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Abstract— This paper provides a solution to the problem of
computing a robustly positively invariant outer approximation
of the minimal robustly positively invariant set for a discrete-
time, linear, time-invariant system. It is assumed that the
disturbance is additive and persistent, but bounded.

Keywords: Set invariance, constrained control, robust con-
trol, linear systems.

I. I NTRODUCTION AND NOTATION

Set invariance plays a fundamental role in the control of
constrained systems; see for instance [1], [2]. An important
problem is how to compute theminimal robustly positively
invariant (mRPI) set for a given discrete-time LTI system
with additive state disturbances [3, Sect. IV]. The mRPI set
is used as a target set in robust time-optimal control [4], inthe
design of robust predictive controllers [5] and in understand-
ing the properties of themaximalrobustly positively invariant
set [3], [6]. The only results that allow one to compute the
mRPI set exactly are given in [3, Rem. 4.2] and [4, Thm. 3],
where it is assumed that the system dynamics are nilpotent.
This paper presents new results that allow one to compute
a robustly positively invariant, outer approximation of the
mRPI set. A more detailed exposition and all proofs for the
results stated in this paper can be found in [7].

The set of strictly positive integers is denoted byN+ ,

{1,2, . . .}. ‖M‖p and‖v‖p are thep-norms of the matrixM
and vectorv, respectively. The∞-norm ball inR

n (hypercube)
of sizer ≥ 0 is defined asB∞(r) , {x∈ R

n | ‖x‖∞ ≤ r }. The
i’th standard basis vectorei ∈ R

n in the Euclidean space has
one as thei’th component and zero as all other components.
If P and Q are subsets ofRn, then the Minkowski (vector)
sum isP⊕Q , {p+q | p∈ P, q∈ Q}. The set

⊕k
i= j Pi is

the Minkowski sum of the sets{Pj , . . . ,Pk}.

II. PROBLEM FORMULATION

Consider the discrete-time, linear, time-invariant system:

x+ = Ax+w, (1)

wherex∈ R
n is the current state,x+ is the successor state,

w ∈ W is an unknown, additive and persistent disturbance.
The standing assumptions are that the matrixA ∈ R

n×n is
strictly stable (the spectral radiusρ(A) < 1) and that the set
W is a convex, compact subset inRn containing the origin
in its interior.

Definition 1: Ω ⊂ R
n is a robustly positively invariant

(RPI) set of (1) ifAx+w∈ Ω for all x∈ Ω and allw∈W.
Definition 2: The minimal robustly positively invariant

(mRPI) setF∞ of (1) is the set inR
n that is contained in

every closed RPI set of (1).
It is possible to show [3, Sect. IV] that the mRPI setF∞

exists, is compact, contains the origin in its interior and is
given by F∞ =

⊕∞
i=0AiW. SinceF∞ is a Minkowski sum of

infinitely many terms, it is generally impossible to obtain
an explicit characterization of it. However, as noted in [3,
Rem. 4.2], it is possible to show that if there exist an integer
s ∈ N+ and a scalarα ∈ [0,1) such thatAs = αI , then
F∞ = (1−α)−1⊕s−1

i=0 AiW. It therefore follows trivially [4,
Thm. 3] that if A is nilpotent with indexs (As = 0), then
F∞ =

⊕s−1
i=0 AiW.

In this paper, we relax the assumption that there exists an
s∈ N+ and a scalarα ∈ [0,1) such thatAs = αI . Since we
can no longer computeF∞ exactly, we address the problem
of computing an RPI setF(α,s) that contains the mRPI set
F∞. We conclude with some remarks on computational issues
if W is a polytope given by a finite set of affine inequalities.

III. M AIN RESULTS

Proposition 1: [6] If the integer s∈ N+ and scalarα ∈
[0,1) satisfy

AsW ⊆ αW, (2)

then

F(α,s) , (1−α)−1
s−1
⊕

i=0

AiW

is a convex, compact, RPI set of (1) containingF∞.
Clearly,F(α0,s)⊂ F(α1,s)⇔ α0 < α1 for a givens. Note

also that if A is not nilpotent, thenF(α,s0) ⊂ F(α,s1) ⇔
s0 < s1 for a given α. These observations motivate the
following discussion, which explains how one can obtain a
better approximation of the mRPI setF∞, given an initial pair
(α,s).

Let

so(α) , inf
s∈N+

{s | AsW ⊆ αW} , (3a)

αo(s) , inf
α∈[0,1)

{α | AsW ⊆ αW} (3b)



be the smallest values ofs and α such that (2) holds for a
given α and s, respectively. Clearly,α0(s) → 0 as s→ ∞.
Note that s0(α) → ∞ as α → 0 if and only if A is not
nilpotent. However, sinceA is strictly stable andW is a
compact set containing the origin in its interior, the infimum
in (3a) is guaranteed to exist and be contained inN+ for any
choice ofα ∈ (0,1). The infimum in (3b) is also guaranteed
to exist and be contained in[0,1) if s is sufficiently large.

