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Invariant approximations of the minimal robust
positively invariant set

S.V. Rakovíc, E.C. Kerrigan, K.I. Kouramas and D.Q. Mayne

Abstract— This paper provides results on approximating the minimal
robust positively invariant (mRPI) set (also known as the 0-reachable set)
of an asymptotically stable discrete-time linear time-invariant system. It
is assumed that the disturbance is bounded, persistent and acts additively
on the state and that the constraints on the disturbance are polyhedral.
Results are given that allow for the computation of a robust positively
invariant, outer approximation of the mRPI set. Conditions are also given
that allow one to a priori specify the accuracy of this approximation.

Index Terms— Set invariance, invariant approximations, robust control,
linear systems.

I. I NTRODUCTION

Set invariance plays a fundamental role in control [1]. The focus
of this paper is on theminimal robust positively invariant (mRPI)
set, also often referred to as the0-reachable set[2], i.e. the set of
states that can be reached from the origin under a bounded state
disturbance. The mRPI set is important for performance analysis
and synthesis of controllers for uncertain systems [1, Sects. 6.4–6.5]
and for computing themaximal robust positively invariant (MRPI)
set [3]. Set invariance is fundamental in the synthesis of reference
governors [4], [5] and predictive controllers [6]–[9] with guaranteed
invariance, stability and convergence properties. The mRPI set is also
a suitable target set in robust time-optimal control [10]–[13] and plays
an integral part in a novel robust predictive control method, recently
proposed in [14].

Despite the wide-spread use of the mRPI set in control, there are
still a number of unresolved issues. As pointed out in [1, Sects. 6.4–
6.5] and the survey paper [2], one of the more important outstanding
problems is how to compute anexact representation of the mRPI
set. To the best of our knowledge, the only results that allow for the
exact computation of the mRPI set are given in [13, Thm. 3] and [15,
Sect. 3.3], where the restrictive assumption is made that the system
dynamics are nilpotent.

For the more general case, where the dynamics are not nilpotent,
it is only possible to compute anapproximation to the mRPI set
and the reader is referred to [1, Sects. 6.4–6.5] and [2] for a review
of methods on how this can be achieved. However, though these
methods allow for the approximation of the mRPI set, they do not
allow for the computation of aninvariant approximation to the mRPI
set. Since reference governors, predictive controllers and time-optimal
controllers use invariant sets, it is important that the approximation
of the mRPI set be invariant. The approximation methods reviewed
in [1, Sects. 6.4–6.5] and [2] are clearly inadequate for our purpose.
Hence, the aim of this paper is to provide a solution to this problem
by providing a number of new results that allow for the computation
of a robust positively invariantapproximation of the mRPI set. We
also give results that allow one to specifya priori an upper bound
on the error of this approximation.

This paper is organized as follows.§II is concerned with def-
initions, existing results and the problem formulation.§III deals
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with the problem of calculating a robust positively invariant (RPI)
approximation of the mRPI set for linear systems with bounded
state disturbances.§IV shows how the results can be implemented
efficiently if the disturbance set is a polytope; an illustrative example
is also provided. Finally,§V presents some conclusions. In order to
keep the presentation as transparent as possible, all proofs are given
in the appendix. A more detailed exposition and extension of the
results in this paper can be found in the technical report [16].

NOTATION: Let N , {0, 1, 2, . . .} be the set of non-negative
integers andN+ , {1, 2, . . .}. Let B

n
p (r) , {x ∈ R

n | ‖x‖p ≤ r}
be ap-norm ball inR

n, wherer ≥ 0. Given two setsU andV, such
thatU ⊂ R

n andV ⊂ R
n, the Minkowski (vector) sum is defined by

U ⊕V , {u + v | u ∈ U , v ∈ V}, int(U) denotes the interior ofU .
Given the sequence of sets{Ui ⊂ R

n}b
i=a, we denote

⊕b

i=a
Ui ,

Ua ⊕ · · · ⊕ Ub. The setMW , {w(·) | w(k) ∈ W, ∀k ∈ N} is
the set of all infinite sequences whose elements take on values in
W ⊂ R

n (equivalently,MW is the set of all mapsw : N → W ).

