. Find an FDDLTI plant
model P approximating P∞.
General methods for computing an FDDLTI plant model

given an in/nite-dimensional plant model in terms of ei-
ther PDEs or Laplace-transformed Green’s functions are de-
scribed in Reinschke (1999).
Step 2: Let W (s) be a scalar, real-rational, stable and

stably invertible transfer function. Set PW (s) := P(s)W (s),
P∞
W (s) := P∞(s)W (s) and bPW := �g(P∞

W ;PW ). Select
W (s) such that (i) the “desired loop shape” PW (s) is an
appropriate one as is customary in H∞ loop-shaping, and
(ii) the controller error margin

bmargC := bopt(PW )
√
1− b2PW − bPW

√
1− b2opt(PW ) (8)

is su?ciently large. Let Ĉ be an optimally stabilising con-
troller for PW .
Making bmargC large means /nding a weighting function

W (s) that makes bopt(PW ) large whilst keeping the weighted
/nite-dimensional approximation error bPW = �g(P∞

W ;PW )
reasonably small. The controller Ĉ (cf. Theorem 13) has a
kernel of the form Ĉ(�; x; s)=E�(�)Ĉ(s)(E�(x))T. The spa-
tial distribution functions in Ĉ(�; x; s) are the same as in the
kernel of the FDDLTI plant P and these spatial distribution
functions will usually not be realizable with real sensors and
actuators.
Step 3: Find an implementable controller, C imp, such that

the gap distance �g(Ĉ ;C imp) is less than the value of bmargC
obtained in Step 2.
A numerical procedure for this step is outlined be-

low in Section 3.2. Note that, by Theorem 8, the

feedback loop [P∞
W ;C

imp] is stable if bPW
√
1− b2C +

bC
√
1− b2PW ¡bopt(PW ), or equivalently, bC¡bmargC ,

where bmargC is as de/ned in (8). The implementable con-
troller, C imp, has a kernel of the form Cimp(�; x; s) =
E�

c
(�;/)C(s)(E�

c
(x;/))T (cf. Section 2.5). That is, the

number of sensors and actuators are chosen a priori, and
the shape and location of their spatial distribution functions
can only be varied as permitted by the parameter set *.
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Usually, we will want the number of sensors and actua-
tors, pc and mc, to be (substantially) smaller than p and
m, respectively. If, for a particular number of sensors and
actuators and a particular choice of *, no implementable
controller C imp can be found that satis/es the condition
�g(Ĉ ;C imp)¡bmargC , then the set * needs to be altered, if
necessary by increasing the number of sensors and actuators.
Step 4: If C imp has the kernel Cimp(�; x; s) = E�

c
(�)C imp

(s)(E�
c
(x))T, take C with kernel C(�; x; s) = E�

c
(�)C(s)

(E�
c
(x))T, where C(s) := C imp(s)W (s), as the robustly sta-

bilising controller for the in/nite-dimensional plant model
P∞.

3.2. Computing an implementable controller

Let Ĉ = N̂M̂−1 be a normalised RCF. By Theorem 9
we have �g(Ĉ ;C imp)¡bmargC iT there exists a RCF C imp =

N imp(M imp)−1 such that ‖ M̂−M imp

N̂−N imp ‖∞¡bmargC . Hence, we
wish to /nd

boptC := min
M imp ; N imp stable & coprime
C imp=N imp(M imp)−1 impl:

∥∥∥∥∥
[
M̂

N̂

]
−
[
M imp

N imp

]∥∥∥∥∥
∞

(9)

and a pair of operator-valued functions {M imp
opt ;N

imp
opt }

achieving this minimum. Since the coprimeness require-
ment in (9) is automatically satis/ed if ‖[ M̂N̂ ]− [M

imp

N imp ]‖∞ is
small enough (cf. Vidyasagar, 1985, p. 235), we consider
the simpler optimisation problem

boptC := min
M imp ;N imp stable

C imp=N imp (M imp)−1 impl:

