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Abstract

In order to ensure robust feasibility and stability of model predictive control (MPC) schemes,
it is often necessary to optimise over feedback policies rather than open-loop trajectories. All
specific proposals to date have required the solution of nonlinear programs and/or the solution of a
large number of optimisation problems. In this paper we introduce a new stage cost and show that
the use of this cost allows one to formulate a robustly stable MPC problem that can be solved using
a single linear program. Furthermore, this is a multi-parametric linear program, which implies that
the receding horizon control (RHC) law is piecewise affine, and can be explicitly pre-computed, so
that the linear program does not have to be solved on-line. Two numerical examples are presented;
one of these is taken from the literature, so that a direct comparison of solutions and computational
complexity with earlier proposals is possible.

Keywords: min-max problems, robust control, optimal control, predictive control, receding horizon
control, parametric programming, piecewise linear control

1 Introduction

This paper is concernedwith the practical real-time implementabilityof robustly stable model predictive
control (MPC) when constraints are present on the inputs and the states. We assume that the plant
model is known, except for unknown but bounded state disturbances, and that the states of the system
are measurable.

We consider a discrete-time, linear, time-invariant plant

xk+1 = Axk + Buk + wk , (1)

∗Royal Academy of Engineering Post-doctoral Research Fellow.
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wherexk ∈ IRn is the system state,uk ∈ IRm is the control input andwk ∈ W is a persistent disturbance
that only takes on values in the polytopeW ⊂ IRn. It is assumed that the disturbancewk can jump
between arbitrary values withinW and that no stochastic description for it is postulated. Therefore, a
worst-case approach is taken in this paper. It is assumed that(A, B) is stabilisable and that polytopic1

constraints on the state and input, that are either due to physical, safety or performance considerations,
are also given:

xk ∈ X, uk ∈ U, ∀k ∈ IN .

We assume thatW contains the origin and thatX ⊂ IRn andU ⊂ IRm contain the origin in their
interiors.

Since a persistent, unknown disturbance is present, it is impossible to drive the state to the origin.
Instead, it is only possible to drive the system to a bounded target setT contained insideX. The goal is
to obtain a (time-invariant) nonlinear feedback control lawu = κ(x) such that the system is robustly
steered to the target set, while also satisfying the state and input constraints, and minimising some
worst case cost.

It is by now well-established that with polytopic disturbance bounds, a linear model and a convex cost,
in order to solve such min-max problems it is sufficient to consider only the disturbance realisations
that take on values at the vertices ofW [31]. However, the number of extreme disturbance realisations
typically grows exponentially with the length of the prediction horizon used in MPC. Since the optimi-
sation in MPC is required to be performed on-line in real time, the practical feasibility of implementing
robust MPC formulated along these lines is questionable.

In this paper we introduce a new type ofstage cost

L(x,u) := min
y∈T
‖Q(x − y)‖p + ‖R(u− K x)‖p , (2)

whereQ ∈ IRn×n, R ∈ IRm×m, K ∈ IRm×n andT ⊂ IRn. We will show that, ifp = 1 or p = ∞, the
use of this stage cost allows the robustly stable feedback min-max MPC problem to be solved using
asinglelinear program (LP). Furthermore, we will show that this LP is in fact amulti-parametricLP
(mp-LP), that allows the receding horizon control (RHC) law to be pre-computed off-line along the
lines developed by [6], and from which it follows that this law is in fact piecewise affine2. These facts
make robust MPC/RHC, using the stage cost (2), a practical proposition.

Remark 1 A similar stage cost to(2) was independently proposed in [23] and briefly discussed within
the context of guaranteeing robust stability of a new type of MPC scheme. The stage cost proposed
in [23] is L(x,u) := (1/2)‖x−ProjT(x)‖22+(1/2)‖u−K x‖22, whereProjT(x) denotes the orthogonal
projection ofx onto T. The difference between this stage cost and(2) is minor, but the formulation
in (2) is perhaps more natural. More importantly, the MPC scheme proposed in [23] is fundamentally
different from the feedback min-max MPC scheme considered here and [23] only briefly discusses the
properties of their proposed stage cost. As such, this paper makes a contribution by analysing and
discussing the properties of(2) in detail with regards to its use in feedback min-max MPC.

The paper is organised as follows. In Section 2 we review recent developments in robust MPC/RHC,
motivate the problem setup that was outlined above, and define it precisely. In Section 3 we review

1A polytope is defined to be a bounded polyhedron given by the intersection of a finite number of closed half-spaces. In
other words, the setsW, X andU are compact, convex sets that can be described by a finite number of linear inequalities.

2In this paper, MPC will be used to refer to the on-line computation of the solution to the feedback min-max optimal
control problemPN defined in the next section. RHC will be used to denote that the explicit expression for the solution to
the feedback min-max problemPN is pre-computed off-line.
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known requirements for MPC/RHC to be robustly stable, and show how the stage cost (2) satisfies
those requirements. We also point out some advantages of this cost, over a previously proposed cost.
In Section 4 we show in detail how the problem can be solved as a single LP, and exploit its multi-
parametric nature. Section 5 is devoted to numerical examples and Section 6 presents the conclusions.

