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Abstract

This paper addresses the design of a dynamic, nonlinear, time-invariant, state feedback controller
that guarantees constraint satisfaction and offset-free control in the presence of unmeasured, persistent,
non-stationary, additive disturbances. First, this objective is obtained by designing a dynamic, linear,
time-invariant, offset-free controller, and an appropriate domain of attraction for this linear controller is
defined. Following this, the linear (unconstrained) control input is modified by adding a perturbation
term that is computed by a robust receding horizon controller. It is shown that the domain of attraction
of the receding horizon controller contains that of the linear controller, and an efficient implementation
of the receding horizon controller is proposed. Proofs of robust constraint satisfaction and offset-free
control are given, and the effectiveness of the proposed controller is illustrated through an example of a
continuous stirred tank reactor.

Key words: Integral control, receding horizon control, set invariance, dynamic state feedback control,
nonlinear control, constrained systems.

1 Introduction

The control of systems in the presence of constraints is an important task in many application fields because
constraints “always” arise from physical limitations and quality or safety reasons. Moreover, in practical
applications disturbances are usually present, and often they are not measurable and predictable. For ex-
ample, in the chemical industries disturbances arise from interactions between different plant units, from
changes in the raw materials and in the operating conditions (such as ambient temperature, humidity, etc.).

The design of control algorithms able to stabilize plants subject to unknown bounded disturbances in the
presence of input and state constraints has been the subject of several works [1, 2, 3, 4]. A number of
surveys are available [5, 6, 7], which discuss how the important goal of guaranteeing closed-loop stability
and constraint satisfaction can be obtained.

In many practical applications, especially in the process industries, disturbances are often non-stationary.
Itis clear that if an unmeasured disturbance keeps changing with time, offset-free control is not possible,
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whereas if the disturbance is non-stationary (i.e. integrating), offset-free control is an achievable goal. One
basic objective of an effective control algorithm is that it guarantees offset-free control whenever this is
possible.

However, none of the existing algorithms with stability guarantees can also guarantee offset-free control

in the case of non-stationary disturbances. In this paper, a novel control design method for constrained
systems subject to unmeasured bounded disturbance is presented. The proposed controller is guaranteed
to remove steady-state offset in the controlled variables whenever the disturbance reaches an (unknown)
constant value. The controller is also guaranteed to satisfy input and state constraints.

This paper is organized as follows. In Section 2 the problem definition is given and in Section 3 the design
of a linear offset-free controller is presented along with detailed discussions about its closed-loop properties
and its domain of attraction. In Section 4 a nonlinear controller is designed, using ideas from model
predictive control, in order to enlarge the domain of attraction. The main characteristics are illustrated
in Section 5 through an example of a continuous stirred tank reactor. Finally, the main achievements of
this work are summarized in Section 6. Proofs and additional definitions are given in Appendix A and B,
respectively.

Notation: If a andb are column vectors, thefa, b) will be used to denote the column vecfaf b™]".
Given two matrice#\ andB, the Kronecker product is denoted Ay B. The set of non-negative integers is
N:={0,1,2,...}. Where it will not lead to confusiortp(k) will denote theactualvalue of the infinite se-
quencew(-) attimek, while w, will be used to denote th@redictionof w(1 + k) at a time instark steps into
the future ifw = wy = w(T) is the value of the variable at currenttimeGiven a sef, .#g is the set of infi-
nite sequence®(-) := {w(0),w(1),...} that take on values i, i.e. #g := {w(-) | w(k) € Q, Yke N}.
If the setQ C X xY, then Proj(Q) := {xe X | dy € Y such thaix,y) € Q} is the projection o2 onto
X. Given a positive integdN, Iy is the identity matrix withN rows andN columns,ly is a column vector
of ones of lengtiN and the Cartesian produ@ :=Q x --- x Q.

N—————

N times

2 Problem Description

In this paper we consider a discrete-time, linear, time-invariant plant:

X" = Ax+ Bu+ Ed, (1a)
z=CyxX, (1b)

in whichx € R" is the plant states™ is the plant successor stateg R™ is the control input (manipulated
variable),d € R' is a persistent, unmeasured disturbance 2adRP is the controlled variable, i.e. the
variable to be controlled to the origin. Affine inequality constraints are given on the state and input, i.e.

XEXL CX, UEZ CU, (2)

whereX := R" is the state spact), := R™ is the input space?” is a polyhedron (a closed and convex set
that can be described by a finite number of affine inequality constraintsyaisda polytope (a bounded
polyhedron); the origin is contained in the interior8f x %/ .

Assumption 1 (General). A measurement of the plant state is available at each sample ingtaB},is
stabilizable(A,C;) is detectable and

I-A —-B

rank c, 0 } =n+p. 3)




Notice that the last condition implies that the dimension of the controlled variable cannot exceed the di-
mension of either the state or the input, ipe min{n, m}.

A dynamig nonlinear, time-invariant state feedback controller is to be designed and is to assume the fol-
lowing structure:

o =a(x0), (4a)
u=y(x,0), (4b)

whereo € R is the controller stateg ™ is the controller successor state; R" x R — R' is the controller
state dynamics map and R” x R — R™ is the controller output map.