∥∥∥∥∥
[
M̂

N̂

]
−
[
M imp

N imp

]∥∥∥∥∥
∞

(10)

and check the coprimeness of the optimal solution,
{M imp

opt ; N
imp
opt }, afterwards. By Theorem 12 the normalised

right coprime factors {M̂ ; N̂} of Ĉ and the right co-
prime factors {M imp; N imp} of C imp are of the form
M̂(s)=E�(M̂ (s)− Ip)〈E�; :〉Y+ IY, N̂ (s)=E� N̂ (s)〈E�; :〉Y
and M imp(s) = E�

c
(/)(M imp(s) − Ipc)〈E�

c
(/); :〉Y + IY,

N imp(s) = E�
c
(/)N imp(s)〈E�c(/); :〉Y, where Ĉ(s)=

N̂ (s)(M̂ (s))−1 is a normalised RCF and C imp(s) =
N imp(s)(M imp(s))−1 is a RCF. Using the Gram-Schmidt
orthonormalisation process, de/ne

(E�(x); E�
⊥
(x;/)) := GSO(E�(x); E�

c
(x;/));

(E�
c
(x;/); E�

c⊥
(x;/)) := GSO(E�

c
(x;/); E�(x));

(E�(�); E�
⊥
(�;/)) := GSO(E�(�); E�

c
(�;/));

(E�
c
(�;/); E�

c⊥
(�;/)) := GSO(E�

c
(�;/); E�(�))

and let pa and ma denote the dimensions of the vectors
de/ned in the /rst and the second two lines, respectively.

Form the following scalar products of the �-functions,

〈E�(:); E�c(:;/)〉Y= : T�11(/);

〈E�(:); E�c⊥(:;/)〉Y= : T�12(/);

〈E�⊥(:); E�c(:;/)〉Y= : T�21(/);

〈E�⊥(:); E�c⊥(:;/)〉Y= : T�22(/)

and similarly of the �-functions, i.e.,

〈E�(:); E�c(:;/)〉U= : T�11(/);

etc. Eq. (10) can now be re-written as

boptC = min
Q(s) stable; /∈*

‖R(s;/)− T1Q(s)T2‖∞; (11)

where R(s;/) :=

[
R11(s;/) R12(s;/)

R21(s;/) R22(s;/)

]
;

D̂(s) := M̂ (s)− Ip;

R11(s;/) :=

[
(T�11(/))

T D̂(s)

(T�11(/))
TN̂ (s)

]
T�11(/) +

[
Ipc

0mc×pc

]
;

R12(s;/) :=

[
(T�11(/))

T D̂(s)

(T�11(/))
TN̂ (s)

]
T�12(/);

R21(s;/) :=

[
(T�12(/))

T D̂(s)

(T�12(/))
TN̂ (s)

]
T�11(/);

R22(s;/) :=

[
(T�12(/))

T D̂(s)

(T�12(/))
TN̂ (s)

]
T�12(/);

T1 :=

[
Ipc+mc

0((pa−pc)+(ma−mc))×(pc+mc)

]
; Q(s) :=

[
M imp(s)

N imp(s)

]
,

and T2 := [Ipc 0pc×(pa−pc)]. For /xed /∈*, the RHS of
(11) is a standard H∞-optimisation problem. So, once the
sensors and actuators have been placed, /nding an optimal
controller transfer matrix connecting the sensors and actua-
tors is a problem with a known solution.

3.3. Sensor and actuator placement

In view of (11), we would ideally like to solve for
/opt (representing the optimal locations and shapes
of the sensor and actuator spatial distribution func-
tions), where /opt := argmin/∈* 4(/) and 4(/) :=
minQ(s) stable ‖R(s;/)− T1Q(s)T2‖∞. In the sequel we will
propose two methods which both /nd an approximate value
for /opt. The /rst one (Algorithm 1 below) is iterative and
“decouples” the two minimisations.

