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Abstract

This paper addresses the design of a nonlinear time-invariant, dynamic state feedback receding hori-
zon controller, which guarantees constraint satisfaction, robust stabilityand offset-free control of con-
strained, linear time-invariant systems in the presence of time-varying setpoints and unmeasured, persis-
tent, additive disturbances. First, this objective is obtained by designing a dynamic, linear time-invariant,
offset-free controller and an appropriate domain of attraction for this linear controller is defined. The
linear (unconstrained) controller is then modified by adding a perturbationterm, which is computed by
a robust receding horizon controller. It is shown that the domain of attraction of the receding horizon
controller contains that of the linear controller and an efficient implementation of the receding horizon
controller is proposed. Proofs of robust constraint satisfaction, robust stability and offset-free control are
given. The effectiveness of the proposed controller is illustrated on anexample of a continuous stirred
tank reactor.

Keywords: Offset-free control, receding horizon control, set invariance, dynamic state feedback
control, nonlinear control, constrained systems.

1 Introduction

The control of systems in the presence of constraints is an important task in many application fields because
constraints “always” arise from physical limitations and quality or safety reasons. Moreover, in practical
applications, disturbances are usually present and often they are not measurable or predictable. For ex-
ample, in the chemical industries disturbances arise from interactions between different plant units, from
changes in the raw materials and in the operating conditions(such as ambient temperature, humidity, etc.).

It is well-known that if an unmeasured, persistent disturbance is stationary (e.g. if it is white), then offset-
free control is not possible, whereas if a disturbance is non-stationary (e.g. if it is integrating or periodic),
offset-free control can be an achievable goal. In many practical applications, especially in the process
industries, disturbances are often non-stationary. In particular, they are often integrating and reach, after
some transient, a constant value. Hence, one basic objective of an effective control algorithm is that it
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guarantees offset-free control whenever this is possible.Moreover, an effective control algorithm is also
applicable to cases in which the setpoints of the controlledvariables are allowed to be changed.

In the field of classical, linear (unconstrained) feedback control, the problem of offset-free control can be
considered mature [1, 2, 3, 4]. However, it is clear that linear controllers have a limited range of application
because of the presence of constraints.

The design of control algorithms able to stabilize linear plants subject to unknown, but bounded distur-
bances in the presence of input and state constraints has been the subject of several works over the last
half century; a number of excellent surveys are available [5, 6, 7] which discuss how the important goal of
guaranteeing closed-loop stability and constraint satisfaction can be obtained. Existing control algorithms,
which address the problem of robust control of constrained systems, are usually based on ideas from set
invariance [8, 9], reference governors [10, 11, 12, 13] or receding horizon control [14, 15, 16, 17, 18, 19,
20, 21, 22]. It is interesting to note that, despite the practical importance of guaranteeing offset-free control
in the presence of integrating disturbances, none of the existing receding horizon control algorithms with
robust stabilityand robust constraint satisfaction guarantees are able to guarantee offset-free control.

Compared to linear (unconstrained) control, the rigorous study of designing controllers that guarantee
offset-free control has received very little attention in the constrained control community, until relatively
recently [23, 24, 25, 26, 27]. Though the receding horizon control algorithms presented in [23, 24, 25, 26,
27] guarantee offset-free control and robust constraint satisfaction around a neighborhood of the steady-
state, they do not guarantee robust constraint satisfaction for all initial states over which the receding
horizon controller is defined. Furthermore, with the exception of [11, 16], none of the existing receding
horizon control algorithms that guarantee robust stability and robust constraint satisfaction, address the
problem of tracking arbitrary setpoints (rather than thosegenerated by a finite-dimensional exogenous
system).

In this paper, a novel receding horizon control algorithm for controlling constrained linear systems subject
to unmeasured, bounded disturbances is presented. The proposed algorithm is guaranteed to remove steady-
state offset in the controlled variables whenever the disturbances reach an (unknown) constant value, and
the algorithm is guaranteed to satisfy input and state constraints. None of the existing receding horizon
control algorithms are able to provide similar guarantees.Moreover, in the algorithm proposed here, the
setpoints of the controlled variables are allowed to vary arbitrarily with time, provided they also converge
to some limit point.

This paper is organized as follows. In Section 2 the problem definition is given and in Section 3 the
design of a linear offset-free controller is presented along with detailed discussions about its closed-loop
properties and its domain of attraction. As is well-known, the design of an effective offset-free control
algorithm requires one to use an auxiliary system for estimating the non-stationary disturbances. This is
the approach adopted in this and the subsequent section.

In Section 4 a nonlinear controller is designed, using ideasfrom model predictive control, in order to
enlarge the domain of attraction. The effect of the inclusion of the auxiliary system in the definition of the
receding horizon controller is carefully analyzed. The added complexity calls for the derivation of results
that are analogous to existing results in the literature on robust receding horizon control. Because of the
many new assumptions made in this paper, we believe that the details of the proofs of the main results are
important. In the interest of rigor, nearly all of the details of the proofs have therefore been included in the
Appendix.

The main characteristics of the receding horizon control algorithm proposed in this paper are illustrated in
Section 5 through an example of a continuous stirred tank reactor. Finally, the main contributions of this
paper are summarized in Section 6.

NOTATION: abs(M) is the matrix of the absolute values of the corresponding components of the matrix
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M and|M| is the determinant ofM. L⊗M is the Kronecker product ofL andM. Given column vectors
a andb, the column vector(a,b) := [aT bT ]T anda ≤ b denotes component-wise inequality betweena
andb. Given a setΩ, MΩ is the set of infinite sequencesω(·) := {ω(0),ω(1), . . .} that take on values
in Ω, i.e. MΩ := {ω(·) | ω(k) ∈ Ω, ∀k∈ N}. Where it is clear from the context,ω(k) will denote the
actual value of the infinite sequenceω(·) at time k, while ωk will be used to denote theprediction of
ω(τ + k) at a time instantk steps into the future ifω(τ) = ω0 = ω is the value of the variable at current
time τ. Given a positive integerN, IN is the identity matrix withN rows andN columns,1N := [1 1· · · 1]T

and1̃N = [1 0 0 · · · 0]T are column vectors of lengthN. Given a positive scalarr, Br denotes the norm-
ball of radiusr, i.e. Br := {x∈ R

n | ‖x‖ ≤ r }. If the setΩ ⊂ X ×Y, then the projection ofΩ onto X
is defined as ProjX(Ω) := {x∈ X | ∃y∈Y such that(x,y) ∈ Ω}. Given a setΩ, the Cartesian product
ΩN := Ω×Ω×·· ·×Ω

︸ ︷︷ ︸

N times

.

2 Problem Description and Preliminary Results

In this paper we consider a discrete-time linear time-invariant plant:

x+ = Ax+Bu+Ed, (1a)

z= Czx, (1b)

in which x∈ R
n is the plant state,x+ is the plant successor state,u∈ R

m is the control input (manipulated
variable),d ∈ R

r is a persistent, unmeasured disturbance andz∈ R
p is the controlled variable, i.e. the

variable to be controlled to a given (time-varying) setpoint s. Affine inequality constraints are given on the
state and input, i.e.

x∈ X ⊂ X , u∈ U ⊂U , (2)

whereX := R
n is the state space,U := R

m is the input space,X is a polyhedron (i.e. a closed and convex
set that can be described by a finite number of affine inequality constraints) andU is a polytope (i.e. a
bounded polyhedron); the interior ofX ×U contains the origin1.

Assumption 1 (General). A measurement of the plant state is available at each sample instant,(A,B) is
stabilizable,(A,Cz) is detectable and

rank

[
I −A −B
Cz 0

]

= n+ p. (3)

Remark1. Notice that the last condition implies that the dimension ofthe controlled variable cannot exceed
the dimension of either the state or the input, i.e.p≤ min{n,m}. This condition will be used to guarantee
the existence of an offset-free steady-state.

A dynamicnonlinear time-invariant state feedback controller is to be designed and is to assume the follow-
ing structure:

σ+ = α(x,σ ,s) , (4a)

u = γ(x,σ ,s) , (4b)

whereσ ∈ R
l is the controller state,σ+ is the controller successor state,α : R

n ×R
l ×R

p → R
l is the

controller state dynamics map andγ : R
n×R

l ×R
p → R

m is the controller output map.

Remark2. In this paper, bothα(·) andγ(·) will be nonlinear.

1Note that the results in this paper can easily be extended to the case with mixed constraints on the state and input.
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The plant dynamics (1a), together with the controller (4), forms a closed-loop system

ξ + = f (ξ ,s,d) , (5)

where the closed-loop system state is

ξ :=

[
x
σ

]

(6)

and the closed-loop dynamics are given by

f (ξ ,s,d) :=

[
Ax+Bγ(x,σ ,s)

α(x,σ ,s)

]

+

[
E
0

]

d . (7)

Let s(·) andd(·) denote an infinite setpoint sequence and an infinite disturbance sequence, respectively.
Also, letφ(k,ξ ,s(·),d(·)) be the solution to (5) at timek when the augmented state isξ at timek = 0, the
controller is defined by (4), the setpoint sequence iss(·) and the disturbance sequence isd(·), i.e.