Remarkl. In this paper bottw (-) andy(-) will be nonlinear.

The plant dynamics (1a), together with the controller (4), forms a closed-loop system

& ="1(&.d), ()
where
_[x
e |3 ©
is the closed-loop system state and the closed-loop dynamics are given by
. [Ax+By(x,0) E
f(&,d):= a(x0) +{0 d. @

Let p(k,&,d(-)) be the solution to (5) at timewhen the augmented statefist time 0 (note that since the
system is time-invariant, the current time can always be regarded as zero) and the disturbance sequence is

d() == {d(W ) ie.
o(k,&,d()) = F(F(...(F(£,d(0),d(1))...),d(k—1)).
——

k times

By definition, (0, &,d(-)) := &. With a slight abuse of notation, we also define the following:

E(K) =@k, &,d()), (8a)
x(K) == [In 0] p(k,&.d(")). (8b)
ok :=[0 I]ekE,d(-), (8c)
u(k) := y(@(k,&,d(-))), (8d)
z2(k):=[C, 0] @(k&,d(-). (8e)

Given a controller defined in (4) and an infinite disturbance sequéfitethe resulting closed-loop tra-
jectories of the individual variables are then denoted &k) }i_o, {X(K)}x_o, {0(K) }eeg, {U(K) }_o and

{z(K) hzo-

In general, since the disturbance is persistent and unknown it is impossible to drive the controlled variable
to the origin. However, we consider the following restriction on the disturbance:

Assumption 2 (Disturbance). At each time instant, the current and future disturbances are unknown. The
disturbance sequencké-) takes on values in a polytoge C R" containing the origin and asymptotically
reaches an unknown steady-state value, i) € 2 for all k € N and there exists d € 2 such that
im0 d(K) = d.



Under the above assumptions we present a novel method for designing a dynamic, nonlinear, time-invariant
state feedback controller (4) that, for any allowable disturbance sequence (any infinite disturbance sequence
that satisfies Assumption 2), accomplishes the goal of driving the controlled variable to the origin, while
respecting the state and input constraints, i.e.

lim z(k) =0 (9a)
and
x(kye 2, uk ew (9b)

foralld(-) € #5 and allk € N.

3 Linear Controller Design

3.1 The Augmented System

In order to address the problem we make use of the following auxiliary system to define the controller state
dynamics:

K" = Ax+Bu+ (d+x—¥%), (10a)
df =d+x-%. (10b)

Remark2. The system (10) corresponds to using a dead-beat observer for the following system:

=06

x= I O]{

)

o, X

in which it is clear thatl € R" is an integrating (step) disturbance acting on the st&é". The role of

d is essential in removing steady-state offset in the presence of an unknown persistent disturbance [8, 9]
and will be clarified later. As will be seen later, the dimensions ahdd need not be the same in order to
guarantee offset-free control.

By combining the plant dynamics (1a) and the auxiliary system (10), we obtain the following augmented
system:

Et =&+ PBu+é&d, (11)
in which
X A 0 O B E
E=(X|, & =|I+A -1 ||,#:=|B|,&:=]0]. (12)
d. [ I 0 0

We also define the controller statec R, with | := 2n, to be the states of the auxiliary system (10), i.e.

o= [(ﬂ . (13)



3.2 Unconstrained Offset-free Controller Design

When a non-zero persistent disturbance affects a system, the origin of the state and input needs to be shifted
in order to cancel the effect of such a disturbance on the controlled variable [10, 11]. To this aim, at each
sample instant we use the estimate of the future disturbance and compute the steady-stateiipsgeh

that one can drive the controlled variable to the origin. When the dimension of the input is equal to the
dimension of the controlled variable= p) these targets are uniquely defined by:

|—-A —B][x] [dF I =1
c, O]H‘M‘[O 0 o}f' (1)
Notice that this corresponds to finding the p@iri) such thalC,x = 0 andX = AX+ Bu+d™, i.e. the
state and input that cancel the effect of the disturbance. If, instead, there are extra degrees of freedom

(m> p) these targets are non-unique. However, one can address both cases [11] by solving the following
equality-constrained quadratic program, in whitk R™™ is a positive definite matrix:

% — . ; }_T__

(X (£).0 (§)) :=argmin " Ry, (152)
subject to

I-A -B][x =1

Lo ol o 9t a5

For a given augmented stafe one can think ofx* (§),u* (¢)) as the new ‘origin’ around which the
system should be regulated. Solving {&t (&) ,u* (£)) is trivial:

Lemma 1 (Target calculation). The minimizer of the equality-constrained quadratic progrél8) is
linear with respect to the augmented stdtand is given by

Xw(f)} [nls =M1z M3
] = , 16
u (&) Moz —MMaz Ma3 (16)
wherell;3 € R™" andlM,3 € R™" are the relevant block matrix components of
My Mqp M3 Mg 0 9 —|+AT —C;r -1
Mo Moo Moz Moaf . | O R B 0 17
M31 M3y M3z T3y T lI-A -B 0 0
Mgz Mgz Mgz My C, 0 0 0
and[M1; M12] has m+n columns.
Proof. See Appendix A.1. O

We now consider what would happen if one were to choose a gain nkasixch thatA + BK is strictly
stable and let the control input in the augmented system (11) be given by

u=u(§) +Kx=x(g)). (18)

Remarl3. Itis straightforward [10] to show that K is computed through an appropriate Riccati equation,
then the control law defined by (18) corresponds to the solution of the following LQR problem, in which
Q andR are positive definite matrices of appropriate dimension:

0

min Y (%=X (8)TQxc—X (&) + (uk— U (€)) TR(Uk = T"(&)) ,

{udio 2 k=0



subject taxp = x and
X1 =X (§) = Al —X'(§)) +B(u— U (&), VKeN.

