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Abstract

In this paper we develop an entirely new constructive global analysis methodology
for a class of hybrid systems known as Piecewise Linear Systems (PLS). This method-
ology consists of inferring global properties of PLS solely by studying their behavior
at switching surfaces associated with PLS. The main idea is to analyze impact maps,
i.e., maps from one switching surface to the next switching surface. These maps are
proven globally stable by constructing quadratic Lyapunov functions on switching sur-
faces. Impact maps are known to be “unfriendly” maps in the sense that they are highly
nonlinear, multivalued, and not continuous. We found, however, that an impact map
induced by an LTI flow between two switching surfaces can be represented as a linear
transformation analytically parametrized by a scalar function of the state. Moreover,
level sets of this function are convex subsets of linear manifolds. This representation
of impact maps allows the search for quadratic surface Lyapunov functions (SuLF) to
be done by simply solving a set of LMIs. Global asymptotic stability, robustness, and
performance of limit cycles and equilibrium points of PLS can this way be efficiently
checked. These new results were successfully applied to certain classes of PLS: relay
feedback, on/off and saturation systems. Although this analysis methodology yields
only sufficient criteria of stability, it has shown to be very successful in globally analyz-
ing a large number of examples with a locally stable limit cycle or equilibrium point.
In fact, it is still an open problem whether there exists an example with a globally
stable limit cycle or equilibrium point that cannot be successfully analyzed with this
new methodology. Examples analyzed include systems of relative degree larger than one
and of high dimension, for which no other analysis methodology could be applied. This
success in globally analyzing certain classes of PLS has shown the power of this new
methodology, and suggests its potential toward the analysis of larger and more complex
PLS.
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1 Introduction

It is often possible to linearize a system, i.e., to obtain a linear representation of its behavior.
That representation approximates the true dynamics well in a small region. For example,
the true equations of the pendulum are never linear but, for very small deviations (a few
degrees) they may be satisfactorily replaced by linear equations. In other words, for small
deviations, the pendulum may be replaced by a harmonic oscillator. This ceases to hold,
however, for large deviations and, in dealing with these, one must consider the nonlinear
equation itself and not merely a linear substitute. In this work, we are interested in a class
of nonlinear systems known as piecewise linear systems (PLS). PLS are characterized by a
finite number of linear dynamical models together with a set of rules for switching among
these models. Therefore, this model description causes a partitioning of the state space
into cells. These cells have distinctive properties in that the dynamics within each cell are
described by linear dynamic equations. The boundaries of each cell are in effect switches
between different linear systems. Those switches arise from the breakpoints in the piecewise
linear functions of the model.

The reason why we are interested in studying this class of systems is to capture discon-
tinuity actions in the dynamics from either the controller or system nonlinearities. On one
hand, a wide variety of physical systems are naturally modeled this way due to real-time
changes in the plant dynamics like collisions, friction, saturation, walking robots, etc. On
the other hand, an engineer can introduce intentional nonlinearities to improve system per-
formance, to effect economy in component selection, or to simplify the dynamic equations
of the system by working with sets of simpler equations (e.g., linear) and switch among
these simpler models (in order to avoid dealing directly with a set of nonlinear equations).

Although widely used, just a few years ago there were very few results available to
analyze PLS. The research in [9] took the first step in changing this. There, piecewise
quadratic Lyapunov functions are constructed by solving a set of linear matrix inequalities
(LMIs). There are, however, several problems with this approach, discussed in detail in
section 2, that motivate the development of new tools.

In [6], we introduced an entirely new methodology to globally analyze symmetric uni-
modal limit cycles1 of relay feedback systems. The idea consisted in finding a quadratic
Lyapunov function on a switching surface that can be used to prove that the associated
Poincaré map is contracting in some sense.

This paper generalizes the ideas from [6] to globally analyze PLS. In a similar way, the
main idea consists of finding quadratic Lyapunov functions on associated switching surfaces
that can be used to prove that impact maps, i.e., maps from one switching surface to the next
switching surface, are contracting in some sense. The notion of an impact map can be though
as a generalization of a Poincaré map. The novelty of this work comes from expressing
impact maps induced by an LTI flow between two hyperplanes as linear transformations
analytically parametrized by a scalar function of the state. Furthermore, level sets of
this function are convex subsets of linear manifolds with dimension lower than that of the
switching surfaces. This allows us to search for quadratic surface Lyapunov functions (SuLF)
by solving sets of LMIs using efficient computational algorithms. Contractions of certain
impact maps of the system can then be used to conclude about global stability, robustness,
and performance of PLS.

We will show that this new methodology can be used to not only globally analyze limit

1A limit cycle is unimodal if it only switches twice per cycle.
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cycles but also equilibrium points of PLS. For that, we analyze on/off and saturation systems
(sections 6 and 7, respectively), including those with unstable nonlinearity sectors for which
classical methods like Popov criterion, Zames–Falb criterion [20], IQCs [3, 10, 12, 13], fail
to analyze. In addition, the results in [5] and [4, chapter 8] show that this methodology can
also be efficiently used to analyze robustness and performance of PLS. Thus, the success
in globally analyzing stability, robustness, and performance of certain classes of PLS has
shown the power of this new methodology, and suggests its potential toward the analysis of
larger and more complex PLS.