II. PRELIMINARIES AND EXISTING RESULTS

We consider the following autonomous discrete-time linear time-
invariant (DLTI) system:

x+ = Ax + w, (1)

wherex ∈ R
n is the current state,x+ is the successor state andw ∈

R
n is an unknown disturbance. We make the standing assumption

that A ∈ R
n×n is a strictly stable matrix (all the eigenvalues ofA

are strictly inside the unit disk). The disturbancew is contained in
a convex and compact setW ⊂ R

n that contains the origin. Since
the system is time-invariant, current time can always be taken to be
zero. We denote byφ(k, x, w(·)) the solution to (1) at time instantk,
given that the initial state (at time0) is x and the infinite disturbance
sequence isw(·) , {w(0), w(1), . . .}.

First we recall the following well-known definition [1]:
Definition 1 (RPI set):The setΩ ⊂ R

n is a robust positively
invariant (RPI) set of (1) if Ax + w ∈ Ω for all x ∈ Ω and all
w ∈ W , i.e. if and only ifAΩ ⊕ W ⊆ Ω.

Given a setX, the solution satisfiesφ(k, x, w(·)) ∈ X at all
time instantsk ∈ N and for all allowable disturbance sequences
w(·) ∈ MW if and only if there exists an RPI setΩ that is contained
in X and the initial statex is in Ω [1].

Definition 2 (Minimal RPI set):The minimal robust positively in-
variant (mRPI) setF∞ of (1) is the RPI set inRn that is contained
in every closed RPI set of (1).

It is possible to show [3, Sect. IV] that the mRPI setF∞ exists,
is unique, compact and contains the origin and that the zero initial
condition response of (1) is bounded byF∞, i.e.φ(k, 0, w(·)) ∈ F∞

for all w(·) ∈ MW and all k ∈ N. It follows, from linearity and
asymptotic stability of (1), thatF∞ is the limit set of all trajectories
of (1).

In order to quantify a “good” approximation, we introduce:
Definition 3 (ε-approximations):Given a scalarε > 0 and a set

Ω ⊂ R
n, the setΦ ⊂ R

n is an outer ε-approximationof Ω if
Ω ⊆ Φ ⊆ Ω ⊕ B

n
p (ε) and it is aninner ε-approximationof Ω if

Φ ⊆ Ω ⊆ Φ ⊕ B
n
p (ε).

For all s ∈ N+, let the (convex and compact) setFs be defined
by:

Fs ,

s−1
⊕

i=0

AiW, F0 , {0}. (2)

EachFs is contained inF∞ and ifA is strictly stable, thenFs → F∞

ass → ∞ [3, Sect. IV], i.e. for everyε > 0, there exists ans ∈ N
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such thatFs is an innerε-approximation ofF∞. Clearly, the mRPI
setF∞ is given by

F∞ =

∞
⊕

i=0

AiW. (3)

It is generally impossible to obtain an explicit characterization ofF∞

using (3) [2]. However, as noted in [15, Sect. 3.3] and [3, Rem. 4.2],
if there exist an integers ∈ N+ and a scalarα ∈ [0, 1) such that
As = αI, thenF∞ = (1 − α)−1Fs. It follows [13, Thm. 3] that if
A is nilpotent with indexs (As = 0), thenF∞ = Fs. If A is strictly
stable, but not nilpotent, then there does not exist a finites such
that Fs = F∞. As a consequence, none of the sets in the sequence
{Fs | s ∈ N} are RPI sets and it is impossible to compute an RPI,
inner approximation of the mRPI setF∞.

III. A PPROXIMATIONS OF THEM INIMAL ROBUST POSITIVELY

INVARIANT SET

In this section, we address the problem of computing an RPI,outer
approximation of the mRPI setF∞ whenA is not nilpotent. We also
address the problem of computing an RPI, outerε-approximation of
the mRPI setF∞ for a givenε > 0.