Before proceeding, we need the following result:

Lemma 2 (Stability). Suppose that Assumption 1 holds and R™" is such that A+ BK is strictly
stable. If.e7 and.% are given by(12), ' € R™" is any constant matrix and

A= [K+T - T], (29)
then
Ay =+ BKXK (20)
is strictly stable.
Proof. See Appendix A.2. O
By defining
M= |_|23—K|_|13, (21)

and substituting (16) into (18) it follows that

U:|_|23(X—)A(+d)+K(X—nlg(X—)A(-f-d)) (22a)
= (K+M)x—TR+rd (22b)
=xE. (22¢)

After substituting (22) into (11), one can write an expression for the augmented system (11) under the
linear controlu = .#°¢ as
Et=dy&+&d. (23)

Let y(k,&,d(-)) be the solution of the closed-loop system (23) at tikngiven the staté at time 0 and the
disturbance sequencg-).

As a consequence of the above, we introduce the following standing assumption:

Assumption 3 (Stabilizing gain). The matrixk € R™" is chosen such th#&+ BK is strictly stable #
is given by (19) withl™ given by (21) and« - := & + B.% .

The following result states that if the control is givenupy: 2 &, then the value of the controlled variable
for (23) is guaranteed to converge to the origin, given any allowable infinite disturbance sequence:

Lemma 3 (Offset-free control). If Assumptions 1-3 hold, then the closed-loop syg&38psatisfies
lim [C, O] y(k,&,d(-)) =0. (24)

k—o0

forall € ¢ R* andall d() € .#5.

Proof. See Appendix A.3. O



3.3 The Maximal Constraint-Admissible Robustly Positively Invariant Set

We now consider the problem of computing the maximal constraint-admissible robustly positively invariant
set in the space of the augmented sfate- [x" X" d']".

Let theconstraint-admissible sét be defined as
=={EcR"|xe 2 and ¥ Ec U} . (25)

The maximal constraint-admissible robustly positively invariant 8gtfor the closed-loop system (23) is
defined as all initial states i& for which the evolution of the system remainsdror all allowable infinite
disturbance sequences:

On ={E€=|Y(kE,d(-) €=, Vd() € My,VKEN}. (26)

Assumption 4 (Invariant set). The setd, as defined in (26) is non-empty, contains the origin in its
interior and is finitely determined (described by a finite number of affine inequality constraints).

Since (23) is linear and time-invariant agads given by a finite number of affine inequality constraints,

is easily computed by solving a finite number of LPs [12].

Remarld4. Except for a few pathological cases, Assumption 4 is metijf is strictly stable, 2" is bounded,

([In 0], 27 ) is observable an® is sufficiently small [12]; however, observability ¢fi, 0], <7, ) and
boundedness of” are not guaranteed under the assumptions in this paper. Despite this, in all test cases
we have found that Assumption 4 holds. If Assumption 4 is violated, it is easy to modify the problem such
that it is satisfied, e.g. by intersectiggor 2" with a sufficiently large bounded polyhedron. The reader is
referred to [12] for alternative modifications that guarantee that Assumption 4 holds.

The following result states that, provided the augmented stateds iat time O, then the evolution of the
augmented system under the linear contrel 7 ¢ is such that offset-free control is guaranteed and the
state and input constraints are satisfied for all allowable disturbance sequences:

Proposition 1 (Linear controller). Suppose that Assumptions 1-4 hold. The solution of the closed-loop
systen(23) satisfieg24)and

[ln O] w(kagad()) EX and%w(kaéad()) € !?/a (27)
forall &£ € 0w, alld(:) € #4 and all ke N.

Proof. The result follows immediately from the discussion above and the proof is based on the invariance
of &, for the closed-loop system (23) and the fact thatis constraint-admissible. O

Because of the assumptions in Proposition 1, it is important to initialize the controlleostaték’ d~r]T
correctly such thaf := [x" ¢7]" € . at time 0. A sensible way to initialize the controller state is to
compute the minimizer of the following quadratic program, given the initial plant zt@je

(%(0),d(0)) := arg(rpdi)n{(x(O) —RT(x(0) =) +d"d | &€ ). (28)

We can now also defing to be the set of plant states for which there exists a controller state such that the
augmented state is ifi.:

Xo:={x€ R" | 30 € R*" such tha€ € 0. } . (29)

Clearly, (28) is feasible if and only X(0) € X;. Note that since/. is a polyhedron, the sefy can be
computed as the projection [13, 14] 6% onto the plant state spage

Xo = Proj (0x) . (30)



4 Receding Horizon Controller Design

The setXp is the set of initial plant states for which the controlled variable will be driven to the origin
by the linear control = J#¢. This section presents an efficient approach for computing a nonlinear
controller, which enlarges the set of initial plant states for which the controlled variable can ultimately be
driven to the origin. This will be achieved by using ideas from model predictive control for constrained
systems [6, 7, 15].