This paper is organized as follows. In the next section, we motivate the need for new
analysis tools for PLS by explaining how available methods can be inefficient or even unable
to analyze many PLS. In section 3, we introduce the notion of impact maps, which are simply
maps between two switching surfaces. We show that impact maps induced by an LTI flow
can be represented as linear transformations analytically parametrized by a scalar function
of the state. This, in turn, allows us to relax the problem of checking quadratic stability of
impact maps to solving a set of LMIs, as explained in section 4. The results developed in
sections 3 and 4 are applied to globally analyze asymptotic stability of on/off and saturation
systems. These can be found in sections 6 and 7, respectively. Section 8 shows how less
conservative global stability conditions can be obtained. Conclusions and future work are
discussed in section 9 and, finally, technical details are considered in appendix.

2 Motivation

As discussed in introduction, there exist several tools to analyze PLS. One of the most
important consists of constructing piecewise quadratic Lyapunov functions in the state
space [8, 9, 15]. This method relaxes the problem to a solution of a finite dimensional set of
LMIs. There are, however, several drawbacks with this approach that motivates the need
for alternative methods to analyze PLS. These drawbacks are:

• Piecewise quadratic Lyapunov functions in the state space cannot be constructed to
analyze limit cycles.

• For most PLS, it is not possible to construct piecewise quadratic Lyapunov functions
with just the given natural partition of the system. In order to improve flexibility
of the method proposed in [9], a subdivision of partitions is typically necessary. The
analysis method, however, is efficient only when the number of partitions required
to prove stability is small. Example 2.1 shows that even for second order systems,
the construction of piecewise quadratic Lyapunov functions can be computationally
intractable due to the large number of partitions in the state space required for the
analysis.

• In general, for systems of order higher than 3, it is extremely hard to obtain a re-
finement of partitions in the state-space to efficiently analyze PLS using piecewise
quadratic Lyapunov functions. In other words, the method does not scale well with
the dimension of the system. In fact, only a few and specific examples of PLS of order
higher than 3 analyzed with this method have been reported.

• Existence of piecewise quadratic Lyapunov functions implies exponential stability of
the system. Thus, the approach proposed in [9] cannot prove asymptotic stability of
PLS when these are not exponentially stable.
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Example 2.1 Consider the PLS in figure 1 composed of two linear subsystems. On the
left side of the vertical axis—x2 axes—we have an unstable linear system and on the right
side we have a stable linear system parametrized by ε > 0. In this simple second order PLS,
we are interested in showing that the origin is globally asymptotically stable.

x2

x1
1 ε

1 ε 1

>0ε

x =          x x =                 x
1 101

11

Figure 1: PLS composed of an unstable and a stable linear systems

For this system, there is no global quadratic Lyapunov function. We then turn to find
piecewise quadratic Lyapunov functions. As seen in the figure, the PLS divides the state
space in two equal partitions. However, as we will see, in order to construct piecewise
quadratic Lyapunov functions, a much larger number of partitions is required to prove
stability of the origin.

We start with just the natural partition of the system. Using the software developed
by [9], no piecewise quadratic Lyapunov functions can be found this way. This was expected
from the same reason there is no global quadratic Lyapunov function. A more refined
partition of the state space is then required. This refinement must be supplied to the
software. We decided to partition the state space with lines through the origin, including
the x2 axes, and with each separated by an angle of 2π/k radius, where k is a positive
integer. This resulted in k equally sized partitions (see the left of figure 2 for k = 16). For
a given ε > 0, we tried successively k = 2, 4, 8, 16, 32, ... until we could successfully analyze
the system. The table in the center of figure 2 shows the smallest k required to analyze the
system as a function of ε.

x2

x1

x1

x2

>0.2

<0.05
0.05<    <0.2

k

?
32
16

0

∆1

∆ 0

∆ 2

0
ε

ε
ε

ε

Figure 2: State space partitioned in 16 equal cells (left); Maps from one switch to the next
switch (right)

This table clearly shows that as ε decreases, the required number of partitions for the
analysis of the PLS increases. For ε < 0.05, the number of required partitions is very
high and it becomes computationally intractable to prove stability of the origin using this
method. Note that even for large values of ε, the number of required partitions is 16,
although the original system is only divided in 2 partitions.

Note that this system is easily analyzed using SuLF without requiring extra switch-
ing surfaces. In fact, it is easy to show that the maps from one switch to the next are
quadratically stable for any ε > 0 (see the right side of figure 2).

Let A1 be the linear matrix for the stable system and A2 for the unstable one. For
a given ε > 0, both maps around the origin can be expressed as ∆1 = H1(t1)∆0 and
∆2 = H2(t2)∆1, where Hi(ti) = eAiti , for i = 1, 2. Since ∆i belong to the x2 axis, these
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can be parametrized by ∆i = Πδi, where Π′ = ( 0 1 ) and δi ∈ IR. Let Fi(ti) = Π′Hi(ti)Π.
Global asymptotic stability of the origin follows if both maps are quadratically stable. Thus,
we need to find p0 > 0 and p1 > 0 such that

F ′
1(t1)p1F1(t1) < p0 for all switching times t1

F ′
2(t2)p0F2(t2) < p1 for all switching times t2

Let q = p1/p0 > 0. Since the switching times are always ti = π for any initial condition on
the switching surface, stability follows if there exists a q > 0 such that [F1(π)]2 q < 1 and
[F2(π)]2 < q, or

[F2(π)]2 < q <
1

[F1(π)]2

Since, for any ε > 0, [F2(π)F1(π)]2 = e−2πε < 1, the following q

q =
[F2(π)F1(π)]2 + 1

2 [F1(π)]2
=

e−2πε + 1

2e2π

satisfies the stability conditions. Therefore, the origin is globally asymptotically stable for
all ε > 0.