φ(k,ξ ,s(·),d(·)) := f ( f (. . .( f
︸ ︷︷ ︸

k times

(ξ ,s(0),d(0)),s(1),d(1)) . . .),s(k−1),d(k−1)) . (8)

By definition,φ(0,ξ ,s(·),d(·)) = ξ .

We also define the following:

ξ (k) := φ(k,ξ ,s(·),d(·)) , (9a)

x(k) :=
[
In 0

]
φ(k,ξ ,s(·),d(·)) , (9b)

σ(k) :=
[
0 Il

]
φ(k,ξ ,s(·),d(·)) , (9c)

u(k) := γ(φ(k,ξ ,s(·),d(·)),s(k)) , (9d)

z(k) :=
[
Cz 0

]
φ(k,ξ ,s(·),d(·)) . (9e)

Given a controller defined by (4), an infinite setpoint sequence s(·) and an infinite disturbance sequence
d(·), the resulting closed-loop trajectories of the individualvariables are then denoted byξ (·), x(·), σ(·),
u(·) andz(·).

Assumption 2 (Setpoint). At each time instant, the current setpoint is known but future setpoint values
are unknown. The setpoint sequences(·) takes on values in a polytopeS ⊂ R

p containing the origin and
asymptotically reaches a steady-state value, i.e.s(k) ∈ S for all k∈ N and there exists an ¯s∈ S such that
limk→∞ s(k) = s̄.

In general, since the disturbance is persistent and unknownit is impossible to drive the controlled variable
to the asymptotic setpoint ¯s. However, we consider the following restriction on the disturbance:

Assumption 3 (Disturbance). At each time instant, current and future disturbances are unknown. The
disturbance sequenced(·) takes on values in a polytopeD ⊂ R

r containing the origin and asymptotically
reaches an unknown steady-state value, i.e.d(k) ∈ D for all k ∈ N and there exists ād ∈ D such that
limk→∞ d(k) = d̄.

Under the above assumptions we present a novel method for designing a dynamic, nonlinear, time-invariant
state feedback controller (4) that, for any allowable disturbance and setpoint sequence (i.e. any infinite
disturbance and setpoint sequence that satisfy Assumptions 2 and 3), accomplishes the goal of driving
the controlled variable to any given allowable asymptotic setpoint, while respecting the state and input
constraints, i.e.
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lim
k→∞

z(k) = s̄ (10a)

and
x(k) ∈ X , u(k) ∈ U (10b)

for all k∈ N.

2.1 Eliminating the Universal Quantifier from a Set of Affine Inequality Con-
straints

We present here the following well-known result [15, 8, 19, 28, 20], which will be useful later on:

Proposition 1. Let the polyhedronP be given by

P :=
{

v∈ R
t | Fv≤ g+Hw for all w∈ W

}
, (11)

where F∈ R
q×t and H∈ R

q×s are matrices, g∈ R
q is a vector andW is a compact (i.e. closed and

bounded) subset ofRs, then

P =

{

v∈ R
t

∣
∣
∣
∣

Fv≤ g+ min
w∈W

Hw

}

, (12)

where the minimization is performed row-wise, i.e. if Hi denotes the i’th row of H, thenminw∈W Hw :=
[minw∈W H1w · · · minw∈W Hqw]T . Furthermore, if

W := {w∈ R
s | ‖w‖∞ ≤ η } , (13)

then
P =

{
v∈ R

t | Fv≤ g−η abs(H)1s
}

. (14)

2.2 Robust Stability of Discrete-time Systems with Perturbations

Since we are interested in robust stability results, we review the following definitions and results for a
generic nonlinear, perturbed discrete-time system [29]:

ζ + = F(ζ )+w, (15)

in whichF : R
ℓ → R

ℓ andF(0) = 0. LetΦ(k,ζ ,w(·)) denote the solution to (15) at timek, given the initial
stateζ and an infinite perturbation sequencew(·).

Definition 1. The origin is a robustly asymptotically stable fixed point of(15) if the following two condi-
tions are satisfied:

1. (Robust stability) For all ε > 0, there exist aδ > 0 and aµ > 0 such that if the initial condition
ζ ∈ Bδ and the perturbation sequencew(·) satisfiesw(k) ∈ Bµ for all k∈ N, thenΦ(k,ζ ,w(·)) ∈ Bε
for all k∈ N;

2. (Robust convergence) For all initial conditionsζ ∈ Bδ and perturbation sequencesw(·) satisfying
w(k) ∈ Bµ for all k∈ N and limk→∞ w(k) = 0, the solution of (15) satisfies limk→∞ Φ(k,ζ ,w(·)) = 0.

Definition 2. If w̄ := limk→∞ w(k) is the limit point of the perturbation sequencew(·), then a vectorζ̄
satisfyingζ̄ = F(ζ̄ )+ w̄ is a robustly asymptotically stable fixed point of (15) if theorigin is a robustly
asymptotically stable fixed point of the systemχ+ = G(χ) + ω, in which χ := ζ − ζ̄ , ω := w− w̄ and
G(χ) := F(ζ̄ + χ)−F(ζ̄ ).
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Note that Definition 1 is used in [29] when proving the following theorem2:

Theorem 1. [29, Th. 3] Let F: R
ℓ →R

ℓ be a Lipschitz continuous function in a neighborhood of the origin
with F(0) = 0. If the origin is an exponentially stable fixed point of the unperturbed systemζ + = F(ζ ),
then it is a robustly asymptotically stable fixed point of theperturbed systemζ + = F(ζ )+w.

Corollary 1. If all the eigenvalues of the matrixA are strictly inside the unit disk, then the origin is a
robustly asymptotically stable fixed point of the perturbedLTI systemζ + = A ζ +w.

3 Linear Controller Design

3.1 The Augmented System

In order to address the problem we make use of the following auxiliary system to define the controller state
dynamics:

x̂+ = Ax+Bu+(d̂+x− x̂) , (16a)

d̂+ = d̂+x− x̂. (16b)

Remark3. The system (16) corresponds to using a dead-beat observer for the following system:

[
x̂
d̂

]+

=

[
A I
0 I

][
x̂
d̂

]

+

[
B
0

]

u,

x =
[
I 0

]
[

x̂
d̂

]

,

in which it is clear thatd̂ ∈ R
n is an integrated (step) disturbance acting on the state ˆx∈ R

n. The role ofd̂
is essential in removing steady-state offset in the presence of an unknown persistent disturbance [25, 26]
and will be clarified later. As will be seen later, the dimensions ofd̂ andd need not be the same in order to
guarantee offset-free control. It is also important to point out that the disturbancêd does not integrate the
tracking error, i.e. the difference between the setpointsand the controlled variablez.

By combining the plant dynamics (1) and the auxiliary system(16), we obtain the following augmented
system:

ξ + = A ξ +Bu+E d , (17a)

z= C ξ , (17b)

in which

ξ :=





x
x̂
d̂



 , A :=





A 0 0
I +A −I I

I −I I



 , B :=





B
B
0



 , E :=





E
0
0



 , C :=
[
Cz 0 0

]
. (17c)

We also define the controller stateσ ∈ R
l , with l := 2n, to be the states of the auxiliary system (16), i.e.

σ :=

[
x̂
d̂

]

. (18)

2[29, Def. 2] contains a typographical error, hence the reason why the proof of [29, Th. 3] is inconsistent with [29, Def. 2].
However, the proof of [29, Th. 3] is correct and consistent with the definition of stability given in this paper. The authors would like
to thank Prof. James Rawlings for confirming this.
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3.2 Target Calculation and Unconstrained Offset-free Controller Design

When a non-zero persistent disturbance affects a system (and/or the current setpoints is different from
the origin), the origin of the state and input needs to be shifted in order to cancel the effect of such a
disturbance on the controlled variable [2, 30]. To this aim,at each sample instant we use the estimate of the
future disturbance and compute the steady-state target(x̄, ū) such that one can drive the controlled variable
to the current setpoint. When the dimension of the input is equal to the dimension of the controlled variable
(m= p) these targets are uniquely defined by:

[
I −A −B
Cz 0

][
x̄
ū

]

=

[
d̂+

s

]

=

[
I −I I
0 0 0

]

ξ +

[
0
I

]

s. (19)

Notice that this corresponds to finding the pair(x̄, ū) such thatCzx̄ = s andx̄ = Ax̄+Bū+ d̂+, i.e. the state
and input that cancel the effect of the disturbance. If, instead, there are extra degrees of freedom (m> p)
these targets are non-unique. However, one can address bothcases [30] by solving the following equality-
constrained quadratic program (i.e. least-squares problem), in whichR̄∈R

m×m is a positive definite matrix:

