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Abstract

This paper addresses the design of a dynamic, nonlinear, time-invariant, state feedback controller
that guarantees constraint satisfaction and offset-free control in the presence of unmeasured, persistent,
non-stationary, additive disturbances. First, this objective is obtained by designing a dynamic, linear,
time-invariant, offset-free controller, and an appropriate domain of attraction for this linear controller is
defined. Following this, the linear (unconstrained) control input is modified by adding a perturbation
term that is computed by a robust receding horizon controller. It is shown that the domain of attraction
of the receding horizon controller contains that of the linear controller, and an efficient implementation
of the receding horizon controller is proposed. Proofs of robust constraint satisfaction and offset-free
control are given, and the effectiveness of the proposed controller is illustrated through an example of a
continuous stirred tank reactor.

Key words: Integral control, receding horizon control, set invariance, dynamic state feedback control,
nonlinear control, constrained systems.

1 Introduction

The control of systems in the presence of constraints is an important task in many application fields because
constraints “always” arise from physical limitations and quality or safety reasons. Moreover, in practical
applications disturbances are usually present, and often they are not measurable and predictable. For ex-
ample, in the chemical industries disturbances arise from interactions between different plant units, from
changes in the raw materials and in the operating conditions (such as ambient temperature, humidity, etc.).

The design of control algorithms able to stabilize plants subject to unknown bounded disturbances in the
presence of input and state constraints has been the subject of several works [1, 2, 3, 4]. A number of
surveys are available [5, 6, 7], which discuss how the important goal of guaranteeing closed-loop stability
and constraint satisfaction can be obtained.

In many practical applications, especially in the process industries, disturbances are often non-stationary.
It is clear that if an unmeasured disturbance keeps changing with time, offset-free control is not possible,
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whereas if the disturbance is non-stationary (i.e. integrating), offset-free control is an achievable goal. One
basic objective of an effective control algorithm is that it guarantees offset-free control whenever this is
possible.

However, none of the existing algorithms with stability guarantees can also guarantee offset-free control
in the case of non-stationary disturbances. In this paper, a novel control design method for constrained
systems subject to unmeasured bounded disturbance is presented. The proposed controller is guaranteed
to remove steady-state offset in the controlled variables whenever the disturbance reaches an (unknown)
constant value. The controller is also guaranteed to satisfy input and state constraints.

This paper is organized as follows. In Section 2 the problem definition is given and in Section 3 the design
of a linear offset-free controller is presented along with detailed discussions about its closed-loop properties
and its domain of attraction. In Section 4 a nonlinear controller is designed, using ideas from model
predictive control, in order to enlarge the domain of attraction. The main characteristics are illustrated
in Section 5 through an example of a continuous stirred tank reactor. Finally, the main achievements of
this work are summarized in Section 6. Proofs and additional definitions are given in Appendix A and B,
respectively.

Notation: If a andb are column vectors, then(a;b) will be used to denote the column vector[aT bT ]T .
Given two matricesA andB, the Kronecker product is denoted byA
B. The set of non-negative integers is
N := f0;1;2; : : :g. Where it will not lead to confusion,ω(k) will denote theactualvalue of the infinite se-
quenceω(�) at timek, whileωk will be used to denote thepredictionof ω(τ+k) at a time instantk steps into
the future ifω =ω0 =ω(τ) is the value of the variable at current timeτ. Given a setΩ,MΩ is the set of infi-
nite sequencesω(�) := fω(0);ω(1); : : :g that take on values inΩ, i.e.MΩ := fω(�) j ω(k) 2 Ω; 8k2 N g.
If the setΩ � X�Y, then ProjX(Ω) := fx2 X j 9y2Y such that(x;y) 2 Ωg is the projection ofΩ onto
X. Given a positive integerN, IN is the identity matrix withN rows andN columns,1N is a column vector
of ones of lengthN and the Cartesian productΩN := Ω��� ��Ω| {z }

N times

.

2 Problem Description

In this paper we consider a discrete-time, linear, time-invariant plant:

x+ = Ax+Bu+Ed; (1a)

z=Czx; (1b)

in which x2 Rn is the plant state,x+ is the plant successor state,u2 Rm is the control input (manipulated
variable),d 2 Rr is a persistent, unmeasured disturbance andz2 Rp is the controlled variable, i.e. the
variable to be controlled to the origin. Affine inequality constraints are given on the state and input, i.e.

x2X � X ; u2U �U ; (2)

whereX := R
n is the state space,U := R

m is the input space,X is a polyhedron (a closed and convex set
that can be described by a finite number of affine inequality constraints) andU is a polytope (a bounded
polyhedron); the origin is contained in the interior ofX �U .

Assumption 1 (General). A measurement of the plant state is available at each sample instant,(A;B) is
stabilizable,(A;Cz) is detectable and

rank

�
I �A �B
Cz 0

�
= n+ p: (3)
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Notice that the last condition implies that the dimension of the controlled variable cannot exceed the di-
mension of either the state or the input, i.e.p�minfn;mg.

A dynamic, nonlinear, time-invariant state feedback controller is to be designed and is to assume the fol-
lowing structure:

σ+ = α(x;σ) ; (4a)

u= γ(x;σ) ; (4b)

whereσ 2 Rl is the controller state,σ+ is the controller successor state,α : Rn�Rl ! R
l is the controller

state dynamics map andγ : Rn �Rl ! R
m is the controller output map.

Remark1. In this paper bothα(�) andγ(�) will be nonlinear.

The plant dynamics (1a), together with the controller (4), forms a closed-loop system

ξ+ = f (ξ ;d) ; (5)

where

ξ :=

�
x
σ

�
(6)

is the closed-loop system state and the closed-loop dynamics are given by

f (ξ ;d) :=

�
Ax+Bγ(x;σ)

α(x;σ)

�
+

�
E
0

�
d : (7)

Let φ(k;ξ ;d(�)) be the solution to (5) at timek when the augmented state isξ at time 0 (note that since the
system is time-invariant, the current time can always be regarded as zero) and the disturbance sequence is
d(�) := fd(k)g∞

k=0, i.e.