Algorithm 1 (Q-/-interation).
Step 0: (Initialisation) Given a tolerance j¿ 0, an initial

parameter vector /0 ∈*, and a real number 4old�1.
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Step 1: 4new := minQ(s) stable ‖R(s;/0) − T1Q(s)T2‖∞,
and store Q̂(s) achieving the minimum.
Step 2: IF (4old − 4new)¡ j THEN /̂ := /0 is taken as

optimal; STOP.
Step 3: Find /̂ := argmin/∈* ‖R(s;/)− T1Q̂(s)T2‖∞.
Step 4: Set /0 := /̂, 4old := 4new, and loop to Step 1.

Remark 16. Step 3 of Algorithm 1 can be implemented
using Algorithm 3 stated below, with g(/) re-de/ned as
g(/) := ‖R(s;/)− T1Q̂(s)T2‖∞.

The second method of /nding an approximate value for
/opt is not an iterative scheme. The basic idea is that, instead
of minimising 4(/), we minimise the lower bound g(/) of
4(/), which is obtained by applying Parrott’s Theorem (see
Zhou, Doyle, and Glover, 1996, p. 40):

g(/) := max{g1(/); g2(/)}6 4(/); (12)

where

g1(/) :=

∥∥∥∥∥
[
(T�12(/))

TD̂(s)

(T�12(/))
TN̂ (s)

]
[T�11(/) T

�
12(/)]

∥∥∥∥∥
∞

and

g2(/) :=

∥∥∥∥∥∥∥∥∥∥∥

[
(T�11(/))

T

(T�12(/))
T

]
D̂(s)T�12(/)

[
(T�11(/))

T

(T�12(/))
T

]
N̂ (s)T�12(/)

∥∥∥∥∥∥∥∥∥∥∥
∞

:

Exploiting the fact that T�(/) and T�(/) are orthogonal
matrices for all/∈*, the expressions for g1(/) and g2(/)
can be simpli/ed:

g1(/) =

∥∥∥∥∥
(T�12(/))

TD̂(s)

(T�12(/))
TN̂ (s)

∥∥∥∥∥
∞
;

g2(/) =

∥∥∥∥∥
[
D̂(s)

N̂ (s)

]
T�12(/)

∥∥∥∥∥
∞
: (12a)

Thus we arrive at the following algorithm.

Algorithm 2 (Parrott lower bound optimisation).
Step 1: 40 := minQ(s) stable ‖R(s;/0) − T1Q(s)T2‖∞,

where /0 ∈* is the initial parameter vector.
Step 2: By means of a local search about / =/0 /nd

/̂ := arg min
/∈*

g(/); (13)

where g(/) was de/ned in (12) and (12a).
Step 3: 41 := minQ(s) stable ‖R(s; /̂) − T1Q(s)T2‖∞. If

41¡40, then take /1, otherwise /0, as being (approxi-
mately) optimal.

Remark 17. Algorithm 2 does not guarantee to yield an im-
proved parameter vector /∈* since, at least in principle,
it is possible that 4(/) increases as / is varied whilst its

Parrott lower bound, g(/), decreases. However, in the ex-
ample of Section 4 we always found the /rst four digits of
4(/) and g(/) to coincide, so there are examples for which
Algorithm 2 is very suitable.

Recall that / was assumed to be n�-dimensional. The
RHS of (13) therefore represents an n�-dimensional, non-
smooth, not necessarily convex, optimisation problem. To
solve it, we will now outline a descent algorithm that is based
on linear matrix inequalities (the idea of using LMIs is due
to Vinnicombe, 1998) see also Vinnicombe & Miyamoto
(1997) and that will converge to a local minimum.

Algorithm 3.
Step 0: (Initialisation). Given a /0 ∈*.
Step 1: Find a descent direction , of g(/) at / = /0.

STOP if there is no descent direction; /̂ := /0 is taken as
optimal.
Step 2: Perform a line search of g(/0+5,) for 5∈ (0;∞)

and /nd a suitable 5̂∈ (0;∞) such that g(/̂)¡g(/0),
where /̂ := /0 + 5̂,.
Step 3: Set /0 := /̂ and loop to Step 1.