2 Background and problem formulation

The problem of steering a constrained system subject to persistent disturbances to a target set, while
also minimising some worst case cost, was considered as early as the 1960s and [9, 10, 13, 15, 33]
contain some of the first, and perhaps also some of the most insightful, results. More recent attempts
at the control of constrained systems are based on set invariance [8, 16].

In [9, 15] set-based solutions to the robust time-optimal problem were presented, but the unsolved
problem was how to keep the state evolution inside the target set once it had been reached. The latter
problem was solved in [30] by requiring that the target set be robustly controlled invariant. Once inside
the target set the control input is determined by a pre-computed control law that ensures that the state
trajectory never leaves the target set. Furthermore, [30] continues by decomposing the state space into
simplices and computing an explicit affine expression for the control law in each simplex. All that is
required on-line is to determine in which simplex the current state lies and the control input is then
given by the pre-computed affine control law.

In general, solving a min-max problem subject to constraints and disturbances is computationally too
demanding for practical implementation. However, various attempts have been made at presenting
approximate solutions to this problem. Most of these solutions appear to have come from the field of
robust MPC [26, 29]. Usually, MPC schemes obtain on-line the solution to a finite-horizon approxima-
tion of the infinite-horizon problem. For a given state only the initial segment of the optimal sequence
is implemented; at the next time instant a new measurement is taken and a new finite-horizon min-max
problem is solved.

Due to the various assumptions and approximations made, it is difficult to compare different min-max
MPC schemes with one another. However, most robust MPC schemes can be classified into two
categories [29]: (i)open-loopmin-max MPC [1, 2, 11, 34], where a single control input sequence (or
sequence of perturbations to a given stabilising control law [21, 25]) is used to minimise the worst case
cost, and (ii)feedbackmin-max MPC [4, 20, 24, 31], where the worst case cost is minimised over a
sequence of feedback control laws. In general, the open-loop formulation is too conservative and often
severely under-estimates the set of feasible trajectories. As such, the feedback MPC formulation was
proposed in [27] as an improvement over open-loop MPC.

In order to determine a suitable control law an optimal control problemPN (defined below) with
horizon N is solved. Letw := {w0, w1, . . . , wN−1} denote a disturbance sequence over the interval
0 to N − 1. Effective control in the presence of the disturbance requires state feedback [29, §4.6], so
that the decision variable in the optimal control problem (for a given initial state) is a control policyπ

defined by
π := {u(0), µ1(·), . . . , µN−1(·)} , (3)

whereu(0) ∈ U andµk : X → U, k ∈ {1, . . . , N − 1}; u(0) is a controlaction (since the current
state is known) and eachµk(·) is a state feedback controllaw. Let φ(k; x, π,w) denote the solution
to (1) at timek when the state isx at time 0, the control is determined by policyπ (u = µk(x) atevent
(x, k), i.e. statex, timek) and the disturbance sequence isw.
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Given a target set (often also called terminal constraint)T ⊂ X, for each initial statex ∈ X, let5N(x)
denote the set ofadmissiblepolicies, i.e.

5N(x) := {π | u(0) ∈ U, µk(φ(k; x, π,w)) ∈ U, φ(k; x, π,w) ∈ X, φ(N; x, π,w) ∈ T,

∀k ∈ {1, . . . , N − 1},∀w ∈WN
}

(4)

and let
XN := {x ∈ X |5N(x) 6= ∅} (5)

denote the set of states inX that can be robustly steered (steered for allw ∈WN) to the target setT in
N steps.

In order to define an optimal control problem, a costVN(·) that is dependent on the policyπ and current
statex, but not dependent onw, is defined; the conventional choice is

VN(x, π) := max
w∈WN

[
N−1∑
k=0

L(xk,uk)+ F(xN)

]
, (6)

wherexk := φ(k; x, π,w) if k ∈ {0, . . . , N}, uk := µk(φ(i ; x, π,w)) if k ∈ {1, . . . , N − 1} and
u0 := u(0).

The target setT, stage costL(·) and terminal costF(·) have to satisfy certain conditions in order to
ensure that the solution of the feedback min-max optimal control problem, when implemented in a
receding horizon fashion, is robustly stabilising. These conditions will be set out in the following
section.

The feedback min-max optimal control problemPN can now be defined as

PN(x) : V0
N(x) := inf

π
{VN(x, π) |π ∈ 5N(x) } . (7)

Let π0
N(x) denote the solution toPN(x), i.e.

π0
N(x) =

{
u0

0(x), µ
0
1(·; x), . . . , µ0

N−1(·; x)
} := arg inf

π
{VN(x, π) |π ∈ 5N(x) } , (8)

where the notationµ0
i (·; x) shows the dependence of the optimal policy on the current statex.

It should be noted that the solution to problemPN is frequently not unique — that is, there can be
a whole set of minimisers, from which one must be selected. Thus the time-invariant,set-valued
MPC/RHC lawκN : XN → 2U (2U is the set of all subsets ofU ) is defined by the first element of
π0

N(x):
κN(x) := u0

0(x), ∀x ∈ XN . (9)

Typically, but not always,u0
0(x) is a singleton.

The feedback min-max problemPN defined in (7) is an infinite dimensional optimisation problem and
impossible to solve directly. Methods for solvingPN using finite dimensional optimisation techniques
have been proposed in [4, 17, 31] and this paper can be seen as an immediate extension of [31].