The construction of piecewise quadratic Lyapunov functions for PLS proposed in [9]
imposes continuity of the the Lyapunov functions along switching surfaces. This means that
the intersection of two Lyapunov functions with a switching surface–one from each side–
defines a unique quadratic Lyapunov function on the switching surface. Hence, existence
of piecewise quadratic Lyapunov functions guarantee the existence of SuLF. The converse,
however, is not true. For instance, SuLF exist to analyze limit cycles [6], but no piecewise
quadratic Lyapunov functions exist in the state space.

Analysis of PLS at switching surfaces requires the understanding of system trajectories.
When a trajectory leaves a switching surface it will either not switch again or switch in
finite time (see figure 3). If the trajectory does not switch again then its behavior from
thereon is simply governed by a linear system. Thus, linear analysis tools can be applied
to this trajectory to check whether or not this will converge to an equilibrium point.

Figure 3: Possible scenarios for a trajectory entering a cell: not convergent or unstable,
stable, and switching trajectory

Things become more interesting if a trajectory leaving a switching surface does switch
in finite time. The immediate question is: what happens to the trajectory after it switches?
Will it switch again? Will it converge to some equilibrium point or limit cycle? These are
the type of questions we address in this paper. Thus, the first step will be to fully understand
a single map from one switching surface to the next switching surface (sections 3 and 4).
Then, PLS can be analyzed by combining the analysis of all switching maps associated with
the system (section 5).

Analysis of nonlinear systems at manifolds has been used by many researchers. The
so-called Poincaré map was introduced in order to reduce the study of an n-dimensional
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system to a discrete n − 1-dimensional system in a manifold (see, for example, [11] for an
introduction to Poincaré maps). The problem with Poincaré maps is that they are typically
nonlinear, not continuous, and multivalued. Thus, global analysis of PLS is rarely done
using these maps. This paper explains how these difficulties inherent to Poincaré maps can
be overcome to allow such maps to globally analyze PLS.

Note that all the drawbacks discussed above associated with the method proposed by [9],
based on piecewise quadratic Lyapunov functions, are not an issue for the classes of PLS
analyzed so far using SuLF. First, SuLF can analyze both limit cycles [6] and equilibrium
points (sections 6 and 7). Second, it is sufficient to consider only the natural partition of the
system, with no extra complexity added. Third, our new method scales with the dimension
of the system, and, finally, SuLF can be used to prove global asymptotic stability of PLS
that are not exponentially stable (see example 7.3).

3 Impact maps

In order to analyze PLS using SuLF, we first need to understand the behavior of the system
as this flows from one switching surface to the next switching surface. A useful notion that
we will use throughout this paper is that of impact map. An impact map is simply a map
from one switching surface to the next switching surface. Only after we understand the
nature of a single impact map can we look at a PLS as a whole, by combining all impact
maps associated with the PLS, to conclude about stability, robustness, and performance
properties of the system.

Consider the following affine linear time-invariant system

ẋ = Ax + B (1)

where x ∈ IRn, A ∈ IRn×n, and B ∈ IRn. Note that we are not imposing any kind of
restrictions on A. The matrix A is allowed to have stable, unstable, and pure imaginary
eigenvalues. Assume (1) is part of some PLS, and that (1) is defined on some open poly-
topical set X ⊂ IRn. Assume also a trajectory just arrived in a subset of the boundary2 of
X belonging to

S0 = {x ∈ IRn : C0x = d0}
and the system switches to (1). In this paper, we are interested in studying the impact map
from some subset of S0 to some subset of

S1 = {x ∈ IRn : C1x = d1}

also in the boundary of X. In this scenario, some subsets of S0 and S1 are switching surfaces
of the PLS.

By a solution of (1) we mean a function x defined on [0, t], with x(0) ∈ S0, x(t) ∈ S1,
x(τ) ∈ X̄ on [0, t]3, and satisfying (1). In this case, t is a switching time of the solution x
of (1) and we say a switch occurs at x(t).

Let Sd
0 be some polytopical subset of S0 where any trajectory starting at Sd

0 satisfies
x(t) ∈ S1, for some finite t ≥ 0, and x(τ) ∈ X̄ on [0, t]. Let also Sa

1 ⊂ S1 be the set of those
points x1 = x(t). The set Sa

1 can be seen as the image set of Sd
0 . We call Sd

0 the departure
set in S0 and Sa

1 the arrival set in S1 (see figure 4).

2The boundary of X is the set of all limit points p of X such that p 6∈ X.
3X̄ denotes the closure of X, i.e, the set X̄ = X ∪ {p| p is a limit point of X}.
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We are interested in studying the impact map, induced by (1), from x0 ∈ Sd
0 to x1 ∈

Sa
1 . Since both x0 and x1 belong to switching surfaces, they can be parametrized in their

respective hyperplanes. For that, let x0 = x∗
0 + ∆0 and x1 = x∗

1 + ∆1, where x∗
0 ∈ S0,

x∗
1 ∈ S1, and ∆0, ∆1 are any vectors such that ∆0 ∈ Sd

0 −x∗
0 and ∆1 ∈ Sa

1 −x∗
1. In this case,

C0∆0 = C1∆1 = 0. Note that x∗
0 and x∗

1 do not need to belong to Sd
0 and Sa

1 , respectively.
In fact, as we will see later, in many cases it will be convenient to choose x∗

0 ∈ S0 so that
x∗

0 6∈ Sd
0 . Define also x∗

0(t) as the trajectory of (1), starting at x∗
0, for all t ≥ 0. The impact

map of interest reduces to the map from ∆0 to ∆1 (see figure 4).