Finding a descent direction or deciding that there is none
is generally the di?cult part in nonsmooth optimisation
(Hiriart-Urruty & Lemarechal, 1993). In the particular non-
smooth optimisation problem (13), however, the structure
of the nonsmooth function g(:) can be exploited. We will
assume that the matrices T�(/); T �(/) are continuously
diTerentiable with respect to / for all /∈*. Correspond-
ingly, if we de/ne[
(T�12(/))

TD̂(s)

(T�12(/))
TN̂ (s)

]
=: T (1)(/)

[
D̂(s)

N̂ (s)

]
=: Z (1)(s;/)

and[
D̂(s)

N̂ (s)

]
T�12(/)=:

[
D̂(s)

N̂ (s)

]
T (2)(/)=: Z (2)(s;/);

then Z (1)(s;/) and Z (2)(s;/) can be approximated as

Z (1)(s;/0 + 7) ≈ Z (1)a (s;/0; 7)

:=

(
T (1)(/0) +

n�∑
i=1

7i · @T
(1)(�1; : : : ; �n�)

@�i

∣∣∣∣
/0

)[
D̂(s)

N̂ (s)

]
;

Z (2)(s;/0 + 7) ≈ Z (2)a (s;/0; 7)

:=

[
D̂(s)

N̂ (s)

](
T (2)(/0) +

n�∑
i=1

7i · @T
(2)(�1; : : : ; �n�)

@�i

∣∣∣∣
/0

)
;

where 7=(71 72 : : : 7n�)
T. For ‖7‖ small, the∞-norms of

Z (1)(s;/0+7) and Z (2)(s;/0+7) are (approximately) equal
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to the ∞-norms of Z (1)a (s;/0; 7) and Z
(2)
a (s;/0; 7), respec-

tively. If [A0; B0; C0; D0] is a minimal state-space realiza-

tions of
[
D̂(s)
N̂ (s)

]
, then state-space realizations of Z (1)a (s;/0; 7)

and Z (2)a (s;/0; 7) are given by [A(1); B(1); C(1); D(1)] and
[A(2); B(2); C(2); D(2)], respectively, where

A(1) := A0; B(1) := B0;

C(1) :=

(
T (1)(/0) +

n�∑
i=1

7i · @T
(1)

@�i

∣∣∣∣
/0

)
C0;

D(1) :=

(
T (1)(/0) +

n�∑
i=1

7i · @T
(1)

@�i

∣∣∣∣
/0

)
D0;

A(2) :=




A0 0

A0

0 . . .

A0



;

B(2) :=




B0 T (2)(/0)

B0
@T (2)

@�1

∣∣∣∣
/0

...

B0
@T (2)

@�n�

∣∣∣∣
/0



;

C(2) := (C0 71 · C0 : : : 7n� · C0 );

D(2) := D0

(
T (2)(/0) +

n�∑
i=1

@T (2)

@�i

∣∣∣∣
/0

)
:

By the LMI expression for the ∞-norm (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994; Gahinet, Nemirovski,
Laub, & Chilali, 1995), for given 7 and j, there holds
‖Z ( j)a (s;/0; 7)‖∞¡ j iT there are positive de/nite matrices
X (j); j = 1; 2, such that

(A( j))TX ( j) + X ( j)A( j) X ( j)B( j) (C( j))T

(B( j))TX ( j) −jI (D( j))T

C( j) D( j) −jI


¡ 0:

(14)

Since the two matrices (for j=1; 2) on the LHS of (14) are
linearly dependent on the parameters 71; : : : ; 7n� and j, we
can /nd ĵ := min j such that there exist X̂ ( j)¿ 0; j= 1; 2,
and 7̂∈Rn� satisfying the two LMIs (14) with j := ĵ,
X (1) := X̂ (1), X (2) := X̂ (2) and 7 := 7̂. If ĵ¡g(/0), then
7̂=(71 72 : : : 7n�)

T is a (local) (steepest) descent direction
for g(/) at/=/0. Otherwise there is no descent direction.

We have thus outlined a procedure that can be used for Step
1 of Algorithm 3. E?cient line search algorithms for Step 2
can be found in Hiriart-Urruty and Lemarechal, 1993, and
references therein. This completes the description of how to
solve the optimisation problem (13).