In [4, 17] it is proposed that a combined dynamic- and parametric programming approach be used to
obtain an explicit expression for the RHC law. Provided the stage cost is piecewise affine (e.g. if a
1-norm or∞-norm is used), a piecewise affine expression forκN(·) can be computed off-line. All that
is required on-line is, given the current statex, to look up the control input from the explicit expression.

4



Stability is not proven for the stage and terminal costs proposed in [4] nor do the costs satisfy the
stability conditions given in [28, §3.3] and [29, §4.4]. However, robust stability can be guaranteed if
the stage cost

L(x,u) :=
{
‖Qx‖ + ‖Ru‖ if (x,u) ∈ (X \ T)× U

0 if (x,u) ∈ T × U
, (10)

proposed in [17, 28], is used. Though this choice of cost solves the stability problem, it should be
noted that (10) is not continuous (on the boundary ofT).

The use of such a discontinuous stage cost is a major obstacle to implementation using standard
solvers for linear, quadratic, semi-definite or other smooth, convex nonlinear programming problems.
As such, (2) is proposed as an alternative that solves the problem of obtaining a continuous stage cost
that can be implemented using smooth, convex programming solvers, while still guaranteeing robust
stability of the closed-loop system.

Remark 2 This paper investigates the use of(2) in solving PN using the method proposed in [31].
Though not discussed here, it is possible to use(2) in solvingPN using the methods described in [4, 17].

3 Requirements for robust stability

It is well-known that, for an MPC/RHC law that assumes a finite horizon, an arbitrary choice of terminal
constraint, stage cost and terminal cost does not guarantee stability of the closed-loop system. In the
absence of state disturbances, conventional MPC/RHC schemes employ a terminal costF(x) := ‖Px‖,
that is a control Lyapunov function insideT, in order to guarantee robust stability of the origin for
the closed-loop system [28, 29]. However, if the interior ofW is non-empty and the disturbance is
persistent, then one can easily show that there does not exist a so-calledrobust control Lyapunov
function [28, 29] in a neighbourhood of the origin. Since it is no longer possible to drive the system
to the origin, but only to some set containing the origin, the conventional choice of stage and terminal
cost cannot guarantee stability or convergence [28, §3.3.2] and a new type of stage and terminal cost
is needed.

Before proceeding to set up conditions for robust stability some definitions, taken from [17], are in
order. Ifd(z, Z) := inf y∈Z ‖z− y‖ for any setZ ⊂ IRn and‖ · ‖ denotes any norm, then the setT is
robustly stableiff, for all ε > 0, there exists aδ > 0 such thatd(x0,T) ≤ δ impliesd(xi ,T) ≤ ε, for
all i ≥ 0 and all admissible disturbance sequences. The setT is robustly asymptotically (finite-time)
attractivewith domain of attractionX iff for all x0 ∈ X, d(xi ,T)→ 0 asi →∞ (there exists a time
M such thatxi ∈ T for all i ≥ M) for all admissible disturbance sequences. The setT is robustly
asymptotically (finite-time) stablewith domain of attractionX iff it is robustly stable and robustly
asymptotically (finite-time) attractive with domain of attractionX.

Consider now the following assumptions, adapted from [17, 31, 32]:

A1: The terminal constraint setT ⊂ X contains the origin in its interior. A linear, time-invariant
control lawK : IRn→ IRm is given such that the terminal constraint setT is disturbance invariant [19]
for the closed-loop system, i.e.(A + BK)x + w ∈ T for all x ∈ T and allw ∈ W. In addition,
K x ∈ U for all x ∈ T.
A2: The terminal costF(x) := 0 for all x ∈ IRn.
A3: The stage costL(x,u) := 0 if x ∈ T andu = K x.
A4a: L(·) is continuous overX × U and there exists ac > 0 such thatL(x,u) ≥ c (d (x,T)) for all
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(x,u) ∈ (X \ T)× U.
A4b: L(·) is continuous over(X \ T)× U and there exists ac > 0 such thatL(x,u) ≥ c‖x‖ for all
(x,u) ∈ (X \ T)× U.

A1, A2, A3, A4a andA4bsatisfy the assumptions on the stage cost, terminal cost and terminal constraint
given in [28, §3.3] and [29, §4.4]. Hence, one can follow a standard procedure of using the optimal
value function as a candidate Lyapunov function [28, 29] and show that:

Theorem 1 If A1, A2, A3 and A4a (and A4b) hold, thenT is robustly asymptotically (finite-time) stable
for the closed-loop systemxk+1 = Axk + BκN(xk)+ wk with a region of attractionXN .

In [29, §4.6.3] and [31] it is argued that one need onlyconsider the set of extreme disturbance realisations
if the following assumption holds in addition to those given above:

A5: L(·) is convex overX × U.

It is shown in [31] how, provided A1, A2, A3, A4a (and A4b) and A5 hold, one can associate a different
control input sequence with each extreme disturbance realisation and, using acausality constraintthat
prevents the optimiser from assuming knowledge of future disturbances, one can compute a control
input u ∈ κN(x) on-line using standard finite-dimensional convex programming solvers. However,
in [29, §4.6.3] and [31], an exact expression for the stage cost that allows one to implement the proposed
method is not given; only general conditions onL(·) as in A3, A4a and A4b are given.