(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) := argmin
(x̄,ū)

1
2

ūTR̄ū, (20a)

subject to

[
I −A −B
Cz 0

][
x̄
ū

]

=

[
I −I I
0 0 0

]

ξ +

[
0
I

]

s. (20b)

For a given augmented stateξ and a given setpoints, one can think of(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) as the new
‘origin’ around which the system should be regulated. Solving for (x̄∗ (ξ ,s) , ū∗ (ξ ,s)) is trivial:

Lemma 1 (Target calculation). If Assumption 1 holds, the minimizer of the equality-constrained quadratic
program(20) is linear with respect to the augmented stateξ and the setpoint s, and is given by

[
x̄∗ (ξ ,s)
ū∗ (ξ ,s)

]

=

[
Π13 −Π13 Π13

Π23 −Π23 Π23

]

ξ +

[
Π14

Π24

]

s, (21a)

whereΠ13 ∈ R
n×n, Π23 ∈ R

m×n, Π14 ∈ R
n×p andΠ24 ∈ R

m×p are the relevant block matrix components
of







Π11 Π12 Π13 Π14

Π21 Π22 Π23 Π24

Π31 Π32 Π33 Π34

Π41 Π42 Π43 Π44







:=







0 0 −I +AT −CT
z

0 R̄ BT 0
I −A −B 0 0
Cz 0 0 0







−1

. (21b)

Note that the square matrix in(21b)has m+2n+ p columns.

Proof. See Appendix A.

We now consider what would happen if one were to choose a gain matrix K such thatA+ BK is strictly
stable and let the control input in the augmented system (17a) be given by

u = ū∗(ξ ,s)+K(x− x̄∗(ξ ,s)) . (22)

Before proceeding, we need the following result:
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Lemma 2 (Stability). Suppose that Assumption 1 holds and K∈ R
m×n is such that A+ BK is strictly

stable. IfA andB are given by(17c), Γ ∈ R
m×n is any constant matrix and

K :=
[
K +Γ −Γ Γ

]
, (23)

then
AK := A +BK (24)

is strictly stable.

Proof. See Appendix B.

By defining
Γ := Π23−KΠ13, L := Π24−KΠ14, (25)

and substituting (21a) into (22) it follows that

u = Π23x−Π23x̂+Π23d̂+Π24s+K(x−Π13x+Π13x̂−Π13d̂−Π14s) (26a)

= (K +Γ)x−Γx̂+Γd̂+L s (26b)

= K ξ +L s. (26c)

After substituting (26) into (17a), one can write an expression for the augmented system (17a) under the
linear controlu = K ξ +L s as

ξ + = AK ξ +E d+Fs, (27)

where

F :=





BL

BL

0



 . (28)

Let ψ(k,ξ ,s(·),d(·)) be the solution of the closed-loop system (27) at timek, given the stateξ at time
k = 0, the setpoint sequences(·) and the disturbance sequenced(·).

As a consequence of the above results, we introduce the following standing assumption:

Assumption 4 (Stabilizing gain). The matrixK ∈ R
m×n is chosen such thatA+BK is strictly stable,K

is given by (23) withΓ given by (25),AK := A +BK andL is given by (25).

The following result states that if the control is given byu = K ξ +L s, then the value of the controlled
variable for (27) is guaranteed to converge to the asymptotic setpoint ¯s, given any allowable infinite setpoint
and disturbance sequence:

Lemma 3 (Offset-free control). If Assumptions 1–4 hold, then the solution of the closed-loop system(27)
satisfies

lim
k→∞

C ψ(k,ξ ,s(·),d(·)) = s̄ (29)

for all ξ ∈ R
3n.

Proof. See Appendix C.
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3.3 The Maximal Constraint-admissible Robustly Positively Invariant Set

We now consider the problem of computing the maximal constraint-admissible robustly positively invariant
set in the space of the augmented stateξ := (x, x̂, d̂).

Let theconstraint-admissible setΞ be defined as all augmented states for which the constraints on the plant
state and plant input are satisfied, for any choice of setpoint s∈S , if the control is given byu= K ξ +L s:

Ξ :=
{

ξ ∈ R
3n | x∈ X andK ξ +L s∈ U for all s∈ S

}
. (30)

Remark4. Note that, sinceX andU are polyhedra given by affine inequalities,Ξ is easily computed by
applying Proposition 1 to the above definition.

Themaximal constraint-admissible robustly positively invariant setO∞ for the closed-loop system (27) is
defined as all initial states inΞ for which the evolution of the system remains inΞ for all allowable infinite
setpoint and disturbance sequences, i.e.

O∞ := {ξ ∈ Ξ | ψ(k,ξ ,s(·),d(·)) ∈ Ξ for all s(·) ∈ MS , all d(·) ∈ MD and allk∈ N} . (31)

Since (27) is linear and time-invariant andΞ is given by a finite number of affine inequality constraints,O∞
is easily computed by solving a finite number of LPs [28].

Assumption 5 (Maximal invariant set). The setO∞ as defined in (31) is non-empty, contains the origin
in its interior and is finitely determined (i.e.O∞ can be described by a finite number of affine inequality
constraints).

Remark5. Except for a few pathological cases, Assumption 5 is met ifAK is strictly stable,X is bounded,
(AK , [In 0]) is observable andD andS are sufficiently small [28]; however, observability of(AK , [In 0])

and boundedness ofX are not guaranteed under the assumptions in this paper. Despite this, in all test
cases we have found that Assumption 5 holds. If Assumption 5 is violated, then it is easy to compute
an approximation toO∞ in finite time, e.g. by intersectingΞ or X with a sufficiently large bounded
polyhedron. The reader is referred to [8, 28] for alternative methods of computing an approximation toO∞
in finite time if O∞ is not finitely determined.

The following result states that, provided the augmented state is inO∞ at timek = 0, then the evolution of
the augmented system under the linear controlu = K ξ +L s is such that offset-free control is guaranteed
and the state and input constraints are satisfied for all allowable setpoint and disturbance sequences:

Theorem 2 (Linear controller). Suppose that Assumptions 1–5 hold. The solution of the closed-loop
system(27)satisfies(29)and

[
In 0

]
ψ(k,ξ ,s(·),d(·)) ∈ X andK ψ(k,ξ ,s(·),d(·))+L s(k) ∈ U (32)

for all ξ ∈ O∞ and all k∈ N. Furthermore, ifξ̄ := (I −AK )−1(E d̄+F s̄) is in the interior ofO∞, thenξ̄
is the robustly asymptotically stable fixed point of(27).

Proof. See Appendix D.

Because of the assumptions in Theorem 2, it is important to correctly initialize the controller stateσ(0) :=
(x̂(0), d̂(0)) such thatξ (0) := (x(0),σ(0)) ∈ O∞. A sensible way of choosing the initial controller state is
to compute the minimizer of the following quadratic program, given the initial plant statex(0):

(
x̂(0), d̂(0)

)
:= argmin

(x̂,d̂)

{
(x− x̂)T(x− x̂)+ d̂T d̂ | ξ ∈ O∞ andx = x(0)

}
. (33)
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We can now also defineX0, the set of plant states for which there exists a controller state such that the
augmented state is inO∞, as

X0 :=
{

x∈ R
n

∣
∣ ∃σ ∈ R

2n such thatξ ∈ O∞
}

. (34)

Clearly, (33) is feasible if and only ifx(0) ∈ X0.

Remark6. For analysis purposes, one might want to computeX0 explicitly. Note that sinceO∞ is a
polyhedron, the setX0 is easily computed as the projection [31, 32] ofO∞ onto the plant state spaceX, i.e.

X0 = ProjX (O∞) . (35)

4 Receding Horizon Controller Design

The setX0 is the set of initial plant states for which the controlled variable will be ultimately driven to
the asymptotic setpoint ¯s by the linear controlu = K ξ +L s. This section presents an efficient approach
for computing a nonlinear controller, which enlarges the set of initial plant states for which the controlled
variable can ultimately be driven to the asymptotic setpoint. This will be achieved by using ideas from
model predictive control of constrained systems [33, 6, 7].

4.1 Definition and Properties of the Receding Horizon Controller

We follow the same approach as in [14, 17, 16, 19, 20] of “pre-stabilizing” the plant by letting the linear
control in (26) be modified with a perturbation term as follows:

u = K ξ +L s+v, (36)

wherev∈R
m is the perturbation term. The solution to the finite horizon optimal control problem (FHOCP),

defined below, is a finite sequence of input perturbations that guarantees robust constraint satisfaction over
the horizon and optimizes some cost function. Under the control in (36), the augmented state dynamics
in (17a) become

ξ + = AK ξ +Bv+E d+Fs. (37)

Before proceeding, let the horizon lengthN be a positive integer and the block vectorsv ∈ R
mN, s∈

R
p(N−1), d ∈ R

rN be defined as

v :=








v0

v1
...

vN−1








, s :=








s1

s2
...

sN−1








, d :=








d0

d1
...

dN−1








. (38)

Remark7. In the sequel, note thatsand all related terms are present only ifN > 1.