1Sa

S
1S

S

x1

x*1

∆ 0 ∆1

0

x*0
0
d

x0

x=Ax+B

Figure 4: Impact map from ∆0 ∈ Sd
0 − x∗

0 to ∆1 ∈ Sa
1 − x∗

1

Note that, in general, the impact map from ∆0 ∈ Sd
0 −x∗

0 to ∆1 ∈ Sa
1 −x∗

1 defined above
is multivalued and not continuous. This is illustrated in the following example.

Example 3.1 Consider a 3rd-order system given by

ẋ =





−1 0 0
0 −2 0
0 0 −3



 x +





1
1
1





with the switching surfaces defined above given by C0 = C1 = [−2 2 1], and d0 = 0.5,
d1 = −0.5. Let X = {x| d1 < C1x(t) < d0}. In the state space, the switching surfaces are
parallel to each other. Let x(0) = [−0.7 − 4.35 7.8]′ ∈ S0. The resulting C1x(t) can be
seen on the left of figure 5.

0 0.5 1 1.5 2 2.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

C x(t) 

d

Possible Switches

d0 

1 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

C x(t) 1 for different initial
conditions close to   *x 0 

Figure 5: Existence of multiple solutions (left); Map from ∆0 to ∆1 is not continuous (right)

When t ≈ 0.47, C1x(t) = d1 and C1ẋ(t−0) = 0. At this point, the trajectory can return
to X (dashed trajectory), or it can switch. This means that a switch can occur at either
t = 0.47 or t = 2.85, showing that the impact map is multivalued.

Now, let x∗
0 = x(0) and x∗

1 = x(0.47). The impact map from ∆0 to ∆1, as defined
above, is also not continuous since in a small enough neighborhood W ⊂ S1 of x∗

1, there is
no neighborhood W0 ⊂ S0 of x∗

0 such that every point in W0 is mapped in W (see the right
of figure 5). In this figure, we have two initial conditions in a small neighborhood of x∗

0.
One of these (in the figure, the one on the left) switches “close” to x∗

1 while the other (the
one of the right) switches “far” from x∗

1.
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Definition 3.1 Let x(0) = x∗
0 + ∆0. Define t∆0

as the set of all times ti ≥ 0 such that
the trajectory x(t) with initial condition x(0) satisfies C1x(ti) = d1 and x(t) ∈ X̄ on [0, ti].
Define also the set of expected switching times of the impact map from ∆0 ∈ Sd

0 − x∗
0 to

∆1 ∈ Sa
1 − x∗

1 as

T =
{

t| t ∈ t∆0
, ∆0 ∈ Sd

0 − x∗
0

}

For instance, in example 3.1, t∆0
= {0.47, 2.85} for the initial condition x(0).

For an impact map, once an initial condition ∆0 ∈ Sd
0 − x∗

0 is given, in order to find
an image ∆1 ∈ Sa

1 − x∗
1, we must first find an associated switching time t. Solving for t,

however, involves solving a transcendental equation. Solution to such equations cannot, in
general, be written in closed form, and numerical procedures are typically the only way to
solve for t. Once a switching time is found, we can finally find the corresponding ∆1.

Thus, in general, impact maps are highly nonlinear, multivalued, and not continuous.
This “non-friendly” nature of impact maps is the main reason why global analysis of PLS
has not been done before using SuLF. The following result, however, shows that this map
is not as “bad” as it looks, and opens the door to analysis of PLS at switching surfaces.

Theorem 3.1 Assume C1x
∗
0(t) 6= d1 for all t ∈ T . Define

w(t) =
C1e

At

d1 − C1x∗
0(t)

and let
H(t) = eAt + (x∗

0(t) − x∗
1) w(t)

Then, for any ∆0 ∈ Sd
0 − x∗

0 there exists a t ∈ T such that the impact map is given by

∆1 = H(t)∆0 (2)

Such t ∈ t∆0
is the switching time associated with ∆1.

This theorem says that maps between switching surfaces, induced by an LTI flow, can
be represented as linear transformations analytically parametrized by a scalar function of
the state. At first, equation (2) may not seem of great help in analyzing the impact map.
∆1 is a linear function of ∆0 and a nonlinear function of the switching time t. The switching
time, however, is a nonlinear function of ∆0 and a transcendental equation still needs to
be solved in order to find t. Thus, by this reasoning, it seems (2) is saying that ∆1 is a
nonlinear function of ∆0. But, that we already knew.

This is, however, just one way of thinking about (2). Fortunately, there is another
way to approach equation (2). Assume, for now, the switching time t is fixed. The result:
the impact map (2) would be linear! So, the question is: what does it mean to have the
switching time t fixed? In other words, what are the set of points x∗

0 + ∆0 in the switching
surface S0 such that every point in that set has a switching time of t? In that set, the
impact map (2) is linear.