By a process of iteration, one can use the above definitions
and results to compute a pair(α,s) such thatF(α,s) is
a sufficiently good RPI, outer approximation ofF∞. For
example, by starting withs= 1, one can increments until
there exists anα ∈ [0,1) such that (2) holds. If necessary,
one can increases until F(s,αo(s)) is sufficiently small.
Alternatively, one can take an initial value forα, compute
s∗ , so(α), proceed to computeα∗ , αo(s∗) and test whether
F(α∗,s∗) is small enough. It is clear that this iteration
results inF∞ ⊆ F(α∗,s∗) ⊆ F(α,s∗) ⊆ F(α,s). If F(α∗,s∗)
is not small enough, then this procedure could be restarted
by decreasingα. Of course, any other iteration can be
implemented until a fixed point is reached or a sufficiently
small F(α,s) has been obtained.

Because of the iterative nature of computing a suitable
F(α,s) and the fact thatso(α) may be large, it is desirable
to have upper bounds onso(α) and the volume ofF(α,s)
that are easy to compute:

Proposition 2: Let βin , maxβ≥0{β | B∞(β ) ⊆W} and
βout, minβ≥0{β | W ⊆ B∞(β )}. Let A be diagonizable with
A=VΛV−1, whereΛ is a diagonal matrix of the eigenvalues
of A, andρ(A) ∈ (0,1). If s∈ N+ andα ∈ (0,1) satisfy

s≥ ln[αβin/(βout‖V‖∞‖V
−1‖∞)]/ lnρ(A), (4)

thenF(α,s) is a convex, compact, RPI set of (1) containing
F∞. Furthermore, the setF(α,s) is contained in the∞-norm
ball (hypercube)B∞(η), where

η , βout‖V‖∞‖V
−1‖∞(1−ρ(A)s)/[(1−α)(1−ρ(A))].

Clearly, anys satisfying (4) is a (possibly conservative)
upper bound forso(α) and η could be used to obtain a
(possibly conservative) upper bound on the size ofF(α,s).

IV. COMPUTATIONAL RESULTS IFW IS A POLYTOPE

Before proceeding, recall that thesupport function[3] of
a setZ ⊂ R

m, evaluated ata ∈ R
m, is hZ(a) , supz∈Z aTz.

Clearly, if Z is a polytope given by a finite set of affine
inequalities, thenhZ(a) is finite and can be computed by
solving an LP. Recall also that ifW is a polytope, then
testing whether (2) holds can be implemented by evaluating
the support function ofW at a finite number of points [2],
[3]. The setF(α,s) can then be computed using standard
algorithms for computing the Minkowski sum of polytopes.

This section therefore considers the case when the setW
is a polytope given byW ,

{

w∈ R
n

∣

∣ f T
i w≤ gi , i ∈ I

}

,

where fi ∈ R
n, gi ∈ R andI is a finite index set. It is easy

to show that (2) holds if and only ifhW((As)T fi)≤αgi for all
i ∈I . This observation implies thatso(α) andαo(s) can be
computed efficiently by solving a finite number of suitably-
defined LPs. For example, recall thatW contains the origin in
its interior if and only ifgi > 0 for all i ∈I . It then follows
that αo(s) = maxi∈I hW((As)T fi)/gi .

In a similar fashion as above, it is also easy to check
whether the setF(α,s) (and henceF∞) is contained in a

given polyhedronX ,

{

x∈ R
n

∣

∣

∣
cT

j x≤ d j , j ∈ J
}

, where
c j ∈ R

n, d j ∈ R and J is a finite index set,with-
out having to compute F(α,s) explicitly. This is because
the inclusion F(α,s) ⊆ X holds if and only if hW ((1−
α)−1[A0 · · · As−1]Tc j)≤ d j for all j ∈J , whereW ,Ws ,

W×·· ·×W. Proceeding in a similar fashion, it is possible
to show thatηo(α,s) , minη≥0{η | F(α,s) ⊆ B∞(η)} =
maxi∈{1,...,n}hW (±(1−α)−1[A0 · · · As−1]Tei) is the size of
the smallest∞-norm ball (hypercube) containingF(α,s),
henceηo(α,s) can be computed by solving 2n LPs.

We conclude this paper by referring back to Proposition 2.
It is easy to show [8, Prop. 2] thathB∞(β )( fi) = β‖ fi‖1, hence
βin = mini∈I gi/‖ fi‖1. Note also that one can computeβout

by solving 2n LPs, sinceβout = maxi∈{1,...,n}hW(±ei).
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