Let

ξk := χ(k,ξ ,v,s,s,d) := A
k
K ξ +A

k−1
K

Fs+
k−1

∑
i=0

A
i
K (Bvk−1−i +E dk−1−i)+

k−2

∑
i=0

A
i
K Fsk−1−i (39)

denote the solution to (37) for allk ∈ {1, . . . ,N}, given the current augmented stateξ , a finite sequence
of control perturbationsv, the current setpoints0 := s, a finite sequence of future setpointss and a finite
sequence of disturbancesd. The corresponding predicted plant state and input are similarly defined as

xk :=
[
In 0

]
χ(k,ξ ,v,s,s,d) , ∀k∈ {1, . . . ,N} , (40a)

uk := K χ(k,ξ ,v,s,s,d)+L sk +vk , ∀k∈ {0, . . . ,N−1} . (40b)
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Given the above definitions, we now define the set of admissible input perturbationsVN(ξ ,s) as the set of
input perturbations of lengthN such that for all allowable future setpoint sequences of length N−1 and
disturbance sequences of lengthN, the input constraintsU are satisfied over the horizonk = 0, . . . ,N−1,
the state constraintsX are satisfied over the horizonk = 1, . . . ,N−1 and the augmented state at the end
of the horizon is inO∞ (hence the predicted plant state at the end of the horizon is also inX ), i.e.

VN(ξ ,s) :=

{

v ∈ R
mN

∣
∣
∣
∣
∣

ξ0 = ξ , s0 = s, xk ∈ X , k = 1, . . . ,N−1, ξN ∈ O∞,

uk ∈ U , k = 0, . . . ,N−1 for all s∈ S
N−1 and alld ∈ D

N

}

. (41)

Remark8. Note thatVN(ξ ,s) is defined by aninfinite number of constraints. Obtaining an equivalent
expression forVN(ξ ,s) in terms of afinite number of affine inequality constraints is straightforwardand a
method that allows one to do this efficiently is described in Section 4.2.

In order to compute the receding horizon controller, we needto define an associated finite horizon optimal
control problem (FHOCP). We choose to definePN(ξ ,s), the FHOCP to be solved for a givenξ ands, as

PN(ξ ,s) : V∗
N(ξ ,s) := min

v∈VN(ξ ,s)
VN(ξ ,s,v) , (42)

where the cost to be minimized is defined as

VN(ξ ,s,v) := (x̃N − x̄∗(ξ ,s))TP(x̃N − x̄∗(ξ ,s))

+
N−1

∑
k=0

(x̃k− x̄∗(ξ ,s))TQ(x̃k− x̄∗(ξ ,s))+(ũk− ū∗(ξ ,s))TR(ũk− ū∗(ξ ,s)) , (43)

with the matricesQ∈R
n×n, R∈R

m×m andP∈R
n×n positive definite, and the vectors ˜xk ∈R

n andũk ∈R
m

defined as

x̃0 = x (44a)

x̃k+1 = Ax̃k +Bũk +(x− x̂+d) ∀k∈ {0, . . . ,N−1} , (44b)

ũk = ū∗(ξ ,s)+K(x̃k− x̄∗(ξ ,s))+vk ∀k∈ {0, . . . ,N−1} . (44c)

The minimizer ofPN(ξ ,s) is similarly defined:

v∗(ξ ,s) :=
(
v∗0(ξ ,s), . . . ,v∗N−1(ξ ,s)

)
:= argmin

v∈VN(ξ ,s)
VN(ξ ,s,v) . (45)

We assume here that the minimizer of (42) exists; this assumption is justified in Section 4.2.

Remark9. The cost functionVN(·) can be regarded as the “nominal cost” in which the setpoint and the
plant disturbance remain constant over the horizonN. Also note from (44b) that the disturbance affecting
the plant, i.e.Ed, is assumed to be equal to its last deadbeat estimate(x− x̂+ d̂).

As is standard in receding horizon control [33, 6, 7], for a given stateξ and a given setpoints, we only keep
the first elementv∗0(ξ ,s) of the solution to the FHOCP. Using this receding horizon principle, we define
our controller in (4) by substituting

u = K ξ +L s+v∗0(ξ ,s) (46)

into the equation for the augmented system (17a) and comparing it with the expression for the closed-loop
dynamics (7). In other words, the controller state dynamicsmap in (4a) is given by

α(ξ ,s) :=

[
I +A −I I

I −I I

]

ξ +

[
BK

0

]

ξ +

[
BL

0

]

s+

[
B
0

]

v∗0(ξ ,s) (47a)
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and the controller output map in (4b) is

γ(ξ ,s) := K ξ +L s+v∗0(ξ ,s) . (47b)

It is important to be able to determine all the plant states for which one can guarantee that problemPN(ξ ,s)
has a solution. The set of plant statesXv

N for which one can initialize the controller state such that the set
of admissible input perturbationsVN(ξ ,s) is non-empty for alls∈ S (and hencePN(ξ ,s) has a solution),
is given by

Xv
N :=

{
x∈ X

∣
∣ ∃σ ∈ R

2n such thatVN(ξ ,s) 6= /0 for all s∈ S
}

. (48)

As will be shown below,Xv
N is the set of plant states inX for which the controlled variable will ultimately

be driven to the setpoint ¯s by the controller (4), ifα andγ are given by (47).

We can now give our first main result:

Theorem 3 (Domain of RHC law). Suppose that Assumptions 1–5 hold. If X0 is defined in(34)and each
Xv

i , i ∈ {1, . . . ,N}, is defined as in(48) with N = i, then all the sets in{X0,Xv
1 , . . . ,Xv

N} contain the origin
in their interior and satisfy

X0 ⊆ Xv
1 ⊆ ·· · ⊆ Xv

N−1 ⊆ Xv
N . (49)

Proof. See Appendix E.

Theorem 3 is very important because it shows that, under the above assumptions, an increase in the horizon
length does not decrease the size of the set of initial plant states for which the controlled variable can be
driven to the setpoint.

Assumption 6. The matricesQ andRare chosen to be positive definite, the matrixP is the positive definite
solution of the following discrete algebraic Riccati equation:

P = Q+ATPA−ATPB(R+BTPB)−1BTPA, (50a)

and the matrixK is the corresponding gain:

K = −(R+BTPB)−1BTPA. (50b)

K is given by (23) withΓ given by (25),AK := A +BK andL is given by (25).

Remark10. It is clear that the matrixK defined in (50b) is such thatA+BK is strictly stable.

Before giving our second main result, we need the following:

Lemma 4 (FHOCP equivalence).Suppose that Assumptions 1 and 6 hold and let JN(v) be defined as:

JN(v) :=
N−1

∑
k=0

vT
k Wvk . (51)

If the (positive definite) matrix W∈ R
m×m is given by

W := R+BTPB, (52)

then the cost function VN(·) satisfies

VN(ξ ,s,v) = JN(v)+(x− x̄∗(ξ ,s))TP(x− x̄∗(ξ ,s)) (53)

and
v∗(ξ ,s) := argmin

v∈VN(ξ ,s)
VN(ξ ,s,v) = argmin

v∈VN(ξ ,s)
JN(v) . (54)

12



Proof. See Appendix F.

Lemma 5 (Robust feasibility and perturbation sequence).Suppose that Assumptions 1–3 and 5–6 hold.
If the controller(4) is defined by(47) andVN(ξ (0),s(0)) is non-empty, thenVN(ξ (k),s(k)) is non-empty
for all k ∈ N and

lim
k→∞

v∗0(ξ (k),s(k)) = 0. (55)

Proof. See Appendix G.

We can now state our second main result:

Theorem 4 (Offset-free control, robust constraint satisfaction and stability of RHC law). Suppose
that Assumptions 1–3 and 5–6 hold and that the controller(4) is defined by(47). One can choose the
initial controller stateσ(0) such thatPN(ξ (0),s(0)) has a solution and the evolution of the closed-loop
system(5) satisfies(10) for all k ∈ N if and only if the initial plant state x(0) ∈ Xv

N. Furthermore, if
ξ̄ := (I −AK )−1(E d̄+F s̄) is in the interior ofO∞, thenξ̄ is the robustly asymptotically stable fixed point
of (5).

Proof. See Appendix H.