It turns out that the set of points in Sd
0 that have a switching time of t is a convex

subset of a linear manifold of dimension n − 2 (see figure 6). Let St be that set, that is,
the set of points x∗

0 + ∆0 ∈ Sd
0 such that t ∈ t∆0

. In other words, a trajectory starting at
x0 ∈ St satisfies both x(τ) ∈ X̄ on [0, t], and C1x(t) = d1. Note that since the impact map
is multivalued, a point in Sd

0 may belong to more than one set St. In fact, in example 3.1,
there existed a point in Sd

0 that belonged to both S0.47 and S2.85.
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x (t)2

1x (0)

S1

S0

St
2

1x (t)

x (0)

Figure 6: Every point in St has a switching time of t

Note also that, as t ∈ T changes, St covers every single point of Sd
0 , i.e., Sd

0 = {x| x ∈
St, t ∈ T }. This follows since every point ∆0 ∈ Sd

0 − x∗
0 can switch for the first time at

Sa
1 , and therefore t∆0

is always a nonempty set. These results can all be summarized in the
following corollary.

Corollary 3.1 Under the assumptions of theorem 3.1, for a given t ∈ T , the impact map
from ∆0 ∈ St − x∗

0 to ∆1 ∈ S1 − x∗
1, given by ∆1 = H(t)∆0, is a linear map. Moreover, St

is a subset of a linear manifold of dimension n − 2, and Sd
0 = {x| x ∈ St, t ∈ T }.

As we will see in section 4, this result is fundamental in the analysis of PLS using SuLF.
It allows us to find conditions in the form of LMIs that, when satisfied, guarantee stability,
robustness, and performance of PLS.

Before moving into the proofs, it is important to understand the meaning of the assump-
tion in theorem 3.1. This says the trajectory x∗

0(t) cannot intersect the switching surface
S1 for all t ∈ T . Note that we have not made any assumptions on x∗

0 (the initial condition
of x∗

0(t)), except for the fact that x∗
0 ∈ S0. Thus, a careful choice of x∗

0 ∈ S0 may be enough
to have the assumption satisfied (see sections 6 and 7).

There are, however, cases where either x∗
0 cannot be freely chosen (like in [6]) or there

is simply no choice of x∗
0 ∈ S0 that satisfies the assumption. This means there exist at least

one ts ∈ T such that C1x
∗
0(ts) = d1. In such cases, the results in this paper still hold but

with a slightly more complicated proof. For some PLS like RFS [6], w(t) at t = ts is defined
as the limit when t → ts (see [6] for details). If this is not the case, at t = ts the impact
map can still be written as a linear transformation but parametrized by an extra variable,
i.e., ∆1 = Hs(ts, δ)∆0, with ∆0 ∈ Sts .

Proof of theorem 3.1: We start by expressing ∆1 as function of ∆0 and t, the switching
time associated with ∆1. Let x(0) = x0 ∈ Sd

0 . Integrating the differential equation (1) gives

x1 = eAtx0 +

∫ t

0
eA(t−τ)Bdτ

Since xi = x∗
i + ∆i, i = 0, 1,

∆1 = eAt∆0 + eAtx∗
0 +

∫ t

0
eA(t−τ)Bdτ − x∗

1

= eAt∆0 + x∗
0(t) − x∗

1

From the fact C1∆1 = 0 and C1x
∗
1 = d1 we get

C1e
At∆0 = d1 − C1x

∗
0(t) (3)
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Since, by assumption, C1x
∗
0(t) 6= d1 for all t ∈ T , the last expression can be written as

w(t)∆0 = 1 (4)

which means ∆1 reduces to

∆1 = eAt∆0 + (x∗
0(t) − x∗

1) w(t)∆0

which proves the desired result.

Note that if A is invertible, x∗
0(t) can be written as x∗

0(t) = eAt(x∗
0 + A−1B) − A−1B.

Proof of corollary 3.1: The only thing left to prove is that St is a subset of a linear
manifold of dimension n − 2. Let x0 = x∗

0 + ∆0 ∈ St. Since C1x(t) = d1, ∆0 must satisfy
equation (3). Also, C0∆0 = 0 since ∆0 ∈ S0−x∗

0. Therefore, since both equalities are linear
on ∆0, St − x∗

0 has at most dimension n − 2 and is a subset of a linear manifold .

4 Quadratic surface Lyapunov functions

As explained before, there has been some results in constructing piecewise quadratic Lya-
punov functions for PLS. Although these results are able to analyze equilibrium points of
certain classes of PLS, many important PLS cannot be analyzed this way because they
either have limit cycles or the method is computationally too expensive.

An alternative to construct Lyapunov functions in the state space is to construct Lya-
punov functions on switching surfaces (SuLF). Define then two quadratic Lyapunov func-
tions on the switching surfaces Sd

0 and Sa
1 . Respectively, let V0 and V1 be given by

Vi(x) = x′Pix − 2x′gi + αi (5)

where Pi > 0, for i = 0, 1. These are Lyapunov candidates defined on the switching surfaces
with parameters Pi > 0, gi, and αi, to be found.