Our main concern here is to point out that the stage cost (2) satisfies assumptions A3 and A4a (but
not A4b) if Q is non-singular. Using this stage cost in computingκN(·) thus assures thatT is robustly
asymptotically stable (but not necessarily finite-time stable) for the closed-loop system.

Furthermore, the stage cost (2) satisfies assumption A5 (for proof, see the Appendix). Its use thus
allows the robustly stable MPC problem to be solved as a finite-dimensional problem, as will be shown
in more detail in the next section.

Remark 3 We once again point out that the stage cost(10), that was proposed in [17, 28], is not
continuous and hence not convex. As such, it does not satisfy assumption A5 and therefore cannot be
used with the approach proposed in [31].

Remark 4 The second term in the stage cost(2) follows the idea of pre-stabilising predictions in MPC,
that was introduced in [22] and developed further by those authors for use in robust MPC [21]. If
Q := 0 and R := I , then the stage cost(2) is similar to the one used in [21]. However, it is important
to note A4a and A4b are not satisfied ifQ is singular (as is the case ifQ := 0). As such, it is not
yet clear how the assumptions in this paper need to be modified in order to use the method proposed
in [21] for proving convergence.

In order to justify this statement, an example for which the state of the closed-loop system does
not converge toT if Q := 0 and R := I in (2), follows. Let the system be given byxk+1 =
xk + uk + wk and letX := {x ∈ IR ||x| ≤ 2}, U := {u ∈ IR ||u| ≤ 1.5}, T := {x ∈ IR ||x| ≤ 0.5},
W := {w ∈ IR ||w| ≤ 0.1}, K := −0.1, Q := 0, R := 1, p = ∞ and N := 2. If the initial state
x0 = 1 and the disturbance sequence is given bywk := 0.1 for all k ∈ IN, then the state sequence
satisfiesxk+1 = xk + κN(xk)+ wk = 1 for all k ∈ IN.

Remark 5 It is interesting to observe that A3, A4a and A4b are satisfied ifR is singular or R := 0
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in (2). As such, the use of the second term is not necessary in guaranteeing robust stability3; the second
term only affects the performance of the closed-loop system.

Consider now the “dual-mode” control law

0(x) :=
{
κN(x) if x ∈ XN\T
K x if x ∈ T

(11)

whereκN(·) is defined in (9). By definition, problemPN satisfies assumption A2. IfT, K andL(·) are
chosen such that assumptions A1, A3 and A4 are satisfied, then0(·) is a robustly stabilising control
law, by Theorem 1.

For methods of computing a terminal constraintT that satisfies A1, see [16, 18, 19, 30, 31]. However,
some further observations regardingK andT are in order.

The choice ofK in (2) is arbitrary, but typically it is chosen such thatA+ BK has all its eigenvalues
inside the unit disk and the control law is optimal via some norm. Another factor that needs to be taken
into consideration is how the choice ofK affects the size ofT that one can use. This problem is not
yet fully understood, but some proposals have been put forward for computing a sequence of linear
control laws and an associated sequence of disturbance invariant sets of increasing size [12].

The exact choice of disturbance invariantT is perhaps also arbitrary, but as discussed in detail in [23,
30, 31], a sensible choice forT is theminimaldisturbance invariant set [18, 19]

OK
min :=

∞∑
i=0

(A+ BK)i W (12)

for the systemxk+1 = (A+ BK)xk + wk that is contained inside

XK := {x ∈ X |K x ∈ U } . (13)

The problem, however, with settingT = OK
min, is that the region of attractionXN can be quite small.

One way of enlargingXN is to setT equal to themaximaldisturbance invariant setOK∞ [18, 19] for
the systemxk+1 = (A+ BK)xk + wk that is contained insideXK , i.e.

OK
∞ := {x0 ∈ XK |∀k ∈ IN,∀wk ∈W : xk+1 = (A+ BK)xk + wk ∈ XK } . (14)

This has the benefit thatif the state entersT in finite time, then one can guarantee that the state of the
systemxk+1 = Axk + B0(xk) + wk will robustly converge to the minimal disturbance invariant set
OK

min (this is a consequence of the properties of state trajectories ofxk+1 = (A+ BK)xk+wk that start
insideOK∞ [18, §3]). Recall, however, that with the stage cost (2) one cannot guarantee that the state
of the system will enterT in finite time.

A compromise that results in a smallerXN , but still guarantees convergence to the minimal disturbance
invariant setOK

min, is to setT equal to any subset of the interior ofOK∞ that is a disturbance invariant set
for the systemxk+1 = (A+ BK)xk + wk. SinceT is robustly asymptotically stable, this guarantees
that the state of the systemxk+1 = Axk + BκN(xk)+ wk will enter OK∞ in finite time. As soon as the

3In conventional MPC with a quadratic cost and no disturbance [26, 29],R is often chosen to be positive definite in
order to guaranteeuniquenessof the solution of the optimal control problem. In contrast, uniqueness of the solution is not
guaranteed ifR is positive definite andp = 1 or p = ∞ in (2).
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state entersOK∞, one can switch to the control lawu = K x, thereby guaranteeing robust convergence
of the state of the systemxk+1 = (A + BK)xk + wk to OK

min. More precisely, if the “dual-mode”
control law

ψ(x) :=
{
κN(x) if x ∈ XN\OK∞
K x if x ∈ OK∞

(15)

then the following result follows:

Theorem 2 If A1, A2, A3 and A4a hold, the eigenvalues ofA + BK have magnitude less than1
andT ⊆ intOK∞, then the minimal disturbance invariant setOK

min is robustly asymptotically stable for
the closed-loop systemxk+1 = Axk + Bψ(xk) + wk with a region of attractionXN . If, in addition,
OK

min ⊆ intT, thenT is robustly finite-time stable for the closed-loop systemxk+1 = Axk+Bψ(xk)+wk

with a region of attractionXN .