Before proceeding, we make a clear distinction between the results
reported in the recent conference paper [17] and this paper. By
applying the standard algorithm of [3], the authors of [17] propose to
compute themaximalrobust positively invariant set (MRPI) contained
in (1+ ε)Fs, for a givenε > 0 ands ∈ N. This set, if non-empty, is
an RPI, outer approximation of the mRPI setF∞. For a givenε > 0,
the algorithm is based on incrementing the integers until the MRPI
set contained in(1+ε)Fs is non-empty. This recursive calculation is
necessary, since the authors clearly state in [17, Rem. 6] that they do
not have a criterion for thea priori determination of the integers such
that the MRPI set contained in(1+ε)Fs is non-empty. In contrast to
this method, we propose to compute an RPI, outer approximation of
the mRPI setF∞ by first computing a sufficiently larges, computing
Fs and scaling the latter by a suitable amount. The proposed method
does not rely on the computation of MRPI sets and thus is simpler
and probably more efficient than the procedure reported in [17]. Our
first result is:

Theorem 1 (RPI set): [18] If 0 ∈ int(W ), then there exists a
finite integers ∈ N+ and a scalarα ∈ [0, 1) that satisfies

AsW ⊆ αW. (4)

If (4) is satisfied, then

F (α, s) , (1 − α)−1Fs (5)

is a convex, compact, RPI set of (1). Furthermore,0 ∈ int(F (α, s))
andF∞ ⊆ F (α, s).

It is easy to develop and implement an algorithm based on
Theorem 1. IfW is a polytope, standard “off-the-shelf” optimization
and computational geometry software may be used (See§IV).

Clearly F (α, s), as defined above, is an RPI, outer approximation
of the mRPI setF∞. However, the former could be a very poor
approximation of the latter. We therefore proceed to address the
question as to whether, in the limit,F (α, s) tends to the true mRPI
setF∞ if we chooses sufficiently large and/or chooseα sufficiently
small. For this purpose, let

so(α) , min {s ∈ N+ | AsW ⊆ αW } , (6a)

αo(s) , min {α ∈ R | AsW ⊆ αW } (6b)

be the smallest values ofs andα such that (4) holds for a givenα
and s, respectively. The minimum in (6a) exists for any choice of
α ∈ (0, 1) and αo(s) ∈ [0, 1) only if s is sufficiently large. The

computation ofso(α) andαo(s) is easy ifW is a polytope given by
a set of affine inequality constraints (See§IV). Our next result is:

Theorem 2 (Limiting behavior of the RPI approximation):If 0 ∈
int(W ), then

(i) F (αo(s), s) → F∞ ass → ∞ and
(ii) F (α, so(α)) → F∞ asα ց 0.

Theorem 1 provides a way for the computation of an RPI,
outer approximation ofF∞ and Theorem 2 establishes the limiting
behavior of this approximation. However, for a given pair(α, s) that
satisfies (4), it is not immediately obvious whether or notF (α, s)
is a good approximation of the mRPI setF∞. Given a pair(α, s)
satisfying the conditions of Theorem 1, it can be shown (along similar
lines as in the proof of Theorem 3 in Appendix III) that if

ε ≥ α(1 − α)−1 max
x∈Fs

‖x‖p = α(1 − α)−1 min
γ

{

γ
∣

∣ Fs ⊆ B
n
p (γ)

}

(7)
then F∞ ⊆ F (α, s) ⊆ F∞ ⊕ B

n
p (ε). In other words,F (α, s) is an

RPI, outerε-approximation ofF∞ if ε satisfies (7).
Though this observation allows one to determinea posteriori

whether or notF (α, s) is a good approximation ofF∞, it is perhaps
more useful to have a result that allows one to determinea priori
how larges and/or how smallα need to be in order forF (α, s) to
be a sufficiently accurate approximation ofF∞. The following result
establishes that this is possible:

Theorem 3 (Error bound):If 0 ∈ int(W ), then for all ε > 0,
there exist anα ∈ [0, 1) and an associated integers ∈ N+ such
that (4) and

α(1 − α)−1Fs ⊆ B
n
p (ε) (8)

hold. Furthermore, if (4) and (8) are satisfied, thenF (α, s) is an RPI,
outerε-approximation of the mRPI setF∞.

Remark 1:Note that (7) and (8) are equivalent. IfW is a polytope
andp = ∞, then it is not necessary to computeFs in order to check
whether (8) holds (see§IV).

It is straightforward to develop a conceptual algorithm based on
Theorem 3. Note that (4) provides a lower bound onα such that
F (α, s) is guaranteed to be RPI and containF∞. In addition, the
conditions (7) and (8) give an upper bound onα such thatF (α, s)
is guaranteed to be an outerε-approximation ofF∞. The reader is
referred to Algorithm 1 in§IV for more details.