4.1 Definition and Properties of the Receding Horizon Controller

Similar to the idea proposed in [3, 16] of ‘pre-stabilizing’ the plant, let the linear control in (22) be modified
with a perturbation term as follows:
u=x2&+v, (31)

wherev € R™ is the input perturbation. The solution to the finite horizon optimal control problem (FHOCP),
defined below, is a finite sequence of input perturbations that guarantees robust constraint satisfaction over
the horizon and optimizes some cost function. Under the control (31) the augmented state dynamics (11)
become

Et =&+ Bv+Ed. (32)

Before proceeding, let the horizon lendltbe a positive integer and the block vecterls R™ andd € RN
be defined as

Vo do
V1 d1
vi=| . |, d=| | |, (33)
VN-1 dn-1

wherevi € R™ anddy € R" forall k € {0,...,N—1}.

With a slight abuse of notation, let

K k=1 gyi i+ &de 1) ifk>0
Ek::X(kafavad) = {EJ/E+ZI=O f(@Vk =i - I) :fkio

(34)
denote the solution to (32) for all € {0,...,N}, given the augmented stafe a sequence of control
perturbationy and a sequence of disturbancksThe corresponding predicted plant state and input are
similarly defined as

= [l 0] x(k,&,v,d), Vke {0,...,N}, (35a)
U= x(k &,v,d) + Vi, Vke {0,...,N—1}. (35b)

The set of admissible input perturbatiofig(¢ ) is the set of input perturbations of lendthsuch that for all
allowable disturbances of lengih the input constraint?’ are satisfied over the horizén=0,...,N —1,

the state constraintg™ are satisfied over the horizén=1,...,N — 1 and the augmented state at the end
of the horizon is i, (hence the predicted plant state at the end of the horizon is algd)in
So=&, % €2, k=1,....N—1, &\ € Ow and}

(36)

IN(E) =L veR™
N { Ue%,k=0,.. N—1forallde 2N

Remark5. Note that¥y (&) is defined by annfinite number of constraints. Obtaining an equivalent ex-
pression for/n (&) in terms of dinite number of affine inequality constraints is straightforward and a result
that allows one to do this efficiently is given in Section 4.2.



In order to define the receding horizon controller, we need to define an associated FHOCP. Similar to [3,
16], we choose to definy (&), the FHOCP to be solved for a givénas

Pn(g): In(E) ==min{dn(v) |[ve (&)}, (37a)

where the cost function to be minimized is defined as
N-1
V) =5 VEW (37b)
k=0

in whichW is a positive definite matrix. The minimizer B () is similarly defined:
V(&) = (Vo(&),---,Viy-1(&)) == argmin{dn(v) | v € I(&) } . (37¢)

We assume here that the minimizedf(&) exists; this assumption is justified in Section 4.2.

As is standard in receding horizon control [6, 7, 15], for a given Satee only keep the first element
V;(€) of the solution to the FHOCP. Using this receding horizon principle, we define our controller in (4)
by substituting

u=JE+Vp(&) (38)

into the equation for the augmented system (11) and comparing it with the expression for the closed-loop
dynamics (7). In other words, the controller state dynamics map in (4a) is given by

atoy:= 'R 1) e B e+ 5o (392)
and the controller output map in (4b) is
Y(x,0) = A& +Vo(E). (39b)

Itis important to be able to determine all the plant states for which one can guarantee that fqbfem
has a solution. The set of plant sta¥sfor which one can initialize the controller state such that the set
of admissible input perturbatiorn (§) is non-empty (an@®n(&) has a solution) is given by

XN = {xe 2 |30 € R*" such that/j(§) £0}. (40)

As will be shown belowXy; is the set of plant states ifi” for which the controlled variable will be driven
to the origin by the controller (4), idf andy are given by (39).

We can now give our first main result:

Theorem 1 (Domain of RHC). Suppose that Assumptions 1-4 hold. The sequence ¢iXse¥s', ..., X\ },
where X is defined in29)and each X, i € {1,...,N}, is defined as iit40) with N = i, contains the origin
in their interiors and satisfies the set inclusion

XoCXY - C XY 1 S X\ (41)
Proof. See Appendix A.4. O

Theorem 1 is very important because it shows that, under the above assumptions, an increase in the horizon
length does not decrease the size of the set of plant states for which the controlled variable can be driven to
the origin.