Next, we want to show an impact map from Sd
0 ⊂ S0 to Sa

1 ⊂ S1 is contracting in some
sense. In particular, an impact map is quadratically stable if there exist Pi > 0, gi, αi such
that

V1(∆1) < V0(∆0) for all ∆0 ∈ Sd
0 − x∗

0 (6)

Let P > 0 on S stand for x′Px > 0 for all nonzero x ∈ S. As a short hand, we will be
using Ht for H(t) and wt for w(t). The following theorem takes advantage of the results
from section 3 to derive a set of matrix inequalities equivalent to condition (6).

Theorem 4.1 Define

R(t) = P0 − H ′
tP1Ht − 2

(

g0 − H ′
tg1

)

wt + w′
tαwt

where α = α0 − α1. The impact map from ∆0 ∈ Sd
0 − x∗

0 to ∆1 ∈ Sa
1 − x∗

1 is quadratically
stable if and only if there exist P0, P1 > 0 and g0, g1, α such that

R(t) > 0 on St − x∗
0 (7)

for all expected switching times t ∈ T .

Basically, all this theorem does is substitute (2) in (6), and use both facts that the map
∆0 to ∆1 is linear in St and that, as t ranges over T , St covers every point in Sd

0 .
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4.1 Approximation by a set of LMIs

There are many ways to approximate condition (7) with a set of LMIs, which can be
efficiently solved using available software. By definition, condition (7) is equivalent to
∆′

0R(t)∆0 > 0 for all ∆0 ∈ St − x∗
0. A more conservative condition results when ∆0 is

relaxed:
∆′

0R(t)∆0 > 0 for all ∆0 ∈ Sd
0 − x∗

0

If this condition is satisfied then (7) follows since St ⊂ Sd
0 . A trivial way to obtain a

set of LMIs is to further relax the constraints on ∆0. On one hand, this results in a more
conservative condition. On the other hand, such condition is computationally more efficient.

Corollary 4.1 The impact map from ∆0 ∈ Sd
0 − x∗

0 to ∆1 ∈ Sa
1 − x∗

1 is quadratically stable
if there exist P0, P1 > 0 and g0, g1, α such that

R(t) > 0 on S0 − x∗
0 (8)

for all expected switching times t ∈ T .

We have then relaxed the problem of quadratic stability of impact maps to the solution
of an infinite dimensional set of LMIs. As proven in several examples in sections 6 and 7,
and also in [6], although condition (8) is more conservative than (7), in many situations it
is enough to efficiently and successfully globally analyze PLS. In section 8, we will explain
how to relax condition (7) to less conservative sets of LMIs.

Condition (8), for all t ∈ T , forms an infinite set of LMIs. Computationally, to overcome
this difficulty, we grid this set to obtain a finite subset of expected switching times. This
grid consists of a finite sequence of equally spaced switching times t0 < t1 < · · · < tk. In
other words, Pi > 0, gi, and α are found by solving a finite set of LMIs consisting of (8) on
t = {ti}, i = 0, 1, ..., k. For a large enough k, it can be shown that (8) is also satisfied for all
t ∈ T . The idea here is to find bounds on the derivative of the minimum eigenvalue of R(t)
over (ti, ti+1), and to use these bounds to show that nothing can go wrong in the intervals
(ti, ti+1), i.e., that (8) is also satisfied on each interval (ti, ti+1) (see [6] for more details).

Note that, for a given t, condition (8) reduces to a (n − 1)×(n − 1) LMI. This means
that an increase in the dimension of the system only results in proportionally larger LMIs.
Thus, the stability condition (8) scales with the dimension of the system.

4.2 Proof of Results

Proof of theorem 4.1: From (6) and using theorem 3.1, we have

∆′
1P1∆1 − 2∆′

1g1 + α1 < ∆′
0P0∆0 − 2∆′

0g0 + α0

⇔ ∆′
0H

′
tP1Ht∆0 − 2∆′

0H
′
tg1 + α1 < ∆′

0P0∆0 − 2∆′
0g0 + α0

⇔ ∆′
0

(

P0 − H ′
tP1Ht

)

∆0 − 2∆′
0

(

g0 − H ′
tg1

)

+ α > 0

Finally, using (4) we have

∆′
0

(

P0 − H ′
tP1Ht

)

∆0 − 2∆′
0

(

g0 − H ′
tg1

)

wt∆0 + ∆′
0w

′
tαwt∆0 > 0

Condition (7) follows from corollary 3.1, which proofs the desired result.

Proof of corollary 4.1: The result follows since St ⊂ S0.
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5 Global Analysis of PLS

The previous section explained how a single impact map can be globally analyzed using
SuLF. For some PLS, like some relay feedback systems, the analysis of a single impact map
it is all it takes to globally analyze the system [6]. However, that is not enough for most
PLS. In general, it is required that multiple impact maps are simultaneously quadratically
stable. This section briefly explains the three main steps to achieve this goal (the details are
left to sections 6 and 7). These are: (1) characterization of impact maps; (2) definition of
quadratic Lyapunov functions at switching surfaces; and (3) solution of stability conditions.
In more detail:

Step 1: Impact Maps

1. Identification of all impact maps associated with the PLS. If the system has m switch-
ing surfaces then there are at the most 2m2 impact maps. The actual number of impact
maps required to analyze the system is typically smaller due to certain properties of a
system, like symmetry (see relay feedback systems [6] or saturation systems (section 7)
or just the fact that not all switches are possible.

2. Domain of impact maps. In order to reduce conservatism, it is important to charac-
terize the domain of each impact map, as explained in section 8.1. Impact maps that
have an empty domain set do not need to be further considered, neither those points
in a switching surface that converge asymptotically to the origin without switching
(see the middle of figure 3).