φ(k;ξ ;d(�)) := f ( f (: : : ( f| {z }
k times

(ξ ;d(0));d(1)) : : :);d(k�1)) :

By definition,φ(0;ξ ;d(�)) := ξ . With a slight abuse of notation, we also define the following:

ξ (k) := φ(k;ξ ;d(�)) ; (8a)

x(k) :=
�
In 0

�
φ(k;ξ ;d(�)) ; (8b)

σ(k) :=
�
0 Il

�
φ(k;ξ ;d(�)) ; (8c)

u(k) := γ(φ(k;ξ ;d(�))) ; (8d)

z(k) :=
�
Cz 0

�
φ(k;ξ ;d(�)) : (8e)

Given a controller defined in (4) and an infinite disturbance sequenced(�), the resulting closed-loop tra-
jectories of the individual variables are then denoted byfξ (k)g∞

k=0, fx(k)g∞
k=0, fσ(k)g∞

k=0, fu(k)g∞
k=0 and

fz(k)g∞
k=0.

In general, since the disturbance is persistent and unknown it is impossible to drive the controlled variable
to the origin. However, we consider the following restriction on the disturbance:

Assumption 2 (Disturbance).At each time instant, the current and future disturbances are unknown. The
disturbance sequenced(�) takes on values in a polytopeD � R

r containing the origin and asymptotically
reaches an unknown steady-state value, i.e.d(k) 2 D for all k 2 N and there exists ād 2 D such that
limk!∞ d(k) = d̄.
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Under the above assumptions we present a novel method for designing a dynamic, nonlinear, time-invariant
state feedback controller (4) that, for any allowable disturbance sequence (any infinite disturbance sequence
that satisfies Assumption 2), accomplishes the goal of driving the controlled variable to the origin, while
respecting the state and input constraints, i.e.

lim
k!∞

z(k) = 0 (9a)

and
x(k) 2X ; u(k) 2U (9b)

for all d(�) 2MD and allk2 N.

3 Linear Controller Design

3.1 The Augmented System

In order to address the problem we make use of the following auxiliary system to define the controller state
dynamics:

x̂+ = Ax+Bu+(d̂+x� x̂) ; (10a)

d̂+ = d̂+x� x̂: (10b)

Remark2. The system (10) corresponds to using a dead-beat observer for the following system:�
x̂
d̂

�+
=

�
A I
0 I

��
x̂
d̂

�
+

�
B
0

�
u;

x=
�
I 0

��x̂
d̂

�
;

in which it is clear thatd̂ 2 Rn is an integrating (step) disturbance acting on the state ˆx2 Rn. The role of
d̂ is essential in removing steady-state offset in the presence of an unknown persistent disturbance [8, 9]
and will be clarified later. As will be seen later, the dimensions ofd̂ andd need not be the same in order to
guarantee offset-free control.

By combining the plant dynamics (1a) and the auxiliary system (10), we obtain the following augmented
system:

ξ+ =A ξ +Bu+Ed ; (11)

in which

ξ :=

2
4x

x̂
d̂

3
5 ; A :=

2
4 A 0 0

I +A �I I
I �I I

3
5 ; B :=

2
4B

B
0

3
5 ; E :=

2
4E

0
0

3
5 : (12)

We also define the controller stateσ 2 Rl , with l := 2n, to be the states of the auxiliary system (10), i.e.

σ :=

�
x̂
d̂

�
: (13)
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3.2 Unconstrained Offset-free Controller Design

When a non-zero persistent disturbance affects a system, the origin of the state and input needs to be shifted
in order to cancel the effect of such a disturbance on the controlled variable [10, 11]. To this aim, at each
sample instant we use the estimate of the future disturbance and compute the steady-state target(x̄; ū) such
that one can drive the controlled variable to the origin. When the dimension of the input is equal to the
dimension of the controlled variable (m= p) these targets are uniquely defined by:�

I �A �B
Cz 0

��
x̄
ū

�
=

�
d̂+

0

�
=

�
I �I I
0 0 0

�
ξ : (14)

Notice that this corresponds to finding the pair(x̄; ū) such thatCzx̄ = 0 andx̄ = Ax̄+Bū+ d̂+, i.e. the
state and input that cancel the effect of the disturbance. If, instead, there are extra degrees of freedom
(m> p) these targets are non-unique. However, one can address both cases [11] by solving the following
equality-constrained quadratic program, in whichR̄2 Rm�m is a positive definite matrix:

(x̄� (ξ ) ; ū� (ξ )) := argmin
(x̄;ū)

1
2

ūTR̄ū; (15a)

subject to �
I �A �B
Cz 0

��
x̄
ū

�
=

�
I �I I
0 0 0

�
ξ : (15b)

For a given augmented stateξ , one can think of(x̄� (ξ ) ; ū� (ξ )) as the new ‘origin’ around which the
system should be regulated. Solving for(x̄� (ξ ) ; ū� (ξ )) is trivial:

Lemma 1 (Target calculation). The minimizer of the equality-constrained quadratic program(15) is
linear with respect to the augmented stateξ and is given by�

x̄� (ξ )
ū� (ξ )

�
=

�
Π13 �Π13 Π13

Π23 �Π23 Π23

�
ξ ; (16)

whereΠ132 R
n�n andΠ232 R

m�n are the relevant block matrix components of2
664

Π11 Π12 Π13 Π14

Π21 Π22 Π23 Π24

Π31 Π32 Π33 Π34

Π41 Π42 Π43 Π44

3
775 :=

2
664

0 0 �I +AT �CT
z

0 R̄ BT 0
I �A �B 0 0
Cz 0 0 0

3
775
�1

(17)

and
�
Π11 Π12

�
has m+n columns.

Proof. See Appendix A.1.