Before giving our second main result, we need the following:



Lemma 4 (Perturbation sequence).Suppose that Assumptions 1-4 hold. If the contrqd¢lis defined
by (39)and ¥4 (& (0)) is non-empty, then the evolution of the closed-loop syéi¢im such that/yy (& (k))
is non-empty and

lim v4( (K)) =0. (42)

k—o0

foralld(:) € #2 and allke N.
Proof. See Appendix A.5. O

We can now state our second main result:

Theorem 2 (Offset removal and constraint satisfaction).Suppose that Assumptions 1-4 hold and that
the controller(4) is defined by39). One can choose the initial controller statg0) such thatPy(&(0))

has a solution and the evolution of the closed-loop sy¢®rmatisfieq9) for all d(-) € .#, and allke N

if and only if the initial plant state (0) € Xy.

Proof. See Appendix A.6. O

As in Section 3.3, we need to initialize the controller state correctly suchPigi(0)) has a solution.
A sensible method for simultaneously obtaining an optimal initial controller state and input perturbation
sequence is to solve the following, given the initial plant sxa:

(%(0),d(0),v*(£(0))) :=arg min {In(v)+A (R—x)T(X—x) +d"d) |ve ¥ (&) andx=x(0) } , (43)

(x,d,v

whereA is a strictly positive scalar.

4.2 Efficient Implementation of the Receding Horizon Controller

Recall that?",  and&., are polyhedral sets given by a finite number of affine inequality constraints. As
a consequence, it is easy to obtain an equivalent expression for the set of admissible input perturbations
(&) as

(&) ={ve R™|Fv<b+Gd+HEforalld e 2"}, (44)

where the matriceE € R”*™N, G € RN, H ¢ R%3" and the vectob € RY depend on the augmented
system dynamics (32) and are given in Appendix B.

The following result, which is a restatement of [17, Prop. 1], allows one to efficiently compute an equivalent
expression fory (€) in terms of a finite number of affine inequality constraints:

Proposition 2 (Expression forn(€)). If (&) is given as in44), then

() ={veR™ |Fv<c+HE}, (45a)
where
c:=b+vec minGd (45b)
degN

andvec minyc,n Gd := [Mingcon Gid -+ mMing.,n Gqd]T; Gi denotes the i'th row of G.

Remark6. SinceZ (and hence?N) is a polyhedron and can therefore be described by a finite number of
affine inequality constraints,can be computed efficiently by solvimgPs.

10



Remarkz. If 2 is given only by upper and lower bounds on the componerdsibien it is not necessary to
solve LPs in order to compute checking the signs of the components3oif sufficient [17]. For example,
if the disturbance is assumed to take on values in the hypercube

7:={deR [|dln<n},
then it is easy to show (c.f. [17, Prop. 2]) that
c=b- nab‘dQG)ll'N )

where the components of the matrix &B% are the absolute values of the corresponding componefts of

Remark8. From Appendix B it is clear that the number of constranpia (45a) is not dependent on the
description forZ, but only dependent oN and the number of constraints that describe % and ..
Note also that) increases only linearly with the horizon lendth

Since one can obtain a polyhedral expressior4g€ ), it is possible to compute a polyhedral expression
for XY, defined in (40), by using standard projection algorithms [13, 14], i.e.

Xy = Proj {(§,v) e R"x R™ | Fy <c+HE}.

Given all of the above, it is now clear that the minimizeig(£) exists if and only if#y (&) # 0 and that
the minimizer is the solution to the following finite-dimensional strictly convex quadratic program (QP):

v'(§) :argmvin{JN(v) |Fv<c+HEY}. (46)

There are essentially two ways in which one can compj(&) (and hence the control input) for a given

&

e As s standard in conventional model predictive control [6, 7, 15], given the current val§edoe
can compute(€) on-line by solving the QP defined in (46) using standard QP solution methods.

e The QP in (46) is a so-calleparametricQP, since the constraints (and hence the solution) of the
QP in (46) are dependent on tharameteré. This observation allows one to compute the explicit
expression fow(-) off-line using recent results presented in [18]. The results in [18] can be used to
show thatvy(-) is a piecewise affine function &f and is defined over a polyhedral partition, i.e. the
domain ofvy(-) is the union of a finite number of polyhedra avj-) is affine in each polyhedron.
Computingvj (&) on-line amounts to looking up the polyhedron that contains the current vafie of
and substituting into the corresponding affine function.

We conclude this section by pointing out that, because of the above, (43) is also a finite-dimensional strictly
convex QP.

5 lllustrative example

As an example, we consider a jacketed continuous stirred tank reactor (CSTR) studied by Henson and
Seborg [19] in which an irreversible liquid-phase reaction occurs. A detailed nonlinear model has two
states (reactant concentration and reactor temperature), one input (cooling liquid temperature) and two
disturbances (feed temperature and feed reactant concentration). This CSTR shows three steady states,
two of which are open-loop unstable, and for quality and safety reasons the middle conversion open-loop