As in Section 3.3, we need to initialize the controller statecorrectly such thatPN(ξ (0),s(0)) has a solution.
A sensible method for simultaneously obtaining an optimal initial controller state and input perturbation
sequence is to solve the following optimization problem, given the initial plant statex(0) and the initial
setpoints(0):

(
x̂(0), d̂(0),v∗(ξ (0),s(0))

)
:=

argmin
(x̂,d̂,v)

{
JN(v)+λ

(
(x̂−x)T(x̂−x)+ d̂T d̂

)
| v ∈ VN(ξ ,s), x = x(0), s= s(0)

}
, (56)

whereλ is a strictly positive scalar.

4.2 Efficient Implementation of the Receding Horizon Controller

SinceX , U andO∞ are polyhedral sets with non-empty interiors, they are given by a finite number of
affine inequality constraints. As a consequence, it is easy to obtain an equivalent expression for the set of
admissible input perturbationsVN(ξ ,s) as

VN(ξ ,s) =
{

v ∈ R
mN

∣
∣
∣ Fv ≤ b+Gdd+Gss+Hξ ξ +Hss for all s∈ S

N−1 and alld ∈ D
N

}

, (57)

where the matricesF ∈ R
q×mN, Gd ∈ R

q×rN , Gs ∈ R
q×p(N−1), Hξ ∈ R

q×3n, Hs ∈ R
q×p and the vector

b∈ R
q depend on the augmented system dynamics (37) and are given inAppendix I.

By using the results of Proposition 1 one can compute an equivalent expression forVN(ξ ,s) in terms of a
finite number of affine inequality constraints:

VN(ξ ,s) =
{

v ∈ R
mN

∣
∣
∣ Fv ≤ c+Hξ ξ +Hss

}

, (58)

where
c := b+ min

d∈DN
Gdd+ min

s∈S N−1
Gss. (59)

Remark11. SinceD andS (and henceDN andS N−1) are polyhedra and can therefore be described by
a finite number of affine inequality constraints,c can be computed efficiently by solvingq LPs.
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Remark12. If D andS are given only by upper and lower bounds on the components ofd ands, respec-
tively, then it is not necessary to solve LPs in order to compute c; checking the signs of the components of
Gd andGs is sufficient. For example, if the disturbance and the setpoint are assumed to take on values in
the hypercubes

D := {d ∈ R
r | ‖d‖∞ ≤ β } , S := {s∈ R

p | ‖s‖∞ ≤ η } ,

then it follows from Proposition 1 that

c = b−β abs(Gd)1rN −η abs(Gs)1p(N−1) .

Remark13. From Appendix I it is clear that the number of constraintsq in (58) is not dependent on the
description forS andD , but only dependent onN and the number of constraints that describeX , U and
O∞. Note also thatq increases only linearly with the horizon lengthN.

Given all of the above, it is now clear that the minimizer toPN(ξ ,s) exists if and only ifVN(ξ ,s) 6= /0. The
minimizer ofPN(ξ ,s) is the solution to the following finite-dimensional, strictly convex quadratic program
(QP):

v∗(ξ ,s) = argmin
v

{

JN(v)
∣
∣
∣ Fv ≤ c+Hξ ξ +Hss

}

. (60)

Clearly, (56) is also a finite-dimensional, strictly convexQP.

There are essentially two ways in which one can computev∗0(ξ ,s) (and hence the control input) for a given
ξ ands:

• As is standard in conventional model predictive control [33, 6, 7], given the current value forξ and
s, one can computev∗0(ξ ,s) on-line by solving the QP defined in (60) using standard QP solvers [34].

• The QP in (60) is a so-calledparametricQP, since the constraints (and hence the solution) of the
QP in (60) are dependent on theparametersξ ands. This observation allows one to compute the
explicit expression forv∗0(·) off-line using recent results presented in [35]. The results in [35] can
be used to show thatv∗0(·) is a piecewise affine function of(ξ ,s) and is defined over a polyhedral
partition, i.e. the domain ofv∗0(·) is the union of a finite number of polyhedra andv∗0(·) is affine in
each polyhedron. Computing the value ofv∗0(ξ ,s) on-line amounts to looking up the polyhedron in
which (ξ ,s) is contained and substituting(ξ ,s) into the associated affine function.

Remark14. For analysis purposes, one might want to compute an explicitexpression forXv
N. Since one

can obtain a polyhedral expression forVN(ξ ,s), it is possible to compute a polyhedral expression forXv
N

by using standard projection algorithms [32, 36], i.e.

Xv
N = X ∩ProjX

{

(ξ ,s) ∈ R
3n×R

p
∣
∣
∣ Fv ≤ c+Hξ ξ +Hss for all s∈ S

}

(61a)

= X ∩ProjX

{

(ξ ,s) ∈ R
3n×R

p

∣
∣
∣
∣

Fv ≤ c+Hξ ξ +min
s∈S

Hss

}

, (61b)

where the last step clearly follows from Proposition 1.

5 Illustrative example

As an example, we consider a jacketed continuous stirred tank reactor (CSTR) studied by Henson and
Seborg [37] in which an irreversible liquid-phase reactionoccurs. A detailed nonlinear model has two
states (reactant concentration and reactor temperature),one input (cooling liquid temperature) and two
disturbances (feed temperature and feed reactant concentration). This CSTR shows three steady states,
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Figure 1: Domain of attraction (Xv
N) for different fixed horizons

two of which are open-loop unstable, and for quality and safety reasons the middle conversion open-loop
unstable steady-state is chosen as a nominal operating setpoint. Using a sampling time ofts = 0.1 min and
introducing deviation variables (from the corresponding steady state) a linearized model is as follows:

[
x1

x2

]+

=

[
0.7776 −0.0045
26.6185 1.8555

][
x1

x2

]

+

[
−0.0004
0.2907

]

u+

[
−0.0002 0.0893
0.1390 1.2267

][
d1

d2

]

z=
[
0 1

]
[
x1

x2

]

,

in which x1 andx2 represent the reactant concentration and the reactor temperature, respectively;u repre-
sents the coolant temperature;d1 andd2 represent the feed temperature and the feed reactant concentration,
respectively. Notice from the structure ofCz that the controlled variable is the reactor temperature, for
which offset-free control to the setpoints is required. Also notice that the system matrixA has one stable
and one unstable eigenvalue. The following constraints on the plant states and input and on the admissible
disturbances and setpoint are considered:

[
−0.5
−5

]

≤

[
x1

x2

]

≤

[
0.5
5

]

, −15≤ u≤ 15,

[
−2
−0.1

]

≤

[
d1

d2

]

≤

[
2

0.1

]

, −1≤ s≤ 1.

We present in Figure 1 the domain of attraction (i.e.Xv
N) of four receding horizon controllers using different

fixed horizons (specified in the figure) and the same penalty matrices:Q = I2 andR= 0.2. Notice thatX0

is the domain of attraction of the linear controller. As expected from Theorem 3 we have that an increase
in the fixed horizon length results in a larger feasible region and also that the domain of attraction of the
linear controller is included in that of the receding horizon controllers.

We present in Figure 2 the domain of attraction of four receding horizon controllers using the same fixed
horizon,N = 10, and different stabilizing gain matrices. These gains were computed as the optimal LQR

15
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Figure 2: Domain of attraction (Xv
10) for different stabilizing gain

Table 1: Disturbances and setpoint
t (min) [0,4) [4,8) [8,12) [12,16) [16,24) [20,24]

d [2 0.1]T [2 −0.1]T [−2 −0.1]T [−2 0.1]T [2 0.1]T [−2 0.1]T

s 0 0 1 1 -1 -1

gain withQ = I2 and differentR (specified in the figure) as penalty matrices. It is interesting to notice that
when the input penalty matrixR used to compute the stabilizing gain is reduced, i.e. a more aggressive
controller is chosen, the corresponding domain of attraction is larger. However, it is important to remark
that this result is not general and depends on the system parameters and on the fixed horizon. To clarify this
point, we present in Figure 3 the domain of attraction of the corresponding receding horizon controllers
using a fixed horizon ofN = 2.

We present in Figure 4 the closed-loop simulation results (controlled variable and input) obtained with four
receding horizon controllers using the same fixed horizon,N = 10, different penalty matrices (Q = I2 for
all controllers andRspecified in the figure), and the scalar used in (56) wasλ = 1000.

The initial plant state isx(0) =
[
−0.258 5

]T
, the disturbances and the setpoint vary during the simulation

time as reported in Table 1. For the receding horizon controller based onQ = I2 andR = 0.2 the plant
state sequence,x(·), is also reported in Figure 1. Notice that the state sequencex(·) initially starts at the
boundary of the domain of attractionXv

10 and enters the domain of attraction of the linear controllerX0

in finite time. As expected from Theorem 4 the proposed controllers asymptotically drive the controlled
variable to the asymptotic setpoint despite the presence ofpersistent unmeasured disturbances. Also, when
the setpoint is changed the controllers drive the controlled variable to the new setpoint. Moreover, it is
interesting to notice that the choice of penalty matrices has a direct impact on the closed-loop performance.
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2 ) for different stabilizing gain

That is, when a lower input penaltyR is chosen, the disturbance is rejected (and the setpoint is reached)
more quickly and a larger control input is used.