3. Expected switching times. For each impact map find the set of expected switching
times T .

4. Switching conditions. Certain necessary conditions need to be checked in order to
guarantee that a trajectory, starting in a switching surface, does not grow unbounded
without switching (as in the left of figure 3).

5. Linear decomposition. For each impact map, we need to find an x∗
0 belonging to the

switching surface where the domain of an impact is defined, such that the assumption
of theorem 3.1 is satisfied. If this is not possible, the switching times where the
assumption is not satisfied need to be characterized, and then proceed as explained
in section 3.

Step 2: Quadratic Surface Lyapunov Functions (SuLF)

1. Define all SuLF on the respective domains of impact maps. There are at the most 2m
SuLF, where m is the number of switching surfaces of the PLS. This number can be
smaller depending if the system has certain symmetric properties.

2. Constraints on SuLF: continuity issues, and limit cycles and equilibrium points. When
the domain of two impact maps share a common boundary on some switching sur-
face, in that boundary both impact maps have zero switching time. That implies
that the Lyapunov functions defined on those domains must be continuous along that
boundary. Also, if a limit cycle intersects the domain of an impact map or an equilib-
rium point belongs to that domain, then the associated Lyapunov function must be
a quadratic form, i.e., gi = 0 and αi = 0 in (5).

Step 3: Stability Conditions

12



1. For each impact map, theorem 4.1 provides a quadratic inequality that must be satis-
fied for all expected switching times T associated with the impact map. Corollary 4.1
can be used to write the stability conditions as LMIs, which can be solved for the
parameters of the SuLF.

2. Bounds on expected switching times. In many situations it is not necessary to check
if a quadratic inequality associated with an impact map is satisfied for all expected
switching times t ∈ T , but it is enough to check if this is satisfied a bounded subset
of T .

3. Improvement of stability conditions. If the LMIs provided by corollary 4.1 fail to find
a not feasible solution then we can use less conservative conditions, as explained in
section 8.

4. An alternative to solving all the LMIs described above is to add LMIs until all
quadratic constraints are satisfied. Since checking if a quadratic inequality is sat-
isfied is much easier than solving the correspondent LMIs, the following algorithm
can be used:

(a) Initialize the SuLF with some parameters. The set of LMIs is an empty set at
this time.

(b) Check if all quadratic inequalities are satisfied for all expected switching times
bounds.

(c) If not, take a quadratic inequality that was not satisfied for some switching time
bound, and add it to the set of LMIs. Solve the set of LMIs, get new parameters
for the SuLF, and go back to (b).

(d) If yes, the algorithm ends.

Before attempting to use this algorithm to analyze general classes of PLS, it is important
to fully understand in detail each of the steps in the algorithm. For that purpose, we have
analyzed several classes of PLS by increasing order of complexity. Each of these classes was
carefully chosen to (1) separately deal with different issues in each step of the algorithm
and (2) to illustrate with examples the efficiency of this new methodology. By increasing
complexity, we first analyzed relay feedback systems [6], then on/off systems (section 6),
and finally saturation systems (section 7). The success in globally analyzing a large number
of examples of these classes of PLS demonstrated the potential of these new ideas in globally
analyzing other, more complex classes of PLS.

The reasons for analyzing these particular classes of PLS are the following. In relay
feedback systems [6], we analyzed limit cycles. The choice to first analyze this class of PLS
was based on the fact that, for symmetric unimodal limit cycles, there is only a single impact
map that needs to be studied. This means that global analysis of symmetric unimodal limit
cycles of relay feedback systems follows directly from theorem 4.1.

In section 6, we analyze on/off systems to explain (1) how this new methodology is
used to globally analyze equilibrium points and (2) how more than one impact map is
simultaneously analyzed. Then, with saturation systems (section 7) we show how to deal
with multiple switching surfaces. Analysis of other, more complex classes of PLS can be
done using a combination of the ideas discussed above.
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6 On/Off Systems

This section addresses the problem of global stability analysis of on/off systems (OFS) SuLF,
showing that this tool can be used to prove global asymptotic stability of equilibrium points
of PLS.

The ideas introduced in sections 3 and 4 were very successful in proving global asymp-
totic stability of symmetric unimodal limit cycles of RFS [6]. In this case, there was only
a single impact map that needed to be analyzed due to the symmetry of RFS. In this sec-
tion, we show that SuLF can also be used to efficiently prove global asymptotic stability
of equilibrium points, even when these equilibrium points do not belong to the switching
surface.

To demonstrate these ideas, we chose a class of PLS known as on/off systems (OFS). An
OFS can be thought of as an LTI system that switches between open and closed loop. The
switches are determined by the values of the output of the LTI system. OFS can be found in
many engineering applications. In electronic circuits, diodes can be approximated by on/off
nonlinearities. Also, transient behavior of logical circuits that involve latches/flip-flops
performing on/off switching can be modeled with on/off circuits and saturations. Another
area of application of OFS is aircraft control. For instance, in [2], a max controller is
designed to achieve good tracking of the pilot’s input without violating safety margins.