11
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Figure 1: Domain of X)) for different fixed horizons

unstable steady-state is chosen as a desired operating setpoint. Using a samplingstim@ bmin and
introducing deviation variables (from the corresponding steady state) a linearized model is as follows:

xt +_ 0.7776 —0.0045 [x* N —0.000 s —0.0002 00893 [d*
x2| T |26.6185 18555 |x? 0.2907 0.1390 12267 |d?
Xl
2=[0 1|,

in which x! andx? represent the reactant concentration and the reactor temperature, respactiophe:

sents the coolant temperatudé;andd? represent the feed temperature and the feed reactant concentration,
respectively. Notice from the structure ©f that the controlled variable is the reactor temperature, for
which offset-free control to the origin is required. Also notice that the system nmfatras one stable and

one unstable eigenvalue. The following constraints are considered:

<] s[5] msvsns )]sl

We present in Figure 1 the domain of attraction (K§) of the proposed controller obtained with different
fixed horizons (specified in the figure), using the same stabilizing l§aiomputed as the optimal LQR

gain withQ = CI C, andR= 0.1 as penalty matrices. As expected from Theorem 1 we have that an increase
in the fixed horizon length results in a larger domain of attraction. Note that, since the number of inputs is
equal to the number of controlled variables=£ p = 1), the steady-state target is uniquely defined by (14).

We present in Figure 2 the domain of attraction of the linear controller Xg¢.obtained with different
stabilizing gain matrices. These gains were computed as the optimal LQR gai@ wi@j C, and different
R (specified in the figure) as penalty matrices. It is interesting to notice that when the input penalty matrix

12
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Figure 2: Domain of attraction) for different stabilizing gain

R used to compute the stabilizing gain is increased a larger domain of attraction set is usually obtained.
However, wherR = 10 the domain of attraction is smaller than that obtained Rith1.

We present in Figure 3 the closed-loop simulation results (controlled variable and input, respectively)
obtained with the proposed receding horizon controller based on three different stabilizing gain matrices.
These gain matrices were obtained as the optimal LQR gain@ithC] C, and differentR (specified in

the figure). The fixed horizon usedlis= 5 for all controllers, the penalty matrix used in (37ay¥s= 1

and the scalar used in (43) was= 1000. The initial plant state ig0) = [—0.1 Z]T, and there is no

disturbance in the time interv{d, 4] minutes. Then, the disturbanceds= [5 O]T in the time interval
[4,8] minutes. Next, the disturbanceds= [5 0.1]T in the time interval[8,12] minutes. Finally, the

disturbance isl = [0 0.1]T in the time interva[12,16] minutes. As expected the proposed controllers
asymptotically drive the controlled variable to the origin despite the presence of persistent unmeasured
disturbances. Moreover, it is interesting to notice that the choice of the stabilizing gain has a direct impact
on the closed-loop performance. That is, when the stabilizing gain is computed using lower input penalty
R, the disturbance is rejected more quickly and a larger control input is used.

6 Conclusions

This paper has shown how one can design a nonlinear, time-invariant, dynamic state feedback controller
that guarantees constraint satisfaction and offset-free control in the presence of a persistent, non-stationary,
additive disturbance on the state. The design of the controller was split into two parts:

e The design of a dynamic, linear, time-invariant controller. A deadbeat observer is used to estimate

13
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Figure 3: Closed-loop simulation results for different receding horizon controllers: controlled variable
(top) and input (bottom).

14



the disturbance, the new steady-state is given as a linear function of the current plant and observer
states and the controller aims to regulate the plant state and input to the new target steady-state. In
order to estimate the region of attraction of the linear controller, it was proposed that the maximal
constraint-admissible robustly positively invariant g&t associated with the linear controller be
computed.

e The design of a dynamic, nonlinear, time-invariant receding horizon controller. In order to increase
the region of attraction of the linear controller, a robust receding horizon controller, which computes
perturbations to the linear control law, was proposed. The receding horizon controller includes the
state and input constraints explicitly in its computations as well as the effect of the unknown per-
sistent disturbance, thereby guaranteeing robust constraint satisfaction. It was proposed that the set
O be included as a terminal constraint in the prediction horizon and it was shown that the specific
formulation of the proposed receding horizon controller improves on the linear controller in terms of
the domain of attraction.

The robust receding horizon controller presented in this paper can be implemented in an efficient manner
and is computationally tractable. The incorporation of the effect of the disturbance has very little effect on
the computational complexity since the number of decision variables and constraints increases only linearly
with an increase in the horizon length.

The paper also demonstrated the effectiveness of using the results in this paper in designing a controller for
guaranteeing offset-free control of a continuous stirred tank reactor. The simulation results were shown to
be in agreement with the theory.
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Appendices

A Proofs

A.1 Proof of Lemma 1
The statement follows immediately from the KKT conditions for (15) [20, Sect. 16.1]. It is important to
verify that the matrix to be inverted in (17) is non-singular.

In order to see this, leZ be a matrix of dimensiofn+ m) x (m— p) (if the system is square, i.en=

p, the proof of non-singularity is trivial) whose columns are an orthonormal basis for the null space of

P EA _OB} . Consider any vectar e R™ P with v # 0, and let
Z

zZ= [X*] =2Zv.
u

Notice that since the columns @fare independent,# 0.

15



We now show by contradiction that # 0. Suppose that* = 0. We can write

| -A] ., [Bu] _
‘=[] =e
From Assumption 1 we have th@h, C,) is detectable, which implies from the Hautus Lemma [21, Sect. 7.1]

that the matrix[I R A] has full column rank. However, this implies thét= 0, which is in contradiction

<
with the fact thatz # 0. Hence, it must be that # 0.