Proof: This is a consequence of the above discussion and the fact that(A+ BK)kx→ 0 ask→∞.
Hence, for largek, the state trajectories of the system are determined almost entirely by the disturbance
sequence andOK

min is a limit set for the trajectories ofxk+1 = (A+ BK)xk+wk [18, §3]. See also [19]
for details regarding the properties of the maximal and minimal disturbance invariant sets. �

Remark 6 Note that Theorem 2 does not require that A4b hold.

Remark 7 The new stage cost(2) can be interpreted in a similar fashion to the stage costL(x,u) :=
‖Qx‖p + ‖Ru‖p that is typically used in conventional MPC schemes without disturbances. In the
new stage cost(2), deviations of the state trajectory fromT as well as deviations from some “ideal”
control law u = K x are penalised instead of penalising deviations from the origin. The minimal
disturbance invariant setOK

min can be thought of as the “origin” of the system. IfT = OK
min, then one

can interpret(2) as penalising deviations from the “origin”. Similarly, ifT ⊃ OK
min, then one can

think of the terminal constraint as containing the “origin” (though the stage cost does not penalise
deviations from the “origin” anymore).

4 Solution via linear programming

Following the same approach as in [31], letw` := {w`0, . . . , w`N−1} denote an admissible disturbance
sequence over the finite horizonk = 0, . . . , N − 1 and let̀ ∈ L index these realisations4. Also let
u` := {u`0, . . . ,u`N−1} denote a control sequence associated with the`’th disturbance realisation and
let x` := {x`0, . . . , x`N} represent the sequence of solutions of the model equation

x`k+1 = Ax`k + Bu`k + w`k, ` ∈ L (16)

with x`0 = x, wherex denotes the current state.

4.1 Causality constraint

As a first step towards an implementable solution we follow [31] in replacing problemPN by the fol-
lowing equivalent problem, in which the optimisation over feedback policies is achieved by optimising
over control sequences, but with thecausality constraint(17e) enforced:

4This is a slight abuse of notation, because the set of possible realisations is uncountable.
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Problem 1 (Infinite Dimensional Feedback Min-Max) Given the current statex, if

u∞ :=
{
u`k | k = 0, . . . , N − 1, ` ∈ L

}
find a solution to the problem

u0
∞(x) := (arg min

u∞
)max
`∈L

[
F
(
x`N
)+ N−1∑

k=0

L
(
x`k,u

`
k

)]
, (17a)

where the optimisation is subject to(16), x`0 = x for all ` ∈ L and

x`k ∈ X, k = 1, . . . , N − 1, ∀` ∈ L (17b)

u`k ∈ U, k = 0, . . . , N − 1, ∀` ∈ L (17c)

x`N ∈ T, ∀` ∈ L (17d)

x`1
k = x`2

k ⇒ u`1
k = u`2

k k = 0, . . . , N − 1 ∀`1, `2 ∈ L . (17e)

As explained in more detail in [26, 29, 31], this problem is equivalent to the feedback min-max problem
PN due to two facts: (i) adifferentcontrol input sequence is associated with each disturbance sequence,
thereby overcoming the problem of open-loop MPC that associates asinglecontrol input sequence
with all disturbance sequences; (ii) thecausality constraint(17e) associates each predicted state at
time j with a single control input, thereby reducing the degrees of freedom and making the control
law independent of the control and disturbance sequence taken to reach that state.

Let thefinite subsetLv ⊂ L index those disturbance sequencesw` that take on values at the vertices
of the polytopeWN and consider the followingfinite dimensional optimisation problem:

Problem 2 (Finite Dimensional Feedback Min-Max) Given the current statex, if

u := {u1,u2, . . . ,uV
}

whereV is the cardinality ofLv, then find a solution to the problem

u0(x) := (arg min
u
)max
`∈Lv

[
F
(
x`N
)+ N−1∑

k=0

L
(
x`k,u

`
k

)]
, (18a)

where the optimisation is subject to(16), x`0 = x for all ` ∈ Lv and

x`k ∈ X, k = 1, . . . , N − 1, ∀` ∈ Lv (18b)

u`k ∈ U, k = 0, . . . , N − 1, ∀` ∈ Lv (18c)

x`N ∈ T, ∀` ∈ Lv (18d)

x`1
k = x`2

k ⇒ u`1
k = u`2

k k = 0, . . . , N − 1, ∀`1, `2 ∈ Lv . (18e)

At first sight, it might not be clear how the the causality constraint (18e) translates into linear constraints.
However, note that for allk ∈ {0, . . . , N − 2}, if x`1

0 = x`2
0 , w`1

j = w
`2
j andu`1

j = u`2
j for all j ∈

{0, . . . , k}, thenx`1
j = x`2

j for all j ∈ {1, . . . , k+1} and hence one needs to setu`1
k+1 = u`2

k+1 in order to
satisfy the causality constraint. Therefore, as discussed in [26, 31], the causality constraint (18e) can be
replaced by associating the same control input with each node of the resulting extreme disturbance/state
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trajectory tree5. This observation reduces the original number of control inputs that need to be computed
from NvN to 1+ v+ . . .+ vN−1, wherev is the number of vertices ofW. A similar observation holds
for the number of constraints and slack variables that need to be considered.