4. Design example

4.1. Formulation of the control problem

The design example—stabilisation of an electrostatically
destabilised, electrically conducting membrane—is taken
from Lang and Staelin (1982). The experimental setup is
schematically depicted in Fig. 2 and can be described as fol-
lows. A rectangular (L1 × L2 = 1:04 m × 1:12 m), Mexible,
electrically conducting membrane is suspended vertically,
clamped at its boundaries and biased by a high-voltage
source. With no voltage bias the membrane would be
level-Mat and motionless; this is the equilibrium state of
zero membrane deMection. As the voltage bias is increased
from zero beyond a threshold voltage V = Vc, the equilib-
rium state becomes unstable. To one side of the membrane
a parallel surface of equal dimension is placed at a short
distance normal to the membrane. This surface consists of
a three-by-three array of /xed conducting plates, each in-
dependently addressable through a low-voltage source, and
acts as a distributed control input. On the other side of the
membrane a similar array of nine plates allows a capacitive
measurement of the membrane deMection. (The capacitance
between the membrane and each sensor plate in conjunc-
tion with a /xed inductor form an oscillator whose resonant
frequency gives the membrane deMection averaged across
the area of each sensor plate.) The spatial distribution func-
tion of each sensor and actuator is assumed to be equal to
a constant inside the area of the corresponding sensor or
actuator plate, and zero everywhere outside.
We make the following simplifying assumptions:

(i) long wave limit: the membrane deMection wavelengths
of signi/cance are much larger than the distance be-
tween the membrane and the actuator (respectively,
sensor) plates;

(ii) small amplitudes: the membrane deMection is small
compared to the distance between membrane and actu-
ator as well as membrane and sensor plates; the control
voltages vt1(t); : : : ; vt9(t) in Fig. 2 are much smaller
than the high-voltage bias V .

With these assumptions, the membrane deMection yt(x1;
x2; t) — de/ned as positive toward the sensor plates —
obeys the PDE (see Lang and Staelin, 1982)

:
@2yt(x1; x2; t)

@t2
+ �

@yt(x1; x2; t)
@t
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Fig. 2. Functional diagram of Lang and Staelin’s experimental setup
(adapted version of Fig. 1 in Lang and Staelin, 1982).

− �1 @
2yt(x1; x2; t)

@x21
− �2

@2yt(x1; x2; t)
@x22

− 2;0V 2

H 3 yt(x1; x2; t) =− ;0V
H 2 ut(x1; x2; t); (15)

where {x1; x2}∈D := (0; L1)× (0; L2), in conjunction with
the boundary condition yt(�1; �2; t)=0 for all {�1; �2}∈ @D.
The distributed variable ut(x1; x2; t) on the RHS of (15)
stands for a distributed control voltage to be realized by the
actuators. (The fact that the form of ut(x1; x2; t) is restricted
due to the discreteness of the actuators is disregarded for
the moment.) The meaning and the numerical values (again
taken from Lang and Staelin (1982)) of the physical param-
eters in (15) are as follows: membrane mass density : =
0:033 kg=m2, viscous damping coe?cient �=0:48 kg=m2=s,
membrane tension in x1-direction �1 = 8:4 N=m, membrane
tension in x2-direction �2=7:8 N=m, distance between mem-
brane and actuator plates H =9:2 mm, free space permittiv-
ity ;0 = 8:85 pAs=V=m.
It is not di?cult to show that the PDE (15), after

Laplace transformation and with zero initial conditions,
is equivalent to the integral relationship y(x1; x2; s) =∫ L1
0 d�1

∫ L2
0 d�2 P∞(x1; x2; �1; �2; s)u(�1; �2; s), where

P∞(x1; x2; �1; �2; s)

=
∞∑
j=1

�j(x1; x2)
−;0V=H 2

s2: + s�+ !2
j − <

�j(�1; �2) (16)

is the plant’s Laplace-transformed Green’s function. In (16),
�j(x1; x2)=�j(x1; x2) := (2=