Therefore, since = Zv, we can write:

-
0 O, (x| |0 O] (x| _, TS
S G-I gl]-wreese
where the last inequality comes from the fact tRas positive definite and that* # 0. This implies that
the reduced Hessian defined as
0 0
-
z [O Fﬂ z

is positive definite, and we can apply the results in [20, Lemma 16.1] to deduce that

ivdl

0 0 —I+AT -Cf

0 R B 0
I-A —-B 0 0
C 0 0 0

is non-singular and that the target calculation (15) has a unique minimizer.

A.2 Proof of Lemma 2

From the definitions, it follows that

A+ BK+Br —Br Br
Ay = +BH = |In+A+BK+B —l,—Bl In+Br| . (47)
In —I In
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The eigenvalues of7 + #.%¢ are the roots of dél + #B.% — Alz,) = 0. Note that

[A+BK+BIr—Aly —Br Br '|
det(o + BH — Algy) = det In+A+BK+Br  —I,—Br—Al, I1,+Bl

L |n _In |n_AInJ
[A+BK+BIr—Al, —BIr Br

=det Aln —Aln Aln (subtract rows 1 and 3 from 2)
L |n _In |n_AInJ
[A+BK—-Al, —BI Br 7

= det 0 —Aln Aln (add column 2 to column 1)
i 0 —In In=Aln]
[A+BK—AlyL 0 BIr

= det 0 0 Al (add column 3 to column 2)
L 0 —Aln In—=Aln]

{Aﬁ—BK—/\Ir1 0 Bl '|

(—=1)"-det 0 —Aln =2l (exchange rows 2 and 3)
L 0 0 Aln J

(—1)"-det(A+BK—Aly)-det(—Alp) - det(Aln) (block triangular matrix)

= (=1)"-det(A+BK—Alp)-(—A)"-A"

(=1)2"- 22" det(A+BK—Alp) .

This implies that & of the eigenvalues o7 + #.# are at the origin and the rest are equal to the eigenvalues
of A+ BK. Hence, ifA+ BK has all its eigenvalues strictly inside the unit disk, then the eigenvalues of
o + B are strictly inside the unit disk.

A.3 Proof of Lemma 3
Since lim_,. d(k) = d we have from (22)—(23) and from the results of Lemma 2 that
lim & (k) = &o = oy &o + Ed = o & + BUo+ &d, (48)
—00

in which u, := 7 &.. Leté, be partitioned as follows:

oo o]

ld.)

in which each block is a column vector of lengthWe can rewrite (48) explicitely as follows:

Xeo = AXeo + Bl + Ed (49a)
Reo = Axeo 4 Blo + (Xoo — Koo + o) (49b)
oo = Xoo — Koo + Goo - (49¢)

From (49c) we immediately obtain that:

which, combined with (49b), leads to

Xoo = AXeo + Bllo + (Xeo — Koo + Cho ) - (50)
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Let (X»,Us) denote the solution to the target calculation problem (15) for the augmentedstateom
(15b) we can write:
Yoo = AXeo + Blloo + (Xoo — Roo + oo ) (51)

which, subtracted from (50), leads to:
Xoo — Xao = A(Xeo — Xo0) 4 B(Uso — Uso) = (A4 BK) (Xeo — Xso) , (52)
where the last step comes from (18). It is important to notice that (52) and Assumption 3 implies that
Xoo = Xeo - (53)

In order to see this, note that (52) can be rewritter{las- A — BK)(X» — X») = 0, which is certainly
satisfied if (53) holds. It is also clear that (53) is the unique solutiéh,if A — BK) is full rank. Suppose
that (I, — A— BK) is not full rank and lek* € R" be such thax* # 0 and(l, — A— BK)x* = 0. We would
havex* = (A+BK)x*, thatisx* is an eigenvector gfA+ BK) associated with the eigenvaldé = 1, which
is in contradiction with Assumption 3 because all eigenvaluésafBK) are strictly inside the unit circle.
Hence(In — A—BK) is full rank and (53) holds. Finally, from (53) and from (15b) we obtain:

0 = CzXeo = CoXeo
= [CZ 0] 13
= lim [CZ 0] E(k).

k— 00

A.4 Proof of Theorem 1

It follows trivially from Assumption 4 thaX, contains the origin in its interior. The rest of the proof is by
induction.

Let the plant statex € XV, wherei € {1,...,N — 1}, the controller stater be such that/(§) is non-
empty andv; := (vo,...,Vi—1) € %(&) be an admissible perturbation sequence of lengiso letd; :=
(do,...,di_1) € 2' be an admissible disturbance sequence of length

From the definition o/ (&), it follows thaty (i, €, v, d;) € & foralld; € 2'. Recall tha¥,, is disturbance
invariant and constraint-admissible for the closed-loop system (23), &needisturbance invariant and
constraint-admissible for system (32) under the infinite perturbation seqfefigé,_ := {0,0,...}.