We finally present in Figure 5 a comparison of the proposed receding horizon controller with a “standard”
(i.e. non offset-free) robust receding horizon controller. As an example we chose the approach in [17],
which is similar to the one proposed in this paper, in the sense that a pre-stabilizing gain matrix is used and
the plant state prediction at the end of the horizon in restricted to be in the maximal disturbance invariant set
O∞. Both controllers are based on the same stabilizing gain matrix K, which is the optimal LQR gain with
Q = I2 andR= 0.2. The fixed horizon used for both controllers isN = 10 and the perturbation penalty for
the “standard” controller is chosen asW = R+BTPBwith P the solution to the corresponding steady-state

Riccati equation. The initial plant state isx(0) =
[
−0.258 5

]T
and the disturbance varies as specified in

Table 1. In this comparison the setpoint is the origin since the method in [17] does not apply to setpoints
different from the origin (an extension of [17] to the setpoint tracking problem has been proposed in [16];
however, the controller proposed in [16] still does not guarantee offset-free control). As expected, the goal
of offset-free control is achieved by the proposed method whereas the controller of [17] leaves a significant
and undesired steady-state offset.

6 Conclusions

This paper has shown how one can design a nonlinear time-invariant, dynamic state feedback controller
that guarantees robust constraint satisfaction, robust stability and offset-free control in the presence of
time-varying setpoints and persistent, non-stationary, additive disturbances on the state. The design of the
controller was split into two parts:
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• The design of a dynamic, linear, time-invariant controller. A deadbeat observer is used to estimate
the disturbance, the new steady state is given as a linear function of the current plant and observer
states and of the current setpoint, and the controller aims to regulate the plant state and input to the
new target steady state. In order to estimate the region of attraction of the linear controller, it was
proposed that the maximal constraint-admissible robustlypositively invariant setO∞ associated with
the linear controller be computed.

• The design of a dynamic, nonlinear, time-invariant receding horizon controller. In order to increase
the region of attraction of the linear controller, a robust receding horizon controller, which computes
perturbations to the linear control law, was proposed. The receding horizon controller includes the
state and input constraints explicitly in its computationsas well as the effect of the unknown per-
sistent disturbance, thereby guaranteeing robust constraint satisfaction. It was proposed that the set
O∞ be included as a terminal constraint in the prediction horizon and it was shown that the specific
formulation of the proposed receding horizon controller improves on the linear controller in terms of
the domain of attraction.

The robust receding horizon controller presented in this paper can be implemented in an efficient manner
and is computationally tractable. The incorporation of theeffect of the disturbance and of future unknown
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setpoints has very little effect on the computational complexity since the number of decision variables and
constraints increases only linearly with an increase in thehorizon length.

The paper also demonstrated the effectiveness of using the results in this paper in designing a controller for
guaranteeing offset-free control of a continuous stirred tank reactor with respect to existing non offset-free
algorithms. The simulation results were shown to be in agreement with the theory.

We conclude this paper with some recommendations on how the results in this paper may be extended:

• The choice of auxiliary system has an impact on the region of attraction and closed-loop performance
of the system. A more detailed investigation into this topiccould be undertaken.

• The constraints on the state and input were not included in the target calculation in Section 3.2. If
the constraints are included in the target calculation, then the optimal steady-state target is no longer
a linear function of the augmented state and setpoint. Clearly, this complicates the receding horizon
controller design. However, the inclusion of constraints in the target calculation will enlarge the
domain of attraction and increase the size of the disturbance and setpoints that can be handled by
the controller. An extension of this paper, which includes constraints in the target calculation, could
combine the results in [26] with those in [16].

• Clearly, the rank condition in (3) is not always satisfied. Ifthis assumption is violated, then one might
have to relax the requirement that offset-free control be achieved on all controlled variables. One
possible approach to resolving this problem is to prioritize the controlled variables when performing
the target calculation. The framework proposed in [38] may be useful in this context.

• Rather than optimizing over perturbations to a pre-stabilizing control law, one could consider opti-
mizing over arbitrary, nonlinear feedback policies [15, 18, 6, 7, 22]. This will enlarge the region of
attraction of the receding horizon controller at the expense of an increase in computational complex-
ity.

• The important problem of guaranteeing robust stability, performance, constraint satisfaction and
offset-free control when output feedback (rather than state feedback) is used, remains to be ad-
dressed.

Acknowledgements

The authors would like to thank Colin Jones for sharing some of his software, which allowed for the
efficient computation ofXv

N in the example.

Appendix

A Proof of Lemma 1

The statement follows immediately from the Lagrangian/KKTconditions for (20) [34, Sect. 16.1]. It is
important to verify that the matrix to be inverted in (21b) isnon-singular.

In order to see why this is the case, letZ be a matrix of dimension(n+ m)× (m− p) (if the system is
square, i.e.m= p, the proof of non-singularity is trivial) whose columns arean orthonormal basis for the
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null space of

[
I −A −B
Cz 0

]

. Consider any vectorv∈ R
m−p with v 6= 0, and let

z=

[
x∗

u∗

]

= Zv.

Notice that since the columns ofZ are independent,z 6= 0.

We now show by contradiction thatu∗ 6= 0. Suppose thatu∗ = 0. We can write

[
I −A
Cz

]

x∗ =

[
Bu∗

0

]

= 0.

From Assumption 1 we have that(A,Cz) is detectable. Hence, from the Hautus Lemma [39, Sect. 7.1] it

follows that the matrix

[
I −A
Cz

]

has full column rank. But this implies thatx∗ = 0 which is in contradiction

with the fact thatz 6= 0. Hence, it must beu∗ 6= 0.

Therefore, sincez= Zv, we can write:

vTZT
[
0 0
0 R̄

]

Zv=

[
x∗

u∗

]T [
0 0
0 R̄

][
x∗

u∗

]

= (u∗)TR̄u∗ > 0,

where the last inequality comes from the fact thatR̄ is positive definite and thatu∗ 6= 0. This implies that
the reduced Hessian defined as

ZT
[
0 0
0 R̄

]

Z

is positive definite, and we can apply the results in [34, Lemma 16.1] to deduce that







0 0 −I +AT −CT
z

0 R̄ BT 0
I −A −B 0 0
Cz 0 0 0







is non-singular and the target calculation (20) has a uniqueminimizer.

B Proof of Lemma 2

From the definitions, it follows that

AK := A +BK =





A+BK+BΓ −BΓ BΓ
In +A+BK+BΓ −In−BΓ In +BΓ

In −In In



 . (62)
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The eigenvalues ofA +BK are the roots of|A +BK −λ I3n| = 0. Note that

|A +BK −λ I3n| =

∣
∣
∣
∣
∣
∣

A+BK+BΓ−λ In −BΓ BΓ
In +A+BK+BΓ −In−BΓ−λ In In +BΓ

In −In In−λ In

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

A+BK+BΓ−λ In −BΓ BΓ
λ In −λ In λ In
In −In In−λ In

∣
∣
∣
∣
∣
∣

(subtract rows 1 and 3 from 2)

=

∣
∣
∣
∣
∣
∣

A+BK−λ In −BΓ BΓ
0 −λ In λ In
0 −In In−λ In

∣
∣
∣
∣
∣
∣

(add column 2 to column 1)

=

∣
∣
∣
∣
∣
∣

A+BK−λ In 0 BΓ
0 0 λ In
0 −λ In In−λ In

∣
∣
∣
∣
∣
∣

(add column 3 to column 2)

= (−1)n ·

∣
∣
∣
∣
∣
∣

A+BK−λ In 0 BΓ
0 −λ In In−λ In
0 0 λ In

∣
∣
∣
∣
∣
∣

(exchange rows 2 and 3)

= (−1)n · |A+BK−λ In| · |λ In| · |λ In| (determinant of block triangular matrix)

= (−1)n · |A+BK−λ In| ·λ n ·λ n

= (−1)n ·λ 2n · |A+BK−λ In| .

This implies that 2nof the eigenvalues ofA +BK are at the origin and the rest are equal to the eigenvalues
of A+ BK. Hence, ifA+ BK has all its eigenvalues strictly inside the unit disk, then the eigenvalues of
A +BK are strictly inside the unit disk.