We now consider what would happen if one were to choose a gain matrixK such thatA+BK is strictly
stable and let the control input in the augmented system (11) be given by

u= ū�(ξ )+K(x� x̄�(ξ )) : (18)

Remark3. It is straightforward [10] to show that ifK is computed through an appropriate Riccati equation,
then the control law defined by (18) corresponds to the solution of the following LQR problem, in which
Q andR are positive definite matrices of appropriate dimension:

min
fukg

∞
k=0

1
2

∞

∑
k=0

(xk� x̄�(ξ ))TQ(xk� x̄�(ξ ))+(uk� ū�(ξ ))TR(uk� ū�(ξ )) ;
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subject tox0 = x and

xk+1� x̄�(ξ ) = A(xk� x̄�(ξ ))+B(uk� ū�(ξ )); 8k2 N :

Before proceeding, we need the following result:

Lemma 2 (Stability). Suppose that Assumption 1 holds and K2 R
m�n is such that A+BK is strictly

stable. IfA andB are given by(12), Γ 2 Rm�n is any constant matrix and

K :=
�
K+Γ �Γ Γ

�
; (19)

then
AK :=A +BK (20)

is strictly stable.

Proof. See Appendix A.2.

By defining
Γ := Π23�KΠ13; (21)

and substituting (16) into (18) it follows that

u= Π23(x� x̂+ d̂)+K(x�Π13(x� x̂+ d̂)) (22a)

= (K+Γ)x�Γx̂+Γd̂ (22b)

=K ξ : (22c)

After substituting (22) into (11), one can write an expression for the augmented system (11) under the
linear controlu=K ξ as

ξ+ =AK ξ +E d : (23)

Let ψ(k;ξ ;d(�)) be the solution of the closed-loop system (23) at timek, given the stateξ at time 0 and the
disturbance sequenced(�).

As a consequence of the above, we introduce the following standing assumption:

Assumption 3 (Stabilizing gain). The matrixK 2 Rm�n is chosen such thatA+BK is strictly stable,K
is given by (19) withΓ given by (21) andAK :=A +BK .

The following result states that if the control is given byu=K ξ , then the value of the controlled variable
for (23) is guaranteed to converge to the origin, given any allowable infinite disturbance sequence:

Lemma 3 (Offset-free control). If Assumptions 1–3 hold, then the closed-loop system(23)satisfies

lim
k!∞

�
Cz 0

�
ψ(k;ξ ;d(�)) = 0: (24)

for all ξ 2 R3n and all d(�) 2MD .

Proof. See Appendix A.3.
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3.3 The Maximal Constraint-Admissible Robustly Positively Invariant Set

We now consider the problem of computing the maximal constraint-admissible robustly positively invariant
set in the space of the augmented stateξ := [xT x̂T d̂T ]T .

Let theconstraint-admissible setΞ be defined as

Ξ :=
�

ξ 2 R3n jx2X andK ξ 2U
	
: (25)

Themaximal constraint-admissible robustly positively invariant setO∞ for the closed-loop system (23) is
defined as all initial states inΞ for which the evolution of the system remains inΞ for all allowable infinite
disturbance sequences:

O∞ := fξ 2 Ξ j ψ(k;ξ ;d(�)) 2 Ξ; 8d(�) 2MD ;8k2 N g : (26)

Assumption 4 (Invariant set). The setO∞ as defined in (26) is non-empty, contains the origin in its
interior and is finitely determined (described by a finite number of affine inequality constraints).

Since (23) is linear and time-invariant andΞ is given by a finite number of affine inequality constraints,O∞
is easily computed by solving a finite number of LPs [12].

Remark4. Except for a few pathological cases, Assumption 4 is met ifAK is strictly stable,X is bounded,
([In 0] ;AK ) is observable andD is sufficiently small [12]; however, observability of([In 0] ;AK ) and
boundedness ofX are not guaranteed under the assumptions in this paper. Despite this, in all test cases
we have found that Assumption 4 holds. If Assumption 4 is violated, it is easy to modify the problem such
that it is satisfied, e.g. by intersectingΞ orX with a sufficiently large bounded polyhedron. The reader is
referred to [12] for alternative modifications that guarantee that Assumption 4 holds.

The following result states that, provided the augmented state is inO∞ at time 0, then the evolution of the
augmented system under the linear controlu =K ξ is such that offset-free control is guaranteed and the
state and input constraints are satisfied for all allowable disturbance sequences:

Proposition 1 (Linear controller). Suppose that Assumptions 1–4 hold. The solution of the closed-loop
system(23)satisfies(24)and�

In 0
�

ψ(k;ξ ;d(�)) 2X andK ψ(k;ξ ;d(�)) 2U ; (27)

for all ξ 2 O∞, all d(�) 2MD and all k2 N.

Proof. The result follows immediately from the discussion above and the proof is based on the invariance
of O∞ for the closed-loop system (23) and the fact thatO∞ is constraint-admissible.

Because of the assumptions in Proposition 1, it is important to initialize the controller stateσ := [x̂T d̂T ]T

correctly such thatξ := [xT σT ]T 2 O∞ at time 0. A sensible way to initialize the controller state is to
compute the minimizer of the following quadratic program, given the initial plant statex(0):�

x̂(0); d̂(0)
�

:= arg min
(x̂;d̂)

�
(x(0)� x̂)T(x(0)� x̂)+ d̂Td̂

�� ξ 2 O∞g : (28)

We can now also defineX0 to be the set of plant states for which there exists a controller state such that the
augmented state is inO∞:

X0 :=
�

x2 Rn
�� 9σ 2 R2n such thatξ 2 O∞

	
: (29)

Clearly, (28) is feasible if and only ifx(0) 2 X0. Note that sinceO∞ is a polyhedron, the setX0 can be
computed as the projection [13, 14] ofO∞ onto the plant state spaceX:

X0 = ProjX (O∞) : (30)
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4 Receding Horizon Controller Design

The setX0 is the set of initial plant states for which the controlled variable will be driven to the origin
by the linear controlu = K ξ . This section presents an efficient approach for computing a nonlinear
controller, which enlarges the set of initial plant states for which the controlled variable can ultimately be
driven to the origin. This will be achieved by using ideas from model predictive control for constrained
systems [6, 7, 15].