It follows that if x (i,&,vi,d) € O for all dj € 2', thenx (i +1,&,(vi,0),diy1) € O for all di, 1 € 2'+1.
This implies that ifv; € %(&), then(v;,0) € %, 1(&). Hence if%(&) is non-empty, ther¥{,1(&) is non-
empty. It follows from the definition ok that if x € XV, thenx € XY, ;, henceX C XV, ;.

Using similar arguments as above, the result is completed by noticin¥dl@aix;’.

A.5 Proof of Lemma 4

The method of proof is standard.

Assume/j (€) is non-empty and let* (&) := (V5(£), ..., Vi_1(§)) be the associated minimizer of problem
Pn(&). Consider also the candidate perturbation sequence for the augmentefisttéhe next time
instant, i.e.

V(&) = (Vi(§),---,Vi-1(£),0) .

Using similar arguments as in the proof of Theorem 1, given the set of possible augmentef{ §tasat
the next time instant, it follows that&* € (&, 2), then¥(&) is an admissible input perturbation sequence
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(satisfying input, state and terminal constraints for all allowable disturbanced)§.ec n(f(&,d)) for
alld € 2. This proves that if/q (& (0)) is non-empty, ther¥y (& (k) is non-empty for alk € {1,2,...}
and all allowable disturbance sequences.
If we let I3 (&) := In(v*(€)), then it follows thatli (&) = In(V*(E)) > IN(T(E)) > In(V*(ET)) = IN(ET)
forall T € f(&,2). This implies that, for all allowable disturbances, the sequddgév (£ (k) }r_q is
a non-negative, non-increasing sequence. Hence, it converges to some non-negative value, which implies
that
lim 3y (v* (& (K9)) = In(v* (§ (k+1))) = 0.

However, we can write (recalling theé is positive definite)

0 < Vo(&(K)TW (& (K) = In(v* (& (K)) — IN(T(E (K)))
< IN(V(E(K)) = (v (& (k+ 1)),

which implies that

lim o (& (k) TW(& (k) =0,

k—so0
and also that
lim vp(& (k) =0,

k—o0
where we used the fact that is positive definite.

A.6 Proof of Theorem 2

SufficiencySuppose that(0) € Xy, then itimmediately follows from (40) that one can choose a controller
stateg(0) such that/n(&(0)) # 0 and hencén(£(0)) has a solution. This implies from Lemma 4 we
have that/y(& (k)) # 0 for allk € N and also that

Voo := lim v(K) := I!im V5(€(k)) =0. (54)

k—o00 —>00

The fact that (9a) holds can now be shown exactly as in the proof of Lemma 3, since from (32) and (54) it
follows that

lim &(K) = &w = oy &+ BV + £

k—o0
= o &0+ Bl + &,
in which U = J# & + Voo = H# Ew.
The fact that (9b) holds follows trivially from Lemma 4 and the definitior¥Qf-).

Necessity.This is obvious becauseX0) ¢ XY, then we either have thaf0) ¢ 2" or that for allg(0) €
R?", #4(&(0)) = 0 and hence the control input is undefined at time 0.

B Computation of Matrices in Section 4.2

Let the polyhedre?’, % and ., be defined by

Z ={xeR" | Sx< b}, (55)
% ={ueR™ |Su<hby}, (56)
On:={E €RM | S&<b}, (57)
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whereS, € R%*", §, € Ru*M S; ¢ R% 3 b € R%, by € R%, by € R% and let the matrice®, € R%*3"
andT, € R%>*3" pe defined as
To=[S 0], Tui=Sr. (58)

Given the above, it follows from (36) that

=&, Tyé<by, k=1,... N—1 S&\ < bg and
WN(E): VGRmN &o =&, Txék < bx EEN 3 e (59)
Tuék+Sw < by, k=0,...,N—1foralld e 2
Let
q:=(N—-1)ax+Nau+0qe (60)
and the matricek € R¥*™N andM e R9*(N+1)3 he given by
0
L:= 61
|:|N®Sq:| ’ (61)
0 Ino1®Tx O 0 0
M:= |0 0 S|+| o 0. (62)
0 0 0 IN®Ty O
If we let the block vectorb € RY andx € R3"N+1) be defined as
In—1® by S0
b:= bg , Xi=1:1, (63)
1N®bu EN
then it is easy to verify from (59) that
W) ={veR™ | &=¢, Lv+Mx<bforallde 2"} . (64)

If we now let the block matricea € R3"(N+1)x3n B ¢ R3NN+D)xmN gndg ¢ R3NN+D N he defined as

[ 0 0 ... 0 0 0 ... 0
Ay B 0 ... 0 & 0 ... 0
A= JZVJZ( , B= Ay B B ... 0O , E= Ay & & ... 0 ., (65)
' N-1 Niz c N:fl - NLZ - h :<
@{)’} Ay R Ay B ... B Ay E Ay ... &
then it follows that
x=Aé +Bv+Ed. (66)

Finally, by substituting (66) into (64) it follows that
(&) ={veR™ |Fv<b+Gd+HE&forallde 2"}, (67)

where
F:=L+MB, G:=—-ME, H:=-MA. (68)
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