For example, ifv = 2 and N = 2, then there areV = vN = 4 extreme disturbance sequences
and if Lv has been defined such thatw1

0 = w2
0 andw3

0 = w4
0, then (21e) can be substituted with

u1
0 = u2

0 = u3
0 = u4

0, u1
1 = u2

1 andu3
1 = u4

1.

The question one can now ask is under what conditions the first element ofu0(x) is equal to the first
element ofu0∞(x). As noted in [29, §4.6.3], if the system is linear,X,U,W andT are polytopes and
F(·) andL(·) are convex functions, then using similar convexity arguments as in [31, Thm. 2], it can
be shown that the first element ofu0(x) is equal to the first element ofu0∞(x) and hence also equal to
κN(x).

The next result follows:

Theorem 3 (Robustly Stable Feedback Min-Max MPC) If the stage cost is given by(2), Q is non-
singular, F(x) := 0 and T satisfies A1, thenκN(x) is equal to the first element ofu0(x) and T is
robustly asymptotically stable for the closed-loop systemxk+1 = Axk + BκN(xk)+ wk with a region
of attractionXN .

4.2 Setting up as an LP problem

In [31] it was suggested that the solution to Problem 2 should be computed on-line using standard
convex, nonlinear programming solvers. We will now describe how this problem can be solved using
linear programming if stage cost (2) is used. This will involve setting up a linear program that is
equivalent to Problem 2.

Let the total costJ(x,u`,w`) for the current statex and a sequence of control inputsu` associated
with a given disturbance realisationw` be defined as6:

J(x,u`,w`) :=
N−1∑
k=0

L
(
x`k,u

`
k

)
.

As in [31], the optimisation (18) can be written as

min
u∈C(x)

max
`∈Lv

J(x,u`,w`), (19)

which is equivalent to the convex program

min
u,γ

{
γ
∣∣u ∈ C (x) , J(x,u`,w`) ≤ γ,∀` ∈ Lv

}
, (20)

whereC (x) is a polytope implicitly defined by the constraints in (18).

If one uses the stage cost (2) withp = 1 then the value of minu∈U L(x,u) can be computed by solving
the linear program

min
u∈U

L(x,u) = min
u,y,α,β,γ

γ

5Using standard causality arguments, it should be clear that this substitution results in an equivalent problem in the sense
that the optimal cost and the first element of the optimal input sequence remains unchanged.

6Recall thatF(x) := 0.
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subject to

−α ≤ Q(x − y) ≤ α, −β ≤ R(u− K x) ≤ β, u ∈ U, y ∈ T, 1′α + 1′β ≤ γ ,

whereα ∈ IRn, β ∈ IRm and the unit vector1 := [1,1, . . . ,1]′ has appropriate length.

The above procedure is fairly standard and has been used in converting standard and open-loop min-
max MPC problems with 1-norm and∞-norm costs to linear programs [1, 2, 3, 4, 11, 26, 34]. We
now use it to set up a linear program equivalent to (20). Let

J(x,u`,w`) := min
y`

N−1∑
k=0

‖Q(x`k − y`k)‖1+ ‖R(u`k − K x`k)‖1 ,

andy`, µ`, η` andy, µ, η be defined similarly tou` andu. It now follows that (20) is equivalent to

min
u,y,µ,η,γ

γ (21a)

subject to

x`k+1 = Ax`k + Bu`k + w`k, x`0 = x, k = 0, . . . , N − 1, ∀` ∈ Lv (21b)

x`k ∈ X, k = 1, . . . , N − 1, ∀` ∈ Lv (21c)

x`N ∈ T, ∀` ∈ Lv (21d)

x`1
k = x`2

k ⇒ u`1
k = u`2

k k = 0, . . . , N − 1, ∀`1, `2 ∈ Lv (21e)

− µ`k ≤ Q(x`k − y`k) ≤ µ`k, y`k ∈ T, k = 0, . . . , N − 1, ∀` ∈ Lv (21f)

− η`k ≤ R(u`k − K x`k) ≤ η`k, u`k ∈ U, k = 0, . . . , N − 1, ∀` ∈ Lv (21g)
N−1∑
k=0

1′µ`k + 1′η`k ≤ γ, ∀` ∈ Lv. (21h)

Remark 8 Note that it is also possible to convert the feedback min-max MPC problem to a linear
program if p = ∞ is chosen in the stage cost(2). This is achieved in a similar fashion as above by
noting that ifminu∈U L(x,u) := miny∈T ‖Q(x − y)‖∞ + ‖R(u− K x)‖∞, then

min
u∈U

L(x,u) = min
u,y,α,β,γ

γ

subject to

−1α ≤ Q(x − y) ≤ 1α, −1β ≤ R(u− K x) ≤ 1β, u ∈ U, y ∈ T, α + β ≤ γ ,

whereα ∈ IR, β ∈ IR and the unit vector1 has appropriate length.