4.1 Definition and Properties of the Receding Horizon Controller

Similar to the idea proposed in [3, 16] of ‘pre-stabilizing’ the plant, let the linear control in (22) be modified
with a perturbation term as follows:

u=K ξ +v; (31)

wherev2Rm is the input perturbation. The solution to the finite horizon optimal control problem (FHOCP),
defined below, is a finite sequence of input perturbations that guarantees robust constraint satisfaction over
the horizon and optimizes some cost function. Under the control (31) the augmented state dynamics (11)
become

ξ+ =AK ξ +Bv+Ed : (32)

Before proceeding, let the horizon lengthN be a positive integer and the block vectorsv2RmN andd2RrN

be defined as

v :=

2
6664

v0

v1
...

vN�1

3
7775 ; d :=

2
6664

d0

d1
...

dN�1

3
7775 ; (33)

wherevk 2 R
m anddk 2 R

r for all k2 f0; : : : ;N�1g.

With a slight abuse of notation, let

ξk := χ(k;ξ ;v;d) :=

(
A k
K

ξ +∑k�1
i=0 A

i
K
(Bvk�1�i +E dk�1�i) if k > 0

ξ if k= 0
(34)

denote the solution to (32) for allk 2 f0; : : : ;Ng, given the augmented stateξ , a sequence of control
perturbationsv and a sequence of disturbancesd. The corresponding predicted plant state and input are
similarly defined as

xk :=
�
In 0

�
χ(k;ξ ;v;d) ; 8k2 f0; : : : ;Ng ; (35a)

uk :=K χ(k;ξ ;v;d)+vk ; 8k2 f0; : : : ;N�1g : (35b)

The set of admissible input perturbationsVN(ξ ) is the set of input perturbations of lengthN such that for all
allowable disturbances of lengthN, the input constraintsU are satisfied over the horizonk= 0; : : : ;N�1,
the state constraintsX are satisfied over the horizonk = 1; : : : ;N�1 and the augmented state at the end
of the horizon is inO∞ (hence the predicted plant state at the end of the horizon is also inX ):

VN(ξ ) :=

(
v 2 RmN

�����ξ0 = ξ ; xk 2X ; k= 1; : : : ;N�1; ξN 2 O∞ and

uk 2U ; k= 0; : : : ;N�1 for all d 2DN

)
: (36)

Remark5. Note thatVN(ξ ) is defined by aninfinite number of constraints. Obtaining an equivalent ex-
pression forVN(ξ ) in terms of afinitenumber of affine inequality constraints is straightforward and a result
that allows one to do this efficiently is given in Section 4.2.
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In order to define the receding horizon controller, we need to define an associated FHOCP. Similar to [3,
16], we choose to definePN(ξ ), the FHOCP to be solved for a givenξ , as

PN(ξ ) : J�N(ξ ) := min
v
fJN(v) j v 2 VN(ξ )g ; (37a)

where the cost function to be minimized is defined as

JN(v) :=
N�1

∑
k=0

vT
k Wvk ; (37b)

in whichW is a positive definite matrix. The minimizer ofPN(ξ ) is similarly defined:

v�(ξ ) :=
�
v�0(ξ ); : : : ;v

�
N�1(ξ )

�
:= argmin

v
fJN(v) j v 2 VN(ξ )g : (37c)

We assume here that the minimizer ofPN(ξ ) exists; this assumption is justified in Section 4.2.

As is standard in receding horizon control [6, 7, 15], for a given stateξ , we only keep the first element
v�0(ξ ) of the solution to the FHOCP. Using this receding horizon principle, we define our controller in (4)
by substituting

u=K ξ +v�0(ξ ) (38)

into the equation for the augmented system (11) and comparing it with the expression for the closed-loop
dynamics (7). In other words, the controller state dynamics map in (4a) is given by

α(x;σ) :=

�
I +A �I I

I �I I

�
ξ +

�
BK

0

�
ξ +

�
B
0

�
v�0(ξ ) (39a)

and the controller output map in (4b) is

γ(x;σ) :=K ξ +v�0(ξ ) : (39b)

It is important to be able to determine all the plant states for which one can guarantee that problemPN(ξ )
has a solution. The set of plant statesXv

N for which one can initialize the controller state such that the set
of admissible input perturbationsVN(ξ ) is non-empty (andPN(ξ ) has a solution) is given by

Xv
N :=

�
x2X

�� 9σ 2 R2n such thatVN(ξ ) 6= /0
	
: (40)

As will be shown below,Xv
N is the set of plant states inX for which the controlled variable will be driven

to the origin by the controller (4), ifα andγ are given by (39).

We can now give our first main result:

Theorem 1 (Domain of RHC). Suppose that Assumptions 1–4 hold. The sequence of setsfX0;Xv
1 ; : : : ;X

v
Ng,

where X0 is defined in(29)and each Xvi , i 2 f1; : : : ;Ng, is defined as in(40)with N= i, contains the origin
in their interiors and satisfies the set inclusion

X0 � Xv
1 � �� � � Xv

N�1 � Xv
N : (41)

Proof. See Appendix A.4.

Theorem 1 is very important because it shows that, under the above assumptions, an increase in the horizon
length does not decrease the size of the set of plant states for which the controlled variable can be driven to
the origin.

Before giving our second main result, we need the following:
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Lemma 4 (Perturbation sequence).Suppose that Assumptions 1–4 hold. If the controller(4) is defined
by (39)andVN(ξ (0)) is non-empty, then the evolution of the closed-loop system(5) is such thatVN(ξ (k))
is non-empty and

lim
k!∞

v�0(ξ (k)) = 0: (42)

for all d(�) 2MD and all k2 N.