√
L1L2) sin(i�x1=L1) sin(l�x2=L2),

!j :=
√
�1(i�=L1)2 + �2(l�=L2)2, and < := 2;0V 2=H 3. The

mapping from the double index (i; l) to the single index j
is de/ned such that {!j}j∈Z+ is an increasing sequence.
From (16) it is clear that the /rst k modes are unstable if
the high-voltage bias V is such that 2;0V 2=H 3¿!2

k . The
/rst mode thus becomes unstable at V = Vc, where Vc :=
�
√
H 3=2;0(�1=L21 + �2=L22) · H 3=(2;0) = 2460 V, the second

mode goes unstable at V = 3760 V, etc. From now on we
will assume that V has a /xed value of 2500 V, whence
precisely the /rst mode of the open-loop plant is unstable.
A /nite-dimensional approximation P(m)(x1; x2; �1; �2; s) of

Fig. 3. Parametrised partitioning of the sensor and the actuator surfaces
(l1 and l2 being the parameters).

P∞(x1; x2; �1; �2; s) is obtained from (16) by truncating the
in/nite sum after the /rst m= 10 terms:

P(10)(x1; x2; �1; �2; s)

=E�(x1; x2)P(10)(s) (E�(�1; �2))T; (17)

E�(x1; x2) := (�1(x1; x2); : : : ; �10(x1; x2)), E�(�1; �2) :=
(�1(�1; �2); : : : ; �10(�1; �2)), P(10)(s) := (−;0V=H 2) ·
diag((s2:+ s�+!2

1 −<)−1; : : : ; (s2:+ s�+!2
10 −<)−1).

Let P∞ and P(10) denote the integral operators whose ker-
nels are given by (16) and (17), respectively, and notice
that we have accomplished Step 1 of the design procedure
outlined in Section 3.1.

4.2. Maximum controller error margin

The scalar, stable, stably invertible, weighting function
W (s), as introduced in Step 2 of the design procedure
of Section 3.1, is assumed to be of the formW (s)=(s+w1)=
(s + w2) with w1¿ 0 and w2¿ 0. De/ne P∞

W := P∞ ·W
as well as P(10)W := P(10) · W . To determine the maximum
controller error margin, bmargC , (cf. (8)) we need to evaluate
�g(P∞

W ;P
(10)
W ), which can be done using Theorem 14. (It is

easy to see that the Assumptions 1(i) to (v) are satis/ed by
the pair {P∞

W ;P
(10)
W }.) bmargC depends on the choice of the

weighting function W (s), i.e., on w1 and w2. It was found
that w1 = 3:1158 · 106 and w2 = 70 are nearly optimal with
respect to maximizing bmargC . For these values of w1 and w2
the /nite-dimensional approximation error, �g(P∞

W ;P
(10)
W ),

is 0.0458, and the optimally stabilising controller Ĉ , which
is of McMillan degree 30, achieves bopt(P

(10)
W ) = 0:3732

and hence bmargC = 0:3303.

4.3. Computing an implementable controller

Characterising the implementable, spatially distributed
controller C imp, it is assumed that the sensor and the
actuator surfaces are partitioned in the same way (i.e.,
�ci (x1; x2) = �ci (x1; x2) for all {x1; x2}∈D and i = 1; : : : ; 9),
and that the partitioning is parametrised using two pa-
rameters, l1 and l2, as indicated in Fig. 3. By means of
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a direct, global search, in which l1 was varied between 0
and 0:36, and l2 between 0 and 0:40, it was found that the
values l1 = 0:20 and l2 = 0:22 are nearly optimal, achieving
�g(Ĉ ;C imp) = 0:3195¡bmargC . The McMillan degree of the
implementable controller C imp, initially the same as the
McMillan degree of Ĉ , was found to be reducible to just
three without altering the /rst four digits of �g(Ĉ ;C imp). To
validate that the (reduced McMillan degree) implementable
controller C imp is indeed stabilising, it was connected with
the weighted, /nite-dimensional plant approximations P(10)W

and P(20)W . In both cases the closed loop was found to be
stable.
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