A whole collection of RPI, outerε-approximations of the mRPI set
F∞ can be computed; the complexity ofF (α, s) is highly dependent
on the eigenstructure ofA and the description ofW . However, for
a given error boundε, it is usually a good idea to find the smallest
value of the integers for which there exists anα ∈ [0, 1) such
that (4) and (8) hold. This is because, for a givenα, a lower value
of s generally results in a lower complexity for the description of
F (α, s). In contrast, for a givens, the value ofα does not affect the
complexity ofF (α, s).

Remark 2 (Origin is in the relative interior ofW ): The results in
this section can be extended to the more general case when the
interior of W is empty, but therelative interior of W contains the
origin (see [16]).

IV. EFFICIENT COMPUTATION IF W IS A POLYTOPE

This section presents results that allow for the efficient computation
of a priori upper bounds for the conditions presented in (4) and (8)
to hold. In particular, results are given that allow one to test whether
or not Fs is contained in a given polyhedronX without having to
computeFs explicitly. The interested reader is referred to [1], [3]
and [16] for information on the methods used to derive the results in
this section.
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The support function[3] of a setW ⊂ R
m, evaluated ata ∈ R

m,
is defined as

hW (a) , sup
w∈W

aT w. (9)

If W is a polytope (bounded and closed polyhedron), thenhW (a)
is finite. Furthermore, ifW is described by a finite set of affine
inequality constraints, thenhW (a) can be computed by solving
a linear program (LP). Testing whether (4) and (8) hold can be
implemented by evaluating the support function ofW at a finite
number of points [3], or by solving a single Phase I LP [1, Lem. 4.1].
The setFs (and henceF (α, s)) is easily computed using standard
computational geometry software for computing the Minkowski sum
of polytopes, such as [19] and [20].

Remark 3: If W , {Ed + c | ‖d‖∞ ≤ η }, whereE ∈ R
n×n

andc ∈ R
n, thenhW (a) = η‖ET a‖1 + aT c.

In order to be as general as possible, we will consider the case
whenW is in the formW , {w ∈ R

n | fT
i w ≤ gi, i ∈ I}, where

fi ∈ R
n, gi ∈ R and I is a finite index set. Following a standard

procedure [3] it is possible to show that

AsW ⊆ αW ⇐⇒ hW ((As)T fi) ≤ αgi, ∀i ∈ I. (10)

This observation allows for efficient checking of whether or not (4)
is satisfied. Hence, it permits the efficient computation ofso(α) and
αo(s). For example, recall thatW contains the origin in its interior
if and only if gi > 0 for all i ∈ I. It follows that

αo(s) = max
i∈I

hW ((As)T fi)/gi. (11)

It is also possible to check whether the setFs is contained in a
given polyhedronX , {x ∈ R

n | cT
j x ≤ dj , j ∈ J }, where

cj ∈ R
n, dj ∈ R andJ is a finite index set,without computingFs

explicitly:

Fs ⊆ X ⇐⇒

s−1
∑

i=0

hW ((Ai)T cj) ≤ dj , ∀j ∈ J . (12)

Thus,F (α, s) ⊆ X ⇔ Fs ⊆ (1 − α)X ⇔
∑s−1

i=0 hW ((Ai)T cj) ≤
(1 − α)dj , ∀j ∈ J .

One can also use the support function to computea priori an error
bound on the approximationF (α, s) if the ∞-norm is used to define
the error bound, i.e.p = ∞ in (8). Proceeding in a similar fashion
as above, it is possible to show that

M(s) , min
γ

{γ | Fs ⊆ B
n
∞(γ)}

= max
j∈{1,...,n}

{

s−1
∑

i=0

hW ((Ai)T ej),

s−1
∑

i=0

hW (−(Ai)T ej)

}

,

(13)

whereej is thej th standard basis vector inRn. If α ∈ (0, 1), then (8)
is equivalent toFs ⊆ α−1(1 − α)Bn

p (ε). Hence, ifp = ∞ in (8),
straightforward algebraic manipulation yields

α(1 − α)−1Fs ⊆ Bn
∞(ε) ⇐⇒ α ≤ ε/(ε + M(s)). (14)