Proof. See Appendix A.5.

We can now state our second main result:

Theorem 2 (Offset removal and constraint satisfaction).Suppose that Assumptions 1–4 hold and that
the controller(4) is defined by(39). One can choose the initial controller stateσ(0) such thatPN(ξ (0))
has a solution and the evolution of the closed-loop system(5) satisfies(9) for all d(�) 2MD and all k2 N
if and only if the initial plant state x(0) 2 Xv

N.

Proof. See Appendix A.6.

As in Section 3.3, we need to initialize the controller state correctly such thatPN(ξ (0)) has a solution.
A sensible method for simultaneously obtaining an optimal initial controller state and input perturbation
sequence is to solve the following, given the initial plant statex(0):�

x̂(0); d̂(0);v�(ξ (0))
�

:= arg min
(x̂;d̂;v)

�
JN(v)+λ

�
(x̂�x)T(x̂�x)+ d̂Td̂

�
jv 2 VN(ξ ) andx= x(0)

	
; (43)

whereλ is a strictly positive scalar.

4.2 Efficient Implementation of the Receding Horizon Controller

Recall thatX ,U andO∞ are polyhedral sets given by a finite number of affine inequality constraints. As
a consequence, it is easy to obtain an equivalent expression for the set of admissible input perturbations
VN(ξ ) as

VN(ξ ) =
�

v 2 RmN
��Fv� b+Gd+Hξ for all d 2DN	

; (44)

where the matricesF 2 Rq�mN, G2 Rq�rN , H 2 Rq�3n and the vectorb 2 Rq depend on the augmented
system dynamics (32) and are given in Appendix B.

The following result, which is a restatement of [17, Prop. 1], allows one to efficiently compute an equivalent
expression forVN(ξ ) in terms of a finite number of affine inequality constraints:

Proposition 2 (Expression forVN(ξ )). If VN(ξ ) is given as in(44), then

VN(ξ ) =
�

v 2 RmN j Fv� c+Hξ
	
; (45a)

where
c := b+vec min

d2DN
Gd (45b)

andvecmind2DN Gd := [mind2DN G1d � � � mind2DN Gqd]T; Gi denotes the i’th row of G.

Remark6. SinceD (and henceDN) is a polyhedron and can therefore be described by a finite number of
affine inequality constraints,c can be computed efficiently by solvingq LPs.
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Remark7. If D is given only by upper and lower bounds on the components ofd, then it is not necessary to
solve LPs in order to computec; checking the signs of the components ofG is sufficient [17]. For example,
if the disturbance is assumed to take on values in the hypercube

D := fd 2 Rr j kdk∞ � η g ;

then it is easy to show (c.f. [17, Prop. 2]) that

c= b�η abs(G)1rN ;

where the components of the matrix abs(G) are the absolute values of the corresponding components ofG.

Remark8. From Appendix B it is clear that the number of constraintsq in (45a) is not dependent on the
description forD , but only dependent onN and the number of constraints that describeX , U andO∞.
Note also thatq increases only linearly with the horizon lengthN.

Since one can obtain a polyhedral expression forVN(ξ ), it is possible to compute a polyhedral expression
for Xv

N, defined in (40), by using standard projection algorithms [13, 14], i.e.

Xv
N = ProjX

�
(ξ ;v) 2 R3n �RmN j Fv� c+Hξ

	
:

Given all of the above, it is now clear that the minimizer toPN(ξ ) exists if and only ifVN(ξ ) 6= /0 and that
the minimizer is the solution to the following finite-dimensional strictly convex quadratic program (QP):

v�(ξ ) = argmin
v
fJN(v) j Fv� c+Hξ g : (46)

There are essentially two ways in which one can computev�0(ξ ) (and hence the control input) for a given
ξ :

� As is standard in conventional model predictive control [6, 7, 15], given the current value forξ , one
can computev�0(ξ ) on-line by solving the QP defined in (46) using standard QP solution methods.

� The QP in (46) is a so-calledparametricQP, since the constraints (and hence the solution) of the
QP in (46) are dependent on theparameterξ . This observation allows one to compute the explicit
expression forv�0(�) off-line using recent results presented in [18]. The results in [18] can be used to
show thatv�0(�) is a piecewise affine function ofξ and is defined over a polyhedral partition, i.e. the
domain ofv�0(�) is the union of a finite number of polyhedra andv�0(�) is affine in each polyhedron.
Computingv�0(ξ ) on-line amounts to looking up the polyhedron that contains the current value ofξ
and substitutingξ into the corresponding affine function.

We conclude this section by pointing out that, because of the above, (43) is also a finite-dimensional strictly
convex QP.

5 Illustrative example

As an example, we consider a jacketed continuous stirred tank reactor (CSTR) studied by Henson and
Seborg [19] in which an irreversible liquid-phase reaction occurs. A detailed nonlinear model has two
states (reactant concentration and reactor temperature), one input (cooling liquid temperature) and two
disturbances (feed temperature and feed reactant concentration). This CSTR shows three steady states,
two of which are open-loop unstable, and for quality and safety reasons the middle conversion open-loop

11
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Figure 1: Domain of (Xv
N) for different fixed horizons

unstable steady-state is chosen as a desired operating setpoint. Using a sampling time ofts = 0:1 min and
introducing deviation variables (from the corresponding steady state) a linearized model is as follows:�

x1

x2

�+
=

�
0:7776 �0:0045
26:6185 1:8555

��
x1

x2

�
+

�
�0:0004
0:2907

�
u+

�
�0:0002 0:0893
0:1390 1:2267

��
d1

d2

�

z=
�
0 1

��x1

x2

�
;

in which x1 andx2 represent the reactant concentration and the reactor temperature, respectively;u repre-
sents the coolant temperature;d1 andd2 represent the feed temperature and the feed reactant concentration,
respectively. Notice from the structure ofCz that the controlled variable is the reactor temperature, for
which offset-free control to the origin is required. Also notice that the system matrixA has one stable and
one unstable eigenvalue. The following constraints are considered:�

�0:5
�5

�
�

�
x1

x2

�
�

�
0:5
5

�
; �15� u� 15;

�
�5
�0:1

�
�

�
d1

d2

�
�

�
5

0:1

�
:

We present in Figure 1 the domain of attraction (i.e.Xv
N) of the proposed controller obtained with different

fixed horizons (specified in the figure), using the same stabilizing gainK computed as the optimal LQR
gain withQ=CT

z Cz andR= 0:1 as penalty matrices. As expected from Theorem 1 we have that an increase
in the fixed horizon length results in a larger domain of attraction. Note that, since the number of inputs is
equal to the number of controlled variables (m= p= 1), the steady-state target is uniquely defined by (14).