C Proof of Lemma 3

Since limk→∞ s(k) = s̄and limk→∞ d(k) = d̄ we have from (26)–(27) and from the results of Lemma 2 that

ξ∞ := lim
k→∞

ψ(k,ξ ,s(·),d(·)) = AK ξ∞ +E d̄+F s̄= A ξ∞ +Bu∞ +E d̄ , (63)

in whichu∞ = K ξ∞ +L s̄. Let ξ∞ be partitioned as follows:

ξ∞ =





x∞
x̂∞
d̂∞



 ,

in which each block is a column vector of lengthn. We can rewrite (63) explicitly as follows:

x∞ = Ax∞ +Bu∞ +Ed̄ (64a)

x̂∞ = Ax∞ +Bu∞ +(x∞ − x̂∞ + d̂∞) (64b)

d̂∞ = x∞ − x̂∞ + d̂∞ . (64c)

From (64c) we immediately obtain thatx∞ = x̂∞ which, combined with (64b), leads to

x∞ = Ax∞ +Bu∞ +(x∞ − x̂∞ + d̂∞) . (65)

Let (x̄∞, ū∞) denote the solution to the target calculation problem (20) for the augmented stateξ∞ and the
setpoint ¯s. From (20b) we can write:

x̄∞ = Ax̄∞ +Bū∞ +(x∞ − x̂∞ + d̂∞) , (66)
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which, subtracted from (65), leads to:

x∞ − x̄∞ = A(x∞ − x̄∞)+B(u∞ − ū∞) = (A+BK)(x∞ − x̄∞) , (67)

where the last step comes from (22). It is important to noticethat (67) and Assumption 4 implies that

x∞ = x̄∞ . (68)

In order to see this, note that (67) can be rewritten as(In −A−BK)(x∞ − x̄∞) = 0, which is certainly
satisfied if either (68) holds or ifx∞− x̄∞ ∈ null(In−A−BK). It is also clear that (68) is the unique solution
if (In −A−BK) is full rank. Suppose that(In −A−BK) is not full rank and letx∗ ∈ R

n be such that
x∗ 6= 0 and(In−A−BK)x∗ = 0. We would havex∗ = (A+BK)x∗, that isx∗ is an eigenvector of(A+BK)

associated with the eigenvalueλ ∗ = 1, which is in contradiction with Assumption 4 because all eigenvalues
of (A+ BK) are strictly inside the unit circle. Hence,(In−A−BK) is full rank and (68) holds. Finally,
from (68) and from (20b) we obtain:

s̄= Czx̄∞ = Czx∞ = C ξ∞

= lim
k→∞

C ψ(k,ξ ,s(·),d(·)) .

D Proof of Theorem 2

Robust constraint satisfaction follows immediately from the fact thatO∞ is robustly positively invariant for
the closed-loop system (27) and the fact thatO∞ is constraint-admissible.

Note now that, sinceAK is strictly stable,(I −AK )−1 exists and hencēξ is well-defined and unique. Note
also from the proof of Lemma 3 that̄ξ = ξ∞ := limk→∞ ψ(k,ξ ,s(·),d(·)). Furthermore, ifξ̄ ∈ int(O∞),
then there exists a non-empty ball, centered aroundξ̄ , which is contained inO∞.

Robust asymptotic stability follows from Corollary 1 by defining

ζ := ξ − ξ̄ , w := E (d− d̄)+F (s− s̄) .

Hence, we can write the closed-loop system dynamics in termsof the “shifted” variables asζ + =AK ζ +w.
The proof is completed by noting that limk→∞ w(k) = 0.

E Proof of Theorem 3

Though a result, similar to the one stated here, appears to bewell-known [17, Sect. 4.2], we have been
unable to find a detailed proof in the literature. Classical robust “open-loop” receding horizon control [7,
Sect. 4.5] is well-known to exhibit “infeasibility” problems if the plant is open-loop unstable and no pre-
stabilizing policy is used in the predictions [22]. However, it is a remarkable fact that one can remove this
problem by optimizing over a sequence of perturbations to a pre-stabilizing control law. To show that this
is indeed still true for the control algorithm proposed in this paper, we present a detailed proof.

It follows trivially from Assumption 5 thatX0 contains the origin in its interior. The rest of the proof is by
induction.

Let the plant statex ∈ Xv
i , wherei ∈ {1, . . . ,N− 1}, the controller stateσ be such thatVi(ξ ,s) is non-

empty andvi := (v0, . . . ,vi−1) ∈ Vi(ξ ,s) be an admissible perturbation sequence of lengthi. Also let
si−1 := (s1, . . . ,si−1) ∈ S i−1 and di := (d0, . . . ,di−1) ∈ D i be a setpoint and a disturbance admissible
sequences of lengthi −1 andi, respectively.

22



From the definition ofVi(ξ ,s), it follows thatχ(i,ξ ,vi ,s,si−1,di)∈O∞ for all si−1 ∈S i−1 and alldi ∈D i .
Recall thatO∞ is disturbance invariant and constraint-admissible for the closed-loop system (27), henceO∞
is disturbance invariant and constraint-admissible for system (37) under the infinite perturbation sequence
{v(k)}∞

k=0 := {0,0, . . .}.

It follows that if χ(i,ξ ,vi ,s,si−1,di) ∈ O∞ for all si−1 ∈ S i−1 and alldi ∈ D i , then the solutionχ(i +
1,ξ ,(vi ,0),s,si ,di+1) ∈ O∞ for all si ∈ S i and alldi+1 ∈ D i+1.

This implies that ifvi ∈ Vi(ξ ,s), then(vi ,0) ∈ Vi+1(ξ ,s). Hence, ifVi(ξ ,s) is non-empty, thenVi+1(ξ ,s)
is non-empty. It follows from the definition ofXv

i that if x∈ Xv
i , thenx∈ Xv

i+1, henceXv
i ⊆ Xv

i+1.

Using similar arguments as above, the result is completed bynoticing thatX0 ⊆ Xv
1 .

F Proof of Lemma 4

A similar result, for robust receding horizon controllers that do not provide offset-free control, is well-
known [17, Rem. 3]. However, since different assumptions are made in this paper, a detailed proof is
included. As will be seen, the proof is slightly involved.

From (20b) we can write
x̄∗(ξ ,s) = Ax̄∗(ξ ,s)+Bū∗(ξ ,s)+(x− x̂+ d̂) ,

which, subtracted from (44b), leads to:

x̃k+1− x̄∗(ξ ,s) = A(x̃k− x̄∗(ξ ,s))+B(ũk− ū∗(ξ ,s)) , ∀k∈ {0,1, . . . ,N−1} . (69)

Let

wk := x̃k− x̄∗(ξ ,s) , ∀k∈ {0, . . . ,N} ,

ρk := ũk− ū∗(ξ ,s) , ∀k∈ {0, . . . ,N−1} .

Notice that it immediately follows from (44c) thatρk = Kwk +vk. Hence, (69) can be rewritten as

wk+1 = Awk +Bρk = (A+BK)wk +Bvk = AKwk +Bvk ,

whereAK := A+BK.

We will now proceed to show that (a similar relation for the case ofN = ∞ is given in [17, Rem. 3]):

VN(ξ ,s,v) = wT
NPwN +

N−1

∑
k=0

wT
k Qwk +ρT

k Rρk = wT
0 Pw0 +

N−1

∑
k=0

vT
k (R+BTPB)vk = wT

0 Pw0 +JN(v) .

As a first step, note that

VN(ξ ,s,v) = wT
NPwN +

N−1

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk)

= (AKwN−1 +BvN−1)
TP(AKwN−1 +BvN−1)

+wT
N−1QwN−1 +(KwN−1 +vN−1)

TR(KwN−1 +vN−1)

+
N−2

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk)

= wT
N−1(Q+KTRK+AT

KPAK)wN−1 +vT
N−1(R+BTPBT)vN−1

+2wT
N−1(K

TR+AT
KPB)vN−1 +

N−2

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk) .
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From Assumption 6,P is the solution of the Riccati equation, hence we can write (after simple algebraic
manipulations) that

P = Q+KTRK+AT
KPAK .

Moreover, notice that

KTR+AT
KPB= −ATPB(R+BTPB)−1R+(A−B(R+BTPB)−1BTPA)TPB

= −ATPB(R+BTPB)−1R+ATPB−ATPB(R+BTPB)−1BTPB

= ATPB
[
Im− (R+BTPB)−1(R+BTPB)

]

= 0.

Thus, we can write:

VN(ξ ,s,v) = vT
N−1(R+BTPB)vN−1 +wT

N−1PwN−1 +
N−2

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk) .

In a similar way we can show that

wT
N−1PwN−1 +

N−2

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk) = vT
N−2(R+BTPB)vN−2 +wT

N−2PwN−2+

N−3

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk) ,

obtaining that

VN(ξ ,s,v) = vT
N−1(R+BTPB)vN−1 +vT

N−2(R+BTPB)vN−2 +wT
N−2PwN−2

+
N−3

∑
k=0

wT
k Qwk +(Kwk +vk)

TR(Kwk +vk) .