It is interesting to observe that the use of the∞-norm results in less variables and constraints than in
the case of the1-norm. The former choice of norm is therefore probably preferred if computational
speed is an issue. However, the latter norm might be preferred if a control action is sought that is
closer to having used the quadratic norm, as in conventional MPC.
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4.3 Explicit solution of the RHC law via parametric programming

The development in the previous section allows the on-line solution of the robust MPC problem,
providing that the available computing resources and the required update interval are such that the LP
can be solved quickly enough. If this is not possible, an alternative is to pre-compute the solution, to
store this solution in a database, and to read out the appropriate part of the solution (which can be done
relatively quickly) as required.

By substituting (21b) into the rest of the constraints it is possible to show, as in [3, 4, 6], that (21) can
be written in the form

min
θ

{
c′θ |Fθ ≤ g+ Gx

}
, (22)

whereθ is the decision variable and consists of the non-redundant components of(u, y, µ, η, γ );
the vectorsc, g and matricesF,G are of appropriate dimensions and do not depend onx. The key
observation here is that the constraints are dependent on the current statex in the affine manner shown.
This means that the feedback min-max problem falls into the class ofmulti-parametriclinear programs
(mp-LPs) [14], where each component ofx represents a parameter that will affect the solution. This
class of problems can be solvedoff-line for all allowable values ofx and results in apiecewise affine
expression for the solution in terms ofx [7, 14].

The polyhedronXF := {x ∈ IRn |∃θ : Fθ ≤ g+ Gx} is the set of states for which a solution to (22)
exists. Given a polytope of statesX ⊆ XF and using the algorithm described in [7], one can compute
the explicit solution of the feedback min-max control law for allx ∈ X. The resulting feedback
min-max RHC law is then of the following piecewise affine form:

κN(x) = Ki x + hi , ∀x ∈ CRi ,

where eachKi ∈ IRm×n andhi ∈ IRm are associated with a so-calledcritical region CRi . The critical
regionsCRi are polytopes with mutually disjoint interiors such thatX =⋃i CRi . All that is required
on-line is to determine in which critical region the current state lies and then compute the control action
using only matrix multiplication and addition, as in [3, 4, 6, 30].

Remark 9 The solution to the control law presented here is of the same piecewise affine structure as
the one given in [4]. However, the derivation in [4] is based on dynamic programming and requires the
solution of2N multi-parametricmixed-integerlinear programs (mp-MILPs) (by exploiting the convex,
piecewise affine nature of the optimal cost, this has since been improved to solvingN mp-LPs [5]). The
scheme presented in this paper requires the solution of a single mp-LP instead, though this is perhaps
of more significance for the on-line computation of the MPC solution than for off-line pre-computation
of the RHC law.

Finally, as mentioned earlier, robust stability is not guaranteed for the stage cost used in [4]. However,
robust stability is guaranteed using the new stage cost(2) proposed in this paper.

5 Examples

The following two examples were implemented in Matlab 6.0 using the LP solver provided with Matlab
Optimization Toolbox 2.1. The mp-LP solver was implemented using the algorithm described in [7].
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5.1 Casen = 1

The first example is taken from [4, 31]. The system is given by

xk+1 = xk + uk + wk,

with

X := {x ∈ IR |−1.2≤ x ≤ 2} , T := {x ∈ IR |−1≤ x ≤ 1} , W := {w ∈ IR |−1≤ w ≤ 1} ,U := IR.

For an initial comparison, the same stage and terminal cost as in [4] were used, i.e.

L(x,u) := |Qx| + |Ru|, F(x) := 0, ∀x ∈ IRn,u ∈ IRm

with Q = 1 andR= 10. With N = 2 andX := {x ∈ IR |−1.2 ≤ x ≤ 2}, by solving a single mp-LP
as described in this paper, the robust RHC lawκN(·) was found to be

κN(x) = −x if − 1.2 ≤ x ≤ 2, (23)

which is the same as [4, Eqn. 24].

The computation ofκN(·) took 1.1 s on a Pentium III. This is a considerable improvement to the 55 s
it took in [4] to solve 4 mp-MILPs on a similarly-specified computer (though it is reported in [5] that
the same problem took 1.27s to solve using 2 mp-LPs).

When the new stage cost (2) was used, i.e.

L(x,u) := min
y∈T
|Q(x − y)| + |R(u− K x)|

with K := −1 (as proposed in [31, §F]), the robust control lawκN(·) was computed in 1.2 s on a
Pentium III and found to be the same as in (23).

5.2 Casen = 2

For the second example, the system is given by

xk+1 =
[
1 0.8
0 0.7

]
xk +

[
0
1

]
uk + wk,

with

X := {x ∈ IR2 |‖x‖∞ ≤ 10
}
, W := {w ∈ IR2 |‖w‖∞ ≤ 0.1

}
,U := {u ∈ IR |−3≤ u ≤ 3} .

GivenK := −[1 1], the target set was chosen to be the maximal disturbance invariant setOK∞ contained
insideXK := {x ∈ X |K x ∈ U } for the closed-loop systemxk+1 = (A+ BK)xk + wk, i.e.