We present in Figure 2 the domain of attraction of the linear controller (i.e.X0) obtained with different
stabilizing gain matrices. These gains were computed as the optimal LQR gain withQ=CT

z Cz and different
R (specified in the figure) as penalty matrices. It is interesting to notice that when the input penalty matrix

12
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Figure 2: Domain of attraction (X0) for different stabilizing gain

R used to compute the stabilizing gain is increased a larger domain of attraction set is usually obtained.
However, whenR= 10 the domain of attraction is smaller than that obtained withR= 1.

We present in Figure 3 the closed-loop simulation results (controlled variable and input, respectively)
obtained with the proposed receding horizon controller based on three different stabilizing gain matrices.
These gain matrices were obtained as the optimal LQR gain withQ= CT

z Cz and differentR (specified in
the figure). The fixed horizon used isN = 5 for all controllers, the penalty matrix used in (37a) isW = 1

and the scalar used in (43) wasλ = 1000. The initial plant state isx(0) =
�
�0:1 2

�T
, and there is no

disturbance in the time interval[0;4] minutes. Then, the disturbance isd =
�
5 0

�T
in the time interval

[4;8] minutes. Next, the disturbance isd =
�
5 0:1

�T
in the time interval[8;12] minutes. Finally, the

disturbance isd =
�
0 0:1

�T
in the time interval[12;16] minutes. As expected the proposed controllers

asymptotically drive the controlled variable to the origin despite the presence of persistent unmeasured
disturbances. Moreover, it is interesting to notice that the choice of the stabilizing gain has a direct impact
on the closed-loop performance. That is, when the stabilizing gain is computed using lower input penalty
R, the disturbance is rejected more quickly and a larger control input is used.

6 Conclusions

This paper has shown how one can design a nonlinear, time-invariant, dynamic state feedback controller
that guarantees constraint satisfaction and offset-free control in the presence of a persistent, non-stationary,
additive disturbance on the state. The design of the controller was split into two parts:

� The design of a dynamic, linear, time-invariant controller. A deadbeat observer is used to estimate
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the disturbance, the new steady-state is given as a linear function of the current plant and observer
states and the controller aims to regulate the plant state and input to the new target steady-state. In
order to estimate the region of attraction of the linear controller, it was proposed that the maximal
constraint-admissible robustly positively invariant setO∞ associated with the linear controller be
computed.

� The design of a dynamic, nonlinear, time-invariant receding horizon controller. In order to increase
the region of attraction of the linear controller, a robust receding horizon controller, which computes
perturbations to the linear control law, was proposed. The receding horizon controller includes the
state and input constraints explicitly in its computations as well as the effect of the unknown per-
sistent disturbance, thereby guaranteeing robust constraint satisfaction. It was proposed that the set
O∞ be included as a terminal constraint in the prediction horizon and it was shown that the specific
formulation of the proposed receding horizon controller improves on the linear controller in terms of
the domain of attraction.

The robust receding horizon controller presented in this paper can be implemented in an efficient manner
and is computationally tractable. The incorporation of the effect of the disturbance has very little effect on
the computational complexity since the number of decision variables and constraints increases only linearly
with an increase in the horizon length.

The paper also demonstrated the effectiveness of using the results in this paper in designing a controller for
guaranteeing offset-free control of a continuous stirred tank reactor. The simulation results were shown to
be in agreement with the theory.
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Appendices

A Proofs

A.1 Proof of Lemma 1

The statement follows immediately from the KKT conditions for (15) [20, Sect. 16.1]. It is important to
verify that the matrix to be inverted in (17) is non-singular.

In order to see this, letZ be a matrix of dimension(n+m)� (m� p) (if the system is square, i.e.m=

p, the proof of non-singularity is trivial) whose columns are an orthonormal basis for the null space of�
I �A �B
Cz 0

�
. Consider any vectorv2 Rm�p with v 6= 0, and let

z=

�
x�

u�

�
= Zv:

Notice that since the columns ofZ are independent,z 6= 0.
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We now show by contradiction thatu� 6= 0. Suppose thatu� = 0. We can write�
I �A
Cz

�
x� =

�
Bu�

0

�
= 0:

From Assumption 1 we have that(A;Cz) is detectable, which implies from the Hautus Lemma [21, Sect. 7.1]

that the matrix

�
I �A
Cz

�
has full column rank. However, this implies thatx� = 0, which is in contradiction

with the fact thatz 6= 0. Hence, it must be thatu� 6= 0.

Therefore, sincez= Zv, we can write:

vTZT
�
0 0
0 R̄

�
Zv=

�
x�

u�

�T �
0 0
0 R̄

��
x�

u�

�
= (u�)TR̄u� > 0;

where the last inequality comes from the fact thatR̄ is positive definite and thatu� 6= 0. This implies that
the reduced Hessian defined as

ZT
�
0 0
0 R̄

�
Z

is positive definite, and we can apply the results in [20, Lemma 16.1] to deduce that2
664

0 0 �I +AT �CT
z

0 R̄ BT 0
I �A �B 0 0
Cz 0 0 0

3
775

is non-singular and that the target calculation (15) has a unique minimizer.