By repeating these calculations to replace all terms in the sum we finally obtain

VN(ξ ,s,v) =
N−1

∑
k=0

vT
k (R+BTPB)vk +wT

0 Pw0 = JN(v)+wT
0 Pw0 .

The fact that (54) holds, trivially comes from the observation thatVN(ξ ,s,v) andJN(v) differ from each
other by a term, independent of the decision variablev, i.e. (x− x̄∗(ξ ,s))TP(x− x̄∗(ξ ,s)).

G Proof of Lemma 5

The proof for the first part is similar to the proof of [17, Lem.7]. However, since different assumptions are
made in this paper, a detailed proof is included.

AssumeVN(ξ ,s) is non-empty and letv∗(ξ ,s) :=
(
v∗0(ξ ,s), . . . ,v∗N−1(ξ ,s)

)
be the associated minimizer of

problemPN(ξ ,s). Consider also the candidate perturbation sequence for theaugmented stateξ + and the
setpoints+ at the next time instant, i.e.

ṽ(ξ ,s) :=
(
v∗1(ξ ,s), . . . ,v∗N−1(ξ ,s),0

)
.

Using similar arguments as in the proof of Theorem 3, given the set of possible augmented statesf (ξ ,s,D)

at the next time instant, it follows that ifξ + ∈ f (ξ ,s,D), thenṽ(ξ ,s) is an admissible input perturbation
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sequence for alls+ ∈ S , i.e. ṽ(ξ ,s) ∈ VN( f (ξ ,s,d),s+) for all s+ ∈ S and alld ∈ D . This proves that
if VN(ξ (0),s(0)) is non-empty, thenVN(ξ (k),s(k)) is non-empty for allk ∈ {1,2, . . .} and all allowable
setpoint and disturbance sequences.

Note that the second part of the proof, except for the last fewlines, is similar to the proof of [17, Thm. 8].
Once again, since different assumptions are made in this paper, a detailed proof is included.

If we let J∗N(ξ ,s) := JN(v∗(ξ ,s)), then it is clear that

J∗N(ξ ,s) = JN(v∗(ξ ,s)) ≥ JN(ṽ(ξ ,s)) ≥ JN(v∗(ξ +,s+)) = J∗N(ξ +,s+)

for all ξ + ∈ f (ξ ,s,D) and alls+ ∈ S . This implies that, for all allowable setpoint and disturbance se-
quences, the sequence{J∗N(ξ (k),s(k))}∞

k=0 is a non-negative, non-increasing sequence. Hence, the se-
quence converges to some non-negative value, which impliesthat

lim
k→∞

J∗N(ξ (k),s(k))−J∗N(ξ (k+1),s(k+1)) = 0.

However, we can write (recalling thatW is positive definite)

0≤ v∗0(ξ (k),s(k))TWv∗0(ξ (k),s(k)) = J∗N(ξ (k),s(k))−JN(ṽ(ξ (k),s(k)))

≤ J∗N(ξ (k),s(k))−J∗N(ξ (k+1),s(k+1)) ,

which implies that
lim
k→∞

v∗0(ξ (k),s(k))TWv∗0(ξ (k),s(k)) = 0.

SinceW is positive definite, it follows that

lim
k→∞

v∗0(ξ (k),s(k)) = 0.

H Proof of Theorem 4

Sufficiency.Suppose thatx(0) ∈ Xv
N, then it immediately follows from (48) that for any initial setpoint

s(0) ∈ S one can choose a controller stateσ(0) such thatVN(ξ (0),s(0)) 6= /0 and hencePN(ξ (0),s(0))

has a solution. This implies from Lemma 5 we have thatVN(ξ (k)) 6= /0 for all k∈ N and also that

v∞ := lim
k→∞

v(k) := lim
k→∞

v∗0(ξ (k),s(k)) = 0. (70)

The fact that (10a) holds can now be shown exactly as in the proof of Lemma 3, since from (37) and (70)
it follows that

lim
k→∞

φ(k,ξ ,s(·),d(·)) = AK ξ∞ +Bv∞ +E d̄+F s̄

= AK ξ∞ +E d̄+F s̄

= A ξ∞ +Bu∞ +E d̄

= ξ∞,

in whichu∞ = K ξ∞ +L s̄+v∞ = K ξ∞ +L s̄.

The fact that (10b) holds follows trivially from Lemma 5 and the definition ofVN(·).

Necessity.This is obvious because ifx(0) 6∈ Xv
N, then we either have thatx(0) 6∈ X or that there exists an

s(0) ∈ S such that for allσ(0) ∈ R
2n, VN(ξ (0),s(0)) = /0 and hence the control input is undefined at time

0.
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Finally, robust asymptotic stability can be shown in a similar fashion as in the proof of Theorem 2. This is
because it is easy to show that, for anyξ ∈ O∞, the optimal perturbationv∗0(ξ ,s) = 0 for all s∈ S . Hence,
we can write the closed-loop system dynamics in a neighborhood of ξ̄ , in terms of the “shifted” variables,
asζ + = AK ζ +w.

Note that the condition that̄ξ ∈ int(O∞) is fundamental to the proof; we do not yet have a method for
relaxing this assumption. If̄ξ is on the boundary ofO∞, then it is possible that the optimal perturbation
v∗0(ξ ,s) is non-zero in a neighborhood of̄ξ ; a non-zerov∗0(ξ ,s) may “destabilize” the system for a subset
of initial states in a neighborhood of̄ξ (though robust convergence tōξ is, of course, still guaranteed).

I Computation of Matrices in Section 4.2

Let the polyhedraX , U andO∞ be defined by

X := {x∈ R
n | Sxx≤ bx} , (71)

U := {u∈ R
m | Suu≤ bu} , (72)

O∞ :=
{

ξ ∈ R
3n

∣
∣ Sξ ξ ≤ bξ

}
, (73)

whereSx ∈R
qx×n, Su ∈R

qu×m, Sξ ∈R
qξ×3n, bx ∈R

qx, bu ∈R
qu, bξ ∈R

qξ and let the matricesTx ∈R
qx×3n,

Tu ∈ R
qu×3n andTs ∈ R

qu×p be defined as

Tx :=
[
Sx 0

]
, Tu := SuK , Ts := SuL . (74)

Given the above, it follows from (41) that

VN(ξ ,s) =

{

v ∈ R
mN

∣
∣
∣
∣
∣

ξ0 = ξ , s0 = s, Txξk ≤ bx, k = 1, . . . ,N−1, Sξ ξN ≤ bξ and

Tuξk +Tssk +Suvk ≤ bu, k = 0, . . . ,N−1 for all s∈ S
N−1, d ∈ D

N

}

. (75)

Let
q := (N−1)qx +Nqu +qξ (76)

and the matricesL ∈ R
q×mN, M ∈ R

q×(N+1)3n, Ms ∈ R
q×(N−1)p, Ms ∈ R

q×p be given by

L :=

[
0

IN ⊗Su

]

, Ms :=

[
0

IN−1⊗Ts

]

, Ms :=

[
0

1̃N ⊗Ts

]

, (77a)

M :=





0 IN−1⊗Tx 0
0 0 Sξ
0 0 0



+





0 0
0 0

IN ⊗Tu 0



 . (77b)

If we let the block vectorsb∈ R
q andx ∈ R

3n(N+1) be defined as

b :=





1N−1⊗bx

bξ
1N ⊗bu



 , x :=






ξ0
...

ξN




 , (78)

then it is easy to verify from (75) that

VN(ξ ,s) =
{

v ∈ R
mN

∣
∣ ξ0 = ξ , Lv+Mx+Mss+Mss≤ b for all s∈ S

N−1, d ∈ D
N }

. (79)
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If we now let the block matricesA ∈ R
3n(N+1)×3n, B ∈ R

3n(N+1)×mN, E ∈ R
3n(N+1)×rN , Fs ∈ R

3n(N+1)×p

andFs ∈ R
3n(N+1)×p(N−1) be defined as

A =











I
AK

A 2
K

...
A N

K











, B =











0 0 . . . 0
B 0 . . . 0

AK B B . . . 0
...

...
.. .

...
A

N−1
K

B A
N−2
K

B . . . B











, E =











0 0 . . . 0
E 0 . . . 0

AK E E . . . 0
...

...
.. .

...
A

N−1
K

E A
N−2
K

E . . . E











, (80a)

Fs =











0
F

AK F

...
A

N−1
K

F











, Fs =











0 . . . 0
0 . . . 0
F . . . 0
...

...
...

A
N−2
K

F . . . F











, (80b)

then it follows that
x = Aξ0 +Bv+Ed+Fss+Fss. (81)

Finally, by substituting (81) into (79) it follows that

VN(ξ ,s) =
{

v ∈ R
mN

∣
∣
∣ Fv ≤ b+Gdd+Gss+Hξ ξ +Hss for all s∈ S

N−1, d ∈ D
N

}

, (82)

where

F := L+MB, Gd := −ME, Gs := −MFs−Ms, Hξ := −MA, Hs := −MFs−Ms. (83)
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