Clearly, (11) is an easily-computed lower bound and (14) is an
easily-computed upper bound onα such thatF (α, s) is an RPI, outer
ε-approximation of the mRPI setF∞. We are now in a position to
put together a prototype algorithm for computing an RPI, outerε-
approximation ofF∞ if the∞-norm is used to bound the error. These
steps are outlined in Algorithm 1. In order to reduce computational
effort, note that in step 5 of Algorithm 1 it is not necessary to compute
∑s−2

i=0 hW ((Ai)T ej) and
∑s−2

i=0 hW (−(Ai)T ej) at each iteration.
These sums would have been computed at previous iterations. All
that is needed is to update these sums by computing and adding
hW ((As−1)T ej) andhW (−(As−1)T ej), respectively.

Algorithm 1 Computation of an RPI, outerε-approximation of the
mRPI setF∞

Require: A, W andε > 0
Ensure: F (α, s) such thatF∞ ⊆ F (α, s) ⊆ F∞ ⊕ B

n
∞(ε)

1: Choose anys ∈ N (ideally, sets ← 0).
2: repeat
3: Increments by one.
4: Computeαo(s) as in (11) and setα ← αo(s).
5: ComputeM(s) as in (13).
6: until α ≤ ε/(ε + M(s))
7: ComputeFs as the Minkowski sum (2) and scale it to give

F (α, s) , (1 − α)−1Fs.

Our illustrative example is a double integrator:

x+ =

[

1 1
0 1

]

x +

[

1
1

]

u + w (15)

with the additive disturbanceW ,
{

w ∈ R
2 | ‖w‖∞ ≤ 1

}

and
u = −[1.17 1.03]x. The setsFs, for s = 1, 2, . . . , 10, for the
example are shown in Figure 1 together with the setF (1.9·10−5, 10)
for which it was required thatε = 5 · 10−5 (see (8)); it is clear
that the sequence{Fs} is a monotonically non-decreasing sequence
and it converges toF∞ and thatF (1.9 · 10−5, 10) is a sufficiently
good approximation ofF∞, i.e. F (1.9 · 10−5, 10) satisfies that
F∞ ⊆ F (1.9 · 10−5, 10) ⊆ F∞ ⊕ B

2
∞(5 · 10−5).

−1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3
x space

{Fs}10
s=1

F (1.9 10−5, 10)

F1

F2

F3

Fig. 1. Approximations ofF∞: SetsFs andF (α, s)

V. CONCLUSIONS

The reported novel results complement existing results and permit
the efficient computation of an RPI, outer approximation of the
minimal robust positively invariant set and allow one to specifya
priori the accuracy of the approximation. The presented results can
be exploited in the design of robust reference governors, predictive
controllers and time-optimal controllers for constrained, linear dis-
crete time systems subject to additive, but bounded disturbances.

APPENDIX I
PROOF OFTHEOREM 1

Existence of ans ∈ N+ and anα ∈ [0, 1) that satisfies (4)
follows from the fact that the origin is in theinterior of W and that
A is strictly stable. Convexity and compactness ofF (α, s) follows
directly from the fact thatFs (and henceF (α, s)) is the Minkowski
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sum of a finite set of convex, compact sets. LetG(α, j, k) ,

(1 − α)−1 ⊕k

i=j
AiW . It follows that

AG(α, 0, s − 1) ⊕ W = G(α, 1, s) ⊕ W (16a)

= (1 − α)−1AsW ⊕ G(α, 1, s − 1) ⊕ W (16b)

⊆ (1 − α)−1αW ⊕ W ⊕ G(α, 1, s − 1) (16c)

= [(1 − α)−1α + 1]W ⊕ G(α, 1, s − 1) (16d)

= (1 − α)−1W ⊕ G(α, 1, s − 1) = G(α, 0, s − 1). (16e)

In going from (16b) to (16c) we have used the fact thatP ⊆ Q ⇒
P ⊕ R ⊆ Q ⊕ R for arbitrary setsP ⊂ R

n, Q ⊂ R
n andR ⊂ R

n.
SinceF (α, s) = G(α, 0, s − 1), it follows that AF (α, s) ⊕ W ⊆
F (α, s) holds, henceF (α, s) is RPI. It follows trivially from the
definition of the mRPI set thatF (α, s) containsF∞. Note also that
0 ∈ int(F∞) if 0 ∈ int(W ).