A.2 Proof of Lemma 2

From the definitions, it follows that

AK :=A +BK =

2
4 A+BK+BΓ �BΓ BΓ

In+A+BK+BΓ �In�BΓ In+BΓ
In �In In

3
5 : (47)
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The eigenvalues ofA +BK are the roots of det(A +BK �λ I3n) = 0. Note that

det(A +BK �λ I3n) = det

0
@
2
4A+BK+BΓ�λ In �BΓ BΓ

In+A+BK+BΓ �In�BΓ�λ In In+BΓ
In �In In�λ In

3
5
1
A

= det

0
@
2
4A+BK+BΓ�λ In �BΓ BΓ

λ In �λ In λ In
In �In In�λ In

3
5
1
A (subtract rows 1 and 3 from 2)

= det

0
@
2
4A+BK�λ In �BΓ BΓ

0 �λ In λ In
0 �In In�λ In

3
5
1
A (add column 2 to column 1)

= det

0
@
2
4A+BK�λ In 0 BΓ

0 0 λ In
0 �λ In In�λ In

3
5
1
A (add column 3 to column 2)

= (�1)n �det

0
@
2
4A+BK�λ In 0 BΓ

0 �λ In In�λ In
0 0 λ In

3
5
1
A (exchange rows 2 and 3)

= (�1)n �det(A+BK�λ In) �det(�λ In) �det(λ In) (block triangular matrix)

= (�1)n �det(A+BK�λ In) � (�λ )n �λ n

= (�1)2n �λ 2n �det(A+BK�λ In) :

This implies that 2nof the eigenvalues ofA +BK are at the origin and the rest are equal to the eigenvalues
of A+BK. Hence, ifA+BK has all its eigenvalues strictly inside the unit disk, then the eigenvalues of
A +BK are strictly inside the unit disk.

A.3 Proof of Lemma 3

Since limk!∞ d(k) = d̄ we have from (22)–(23) and from the results of Lemma 2 that

lim
k!∞

ξ (k) = ξ∞ =AK ξ∞ +E d̄ =A ξ∞ +Bu∞ +E d̄ ; (48)

in whichu∞ :=K ξ∞. Let ξ∞ be partitioned as follows:

ξ∞ =

2
4x∞

x̂∞
d̂∞

3
5 ;

in which each block is a column vector of lengthn. We can rewrite (48) explicitely as follows:

x∞ = Ax∞ +Bu∞ +Ed̄ (49a)

x̂∞ = Ax∞ +Bu∞ +(x∞� x̂∞ + d̂∞) (49b)

d̂∞ = x∞� x̂∞ + d̂∞ : (49c)

From (49c) we immediately obtain that:
x∞ = x̂∞ ;

which, combined with (49b), leads to

x∞ = Ax∞ +Bu∞ +(x∞� x̂∞ + d̂∞) : (50)
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Let (x̄∞; ū∞) denote the solution to the target calculation problem (15) for the augmented stateξ∞. From
(15b) we can write:

x̄∞ = Ax̄∞ +Bū∞ +(x∞� x̂∞ + d̂∞) ; (51)

which, subtracted from (50), leads to:

x∞� x̄∞ = A(x∞� x̄∞)+B(u∞� ū∞) = (A+BK)(x∞� x̄∞) ; (52)

where the last step comes from (18). It is important to notice that (52) and Assumption 3 implies that

x∞ = x̄∞ : (53)

In order to see this, note that (52) can be rewritten as(In�A�BK)(x∞ � x̄∞) = 0, which is certainly
satisfied if (53) holds. It is also clear that (53) is the unique solution if(In�A�BK) is full rank. Suppose
that(In�A�BK) is not full rank and letx� 2 Rn be such thatx� 6= 0 and(In�A�BK)x� = 0. We would
havex� = (A+BK)x�, that isx� is an eigenvector of(A+BK) associated with the eigenvalueλ �= 1, which
is in contradiction with Assumption 3 because all eigenvalues of(A+BK) are strictly inside the unit circle.
Hence,(In�A�BK) is full rank and (53) holds. Finally, from (53) and from (15b) we obtain:

0=Czx̄∞ =Czx∞

=
�
Cz 0

�
ξ∞

= lim
k!∞

�
Cz 0

�
ξ (k) :

A.4 Proof of Theorem 1

It follows trivially from Assumption 4 thatX0 contains the origin in its interior. The rest of the proof is by
induction.

Let the plant statex 2 Xv
i , wherei 2 f1; : : : ;N� 1g, the controller stateσ be such thatVi(ξ ) is non-

empty andvi := (v0; : : : ;vi�1) 2 Vi(ξ ) be an admissible perturbation sequence of lengthi. Also let di :=
(d0; : : : ;di�1) 2D

i be an admissible disturbance sequence of lengthi.

From the definition ofVi(ξ ), it follows thatχ(i;ξ ;vi ;di)2O∞ for all di 2D
i . Recall thatO∞ is disturbance

invariant and constraint-admissible for the closed-loop system (23), henceO∞ is disturbance invariant and
constraint-admissible for system (32) under the infinite perturbation sequencefv(k)g∞

k=0 := f0;0; : : :g.

It follows that if χ(i;ξ ;vi;di) 2 O∞ for all di 2D
i , thenχ(i +1;ξ ;(vi;0);di+1) 2 O∞ for all di+1 2D

i+1.
This implies that ifvi 2 Vi(ξ ), then(vi ;0) 2 Vi+1(ξ ). Hence ifVi(ξ ) is non-empty, thenVi+1(ξ ) is non-
empty. It follows from the definition ofXv

i that if x2 Xv
i , thenx2 Xv

i+1, henceXv
i � Xv

i+1.

Using similar arguments as above, the result is completed by noticing thatX0 � Xv
1 .

A.5 Proof of Lemma 4

The method of proof is standard.