T := OK
∞ =

x ∈ IR2

∣∣∣∣∣∣−
 3

2.8
2.75

 ≤
 1 1

0 0.5
0.5 0.15

 x ≤
 3

2.8
2.75

 .
The stage cost was chosen to be

L(x,u) := min
y∈T
‖Q(x − y)‖∞ + ‖R(u− K x)‖∞,
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Figure 1: The critical regions that define the explicit expression forκN(·) for the second example

with Q = I andR = 0.1. The control horizon was set toN = 2 andX := XN was computed using
the software developed in [16].

The LP that solves the feedback min-max MPC problem has 190 inequalities and 39 decision variables.
The computation of the explicit expression for the RHC lawκN(·) was completed in under 4 minutes7

on an AMD Athlon processor. The critical regions that define the explicit solution of the associated
mp-LP are shown in Figure 1 (in order to save space, the expressions for the associated critical regions
are not listed). Though 71 separate critical regions were computed, it was found that only 7 distinct
affine control laws were defined over different parts ofXN (critical regions with the same affine control
law are plotted with the same shade in Figure 1). Post-processing might therefore reduce the number of
regions that need to be stored on-line. The 7 affine control laws that, together with the critical regions
shown in Figure 1, defineκN(·) are:

κ
1,2
N (x) = [0 0

]
x ± 3,

κ
3,4
N (x) = [0 −0.7

]
x ± 5.5,

κ
5,6
N (x) = [−1 −1.5

]
x ± 2.8,

κ7
N(x) =

[−1 −1
]

x.

Finally, Figure 2 shows part of the response of the closed-loop systemxk+1 = Axk + B0(xk) + wk

to a random, persistent disturbance satisfyingwk ∈ W for all k ∈ IN, starting from initial state
x0 =

[
10 −10

]′
. As can be seen, the presence of the persistent disturbance prevents the state of the

system from converging to the origin. Note that in this example the state entersT in finite time, despite
the fact that only robust asymptotic convergence to the target setT was guaranteed. Recall also that
0(·) andT have been defined such that if the state entersT in finite time, then the state of the system is

7Since by far most of the computational effort actually goes into removing redundant inequalities from the newly computed
critical regions and the partitioning of the state space, it is expected that this time can be reduced by a few orders of magnitude
using state-of-the-art LP solvers, rather than using Matlab’s Optimization Toolbox.
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Figure 2: Closed-loop response of the second example to a random, persistent disturbance

guaranteed to remain insideT for all future admissible disturbance sequences. Furthermore, using the
arguments presented in Section 3, it follows that if the state entersT in finite time, then the control law
0(·) is such that the state of the closed-loop system will robustly converge to the minimal disturbance
invariant setOK

min. Finally, if the state entersOK
min in finite time, then the trajectory of the closed-loop

systemxk+1 = Axk + B0(xk)+ wk is guaranteed to remain insideOK
min.

6 Conclusions

Robust MPC requires optimisation over feedback policies, rather than the more traditional optimisation
over open-loop sequences, if excessive conservativeness, and hence infeasibility and/or instability, is
to be avoided. But this is difficult to implement with reasonable computational effort, and hence its
practicality has been questionable, particularly if on-line optimisation in real time is envisaged.

In this paper we have introduced a new stage cost, that allows one to compute the solution of the full
robust MPC problem — that is, optimisation over feedback policies with guaranteed robust convergence
to the target set in the face of persistent disturbances — using only one linear program. This is in
contrast with previous proposals that have required the solution of nonlinear programs and/or the
solution of a large number of optimisation problems.

A detailed comparison of the competing proposals is not straightforward, however, because the dimen-
sions of the optimisations involved vary in complicated ways. It is therefore not yet possible to say
conclusively which scheme will be more efficient for on-line implementation, or which one would be
preferred for off-line pre-computation. The answers may well depend on problem-specific details.
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Appendix: Proof that (2) is convex

We need to prove that

L(λx1+ [1− λ]x2, λu1+ [1− λ]u2) ≤ λL(x1,u1)+ [1− λ]L(x2,u2) (24)

for all λ ∈ [0,1]. Note that the proof relies on the convexity ofT and that it is easy to demonstrate
that L(., .) is not convex ifT is not convex.

Proof:

L(λx1+ [1− λ]x2, λu1 + [1− λ]u2) =
min
y∈T
‖Q(λx1+ [1− λ]x2− y)‖p + ‖R(λu1+ [1− λ]u2 − K {λx1+ [1− λ]x2})‖p (25)

Let
yi = arg min

y∈T
‖Q(xi − y)‖p

and consider the first term on the right hand-side of (25), noting thatλy1 + [1− λ]y2 ∈ T sinceT is
convex:

min
y∈T
‖Q(λx1+ [1− λ]x2− y)‖p ≤ ‖Q(λx1 + [1− λ]x2 − λy1− [1− λ]y2)‖p

≤ λ‖Q(x1− y1)‖p + [1− λ]‖Q(x2 − y2)‖p (26)

(Minkowski’s inequality).
Now consider the second term on the right hand-side of (25):

‖R(λu1+ [1− λ]u2− K {λx1 + [1− λ]x2})‖p = ‖λR(u1 − K x1)+ [1− λ]R(u2 − K x2)‖p

≤ λ‖R(u1 − K x1)‖p + [1− λ]‖R(u2 − K x2)‖p (27)

Adding together (26) and (27) proves (24).
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