APPENDIX II
PROOF OFTHEOREM 2

In order to talk about limits of sets, we recall the definition of the
Haussdorff metric:

Definition 4 (Hausdorff metric):If Ω and Φ are two non-empty,
compact sets inRn, then theHausdorff metricis defined as

δ(Ω, Φ) , max

{

sup
ω∈Φ

d(ω, Ω), sup
φ∈Ω

d(φ, Φ)

}

, (17)

whered(z,Z) , infy∈Z ‖z − y‖p.
We also need the following intermediate result [16]:
Lemma 1: If Φ is a convex and compact set inRn containing the

origin and α ∈ [0, 1), then δ(Φ, (1 − α)−1Φ) ≤ α(1 − α)−1M ,
whereM , supz∈Φ ‖z‖p is finite.

Recall that the sequence{Fs}
∞
s=0 is Cauchy [3, Sect. IV] so that

M∞ , lims→∞ supz∈Fs

‖z‖p is finite. SinceFs ⊆ F∞, ∀s ∈ N,
we have thatM(s) , supz∈Fs

‖z‖p ≤ M∞ < ∞ for all s ∈ N.
We can now proceed with the proof of Theorem 2:
(i) It follows from Lemma 1 thatδ(Fs, F (αo(s), s)) = δ(Fs, (1−

αo(s))−1Fs) ≤ αo(s)(1 − αo(s))−1M(s), whereM(s) ≤ M∞ <
∞ for all s ∈ N. Since αo(s) ց 0 as s → ∞, we get that
δ(Fs, F (αo(s), s)) → 0 as s → ∞. However, sinceF (αo(s), s) ⊇
F∞ ⊇ Fs for all s ∈ N andFs → F∞ ass → ∞, we conclude that
F (αo(s), s) → F∞ ass → ∞.

(ii) It follows from Lemma 1 thatδ(Fso(α), F (α, so(α))) =
δ(Fso(α), (1 − α)−1Fso(α)) ≤ α(1 − α)−1M(so(α)), where
M(so(α)) ≤ M∞ < ∞ for all α ∈ (0, 1), hence
δ(Fso(α), F (α, so(α))) → 0 as α ց 0. Note thatso(α) → ∞
as α ց 0. SinceF (α, so(α)) ⊇ F∞ ⊇ Fso(α) for all α ∈ (0, 1)
andFso(α) → F∞ asα ց 0, we conclude thatF (α, so(α)) → F∞

asα ց 0.

APPENDIX III
PROOF OFTHEOREM 3

We refer to the proof of Theorem 2 for the definition ofM∞. Let
ε > 0 and recall that0 < M∞ < ∞ and Fs ⊆ F∞ for all s ∈ N.
SinceFs andF∞ are convex and contain the origin, it follows that
α(1 − α)−1Fs ⊆ α(1 − α)−1F∞ for any s ∈ N and α ∈ [0, 1).
Note that the inclusionα(1 − α)−1F∞ ⊆ B

n
p (ε) is true if α(1 −

α)−1M∞ ≤ ε or, equivalently, ifα ≤ ε(ε + M∞)−1. Hence, (8) is
true for anys ∈ N andα ∈ [0, ᾱ], whereᾱ , ε(ε+M∞)−1 ∈ (0, 1).
Clearly, (4) is also true if we chooseα ∈ (0, ᾱ] ands = so(α). This
establishes the existence of a suitable couple(α, s) such that (4)
and (8) hold simultaneously.

Let (α, s) be such that (4) and (8) are true. SinceF (α, s) =
(1 − α)−1Fs is a convex and compact set that contains the origin,

F (α, s) = (1−α)−1Fs = (1+α(1−α)−1)Fs = Fs⊕α(1−α)−1Fs.
SinceFs ⊆ F∞ ⊆ F (α, s) ⊆ Fs ⊕B

n
p (ε) ⊆ F∞⊕B

n
p (ε), it follows

that F (α, s) is an RPI, outerε-approximation of the mRPI setF∞.
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