AssumeVN(ξ ) is non-empty and letv�(ξ ) :=
�
v�0(ξ ); : : : ;v�N�1(ξ )

�
be the associated minimizer of problem

PN(ξ ). Consider also the candidate perturbation sequence for the augmented stateξ+ at the next time
instant, i.e.

ṽ(ξ ) :=
�
v�1(ξ ); : : : ;v�N�1(ξ );0

�
:

Using similar arguments as in the proof of Theorem 1, given the set of possible augmented statesf (ξ ;D) at
the next time instant, it follows that ifξ+ 2 f (ξ ;D), thenṽ(ξ ) is an admissible input perturbation sequence
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(satisfying input, state and terminal constraints for all allowable disturbances), i.e.ṽ(ξ ) 2 VN( f (ξ ;d)) for
all d 2 D . This proves that ifVN(ξ (0)) is non-empty, thenVN(ξ (k)) is non-empty for allk 2 f1;2; : : :g
and all allowable disturbance sequences.

If we let J�N(ξ ) := JN(v�(ξ )), then it follows thatJ�N(ξ ) = JN(v�(ξ ))� JN(ṽ(ξ ))� JN(v�(ξ+)) = J�N(ξ+)

for all ξ+ 2 f (ξ ;D). This implies that, for all allowable disturbances, the sequencefJN(v�(ξ (k))g∞
k=0 is

a non-negative, non-increasing sequence. Hence, it converges to some non-negative value, which implies
that

lim
k!∞

JN(v�(ξ (k)))�JN(v�(ξ (k+1))) = 0:

However, we can write (recalling thatW is positive definite)

0� v�0(ξ (k))TWv�0(ξ (k)) = JN(v�(ξ (k)))�JN(ṽ(ξ (k)))
� JN(v�(ξ (k)))�JN(v�(ξ (k+1))) ;

which implies that
lim
k!∞

v�0(ξ (k))TWv�0(ξ (k)) = 0;

and also that
lim
k!∞

v�0(ξ (k)) = 0;

where we used the fact thatW is positive definite.

A.6 Proof of Theorem 2

Sufficiency.Suppose thatx(0) 2 Xv
N, then it immediately follows from (40) that one can choose a controller

stateσ(0) such thatVN(ξ (0)) 6= /0 and hencePN(ξ (0)) has a solution. This implies from Lemma 4 we
have thatVN(ξ (k)) 6= /0 for all k2 N and also that

v∞ := lim
k!∞

v(k) := lim
k!∞

v�0(ξ (k)) = 0: (54)

The fact that (9a) holds can now be shown exactly as in the proof of Lemma 3, since from (32) and (54) it
follows that

lim
k!∞

ξ (k) = ξ∞ =AK ξ∞ +Bv∞ +E d̄

=AK ξ∞ +E d̄

=A ξ∞ +Bu∞ +E d̄ ;

in whichu∞ =K ξ∞ +v∞ =K ξ∞.

The fact that (9b) holds follows trivially from Lemma 4 and the definition ofVN(�).

Necessity.This is obvious because ifx(0) 62 Xv
N, then we either have thatx(0) 62X or that for allσ(0) 2

R
2n, VN(ξ (0)) = /0 and hence the control input is undefined at time 0.

B Computation of Matrices in Section 4.2

Let the polyhedraX ,U andO∞ be defined by

X := fx2 Rn j Sxx� bxg ; (55)

U := fu2 Rm j Suu� bug ; (56)

O∞ :=
�

ξ 2 R3n
�� Sξ ξ � bξ

	
; (57)
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whereSx 2 R
qx�n, Su 2 R

qu�m, Sξ 2 R
qξ �3n, bx 2 R

qx , bu 2 R
qu , bξ 2 R

qξ and let the matricesTx 2 R
qx�3n

andTu 2 R
qu�3n be defined as

Tx :=
�
Sx 0

�
; Tu := SuK : (58)

Given the above, it follows from (36) that

VN(ξ ) =

(
v 2 RmN

����� ξ0 = ξ ; Txξk � bx; k= 1; : : : ;N�1; Sξ ξN � bξ and

Tuξk+Suvk � bu; k= 0; : : : ;N�1 for all d 2DN

)
: (59)

Let
q := (N�1)qx+Nqu+qξ (60)

and the matricesL 2 Rq�mN andM 2 Rq�(N+1)3n be given by

L :=

�
0

IN
Su

�
; (61)

M :=

2
40 IN�1
Tx 0

0 0 Sξ
0 0 0

3
5+

2
4 0 0

0 0
IN
Tu 0

3
5 : (62)

If we let the block vectorsb2 Rq andx 2 R3n(N+1) be defined as

b :=

2
41N�1
bx

bξ
1N
bu

3
5 ; x :=

2
64

ξ0
...

ξN

3
75 ; (63)

then it is easy to verify from (59) that

VN(ξ ) =
�

v 2 RmN
�� ξ0 = ξ ; Lv+Mx� b for all d 2DN 	

: (64)

If we now let the block matricesA 2 R3n(N+1)�3n, B 2 R3n(N+1)�mN andE 2 R3n(N+1)�rN be defined as

A =

2
6666664

I
AK

A 2
K

...
A N
K

3
7777775 ; B =

2
6666664

0 0 : : : 0
B 0 : : : 0

AK B B : : : 0
...

...
...

...
A

N�1
K

B A
N�2
K

B : : : B

3
7777775 ; E =

2
6666664

0 0 : : : 0
E 0 : : : 0

AK E E : : : 0
...

...
...

...
A

N�1
K

E A
N�2
K

E : : : E

3
7777775 ; (65)

then it follows that
x = Aξ0+Bv+Ed : (66)

Finally, by substituting (66) into (64) it follows that

VN(ξ ) =
�

v 2 RmN
�� Fv� b+Gd+Hξ for all d 2DN 	

; (67)

where
F := L+MB; G :=�ME; H :=�MA : (68)
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