We are interested in checking if a unique locally stable equilibrium point of an OFS
is globally asymptotically stable. The idea is to construct quadratic Lyapunov functions
on the switching surface of the system to show contraction in some sense of impact maps.
Under certain easily verifiable conditions, quadratic stability of impact maps implies globally
asymptotically stability of OFS. The search for quadratic surface Lyapunov functions is
efficiently done by solving a set of LMIs.

As in relay feedback systems, a large number of examples was successfully proven glob-
ally stable. These include systems with an unstable affine linear subsystem, systems of rel-
ative degree larger than one and of high dimension, and systems with unstable nonlinearity
sectors, for which classical methods like small gain theorem, Popov criterion, Zames-Falb
criterion [20], and integral quadratic constraints [3, 10, 12, 13], fail to analyze. In fact, it
is still an open problem whether there exists an example with a globally stable equilibrium
point that could not be successfully analyzed with this new methodology.

6.1 Problem Formulation

We start by defining OFS followed by some necessary conditions for the global stability of
a unique locally stable equilibrium point. We then talk about some of the properties of this
class of systems.

An OFS is defined as follows. Consider a SISO LTI system satisfying the following linear
dynamic equations

{

ẋ = Ax + Bu
y = Cx

(9)

where x ∈ IRn, in feedback with a on/off controller (see figure 7) given by

u(t) = max {0, y(t) − d} (10)

where d ∈ IR. By a solution of (9)-(10) we mean functions (x, y, u) satisfying (9)-(10). Since
u is continuous and globally Lipschitz, Ax + B max {0, Cx − d} is also globally Lipschitz.
Thus, the OFS has a unique solution for any initial state.
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Figure 7: On/off system

In the state space, the on/off controller introduces a switching surface composed of an
hyperplane of dimension n − 1 given by

S = {x ∈ IRn : Cx = d}

On one side of the switching surface (Cx < d), the system is given by ẋ = Ax. On the other
side (Cx > d) the system is given by ẋ = Ax+B(Cx−d) = A1x+B1, where A1 = A+BC
and B1 = −Bd. Note that the vector field is continuous along the switching surface since
for any x ∈ S, A1x + B1 = Ax.

An OFS has either zero, one, two, or a continuum of nonisolated equilibrium points. We
are interested in those cases where the system has a unique locally stable equilibrium point.
Only here can an OFS have a globally stable equilibrium point. Next, we give necessary
conditions for the existence of a single locally stable equilibrium point for different values
of d.

If d > 0 there is at least one equilibrium point at the origin. In this case, it is necessary
that A is Hurwitz to guarantee the origin is locally stable. If A1 is invertible, the affine
linear system ẋ = A1x + B1 has an equilibrium point at −A−1

1 B1. In order to guarantee
the OFS has only the origin as an equilibrium point, it is necessary that −CA−1

1 B1 < d.
It is also necessary that A1 has no real unstable eigenvalues or, otherwise, the system will
have trajectories that grow unbounded4.

When d = 0, the origin is the only equilibrium point. For the same reasons as above, it
is necessary that both A and A1 do not have real unstable eigenvalues. Note that in this
case, there is no “easy” way to check if the origin is locally stable or not.

When d < 0, it must be true that A1 is Hurwitz and A has no real unstable poles. It is
also necessary that −CA−1

1 B1 > d or otherwise the system will have no equilibrium point.
We can assume without loss of generality that d ≥ 0. If d < 0 and all necessary

conditions are met, with an appropriate change of variables (xnew = −(x + A−1
1 B1)), the

problem can be transformed to one of analyzing the origin with dnew ≥ 0. In this case,
Anew = A1, A1new = A, B1new = AA−1

1 B1, and dnew = −d − CA−1
1 B1 ≥ 0.

Consider a subset S+ of S given by

S+ = {x ∈ S : CAx ≥ 0}

This set is important since it tells us which points in S can be reached by trajectories
starting at any x0 such that Cx0 < d (see the left of figure 8). Similarly, define S− ⊂ S
as S− = {x ∈ S : CAx ≤ 0}. Note that S = S+

⋃

S− and S+
⋂

S− = {x ∈ S : CAx = 0}.
From here on, we assume d > 0. In terms of stability analysis, d = 0 is a special case of
when d > 0, and will be considered separately in section 6.5.

4Possible exceptions occur when the eigenvector associated with the unstable real eigenvalue is perpen-

dicular to C’.
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Figure 8: Both sets S+ and S− in S (left); how to obtain x∗
1 (right)

Since A must be Hurwitz, there is a set of points in S− such that any trajectory starting
in that set will never switch again and will converge asymptotically to the origin. In other
words, let S∗ ⊂ S− be the set of points x0 such that CeAtx0 = d does not have a solution for
any t > 0. Note that this set S∗ is not empty. To see this, let P > 0 satisfy PA+A′P = −I.
Then, an obvious point in S∗ is the point x∗

1 obtained from the intersection of S with the
level set x′Px = k, where k ≥ 0 is chosen such that the ellipse x′Px = k is tangent to S
(see the right side of figure 8).

6.2 Impact maps for on/off systems

The problem we propose to solve here is to give sufficient conditions that, when satisfied,
prove the origin of an OFS is globally asymptotically stable. The strategy of this proof is as
follows. Consider a trajectory starting at some point x0 ∈ S+ (see figure 9). If all necessary
conditions are met, the trajectory x(t) will eventually switch at some time t1 > 0, i.e.,
Cx(t1) = d and Cx(t) ≥ d for t ∈ [0, t1]. Let x1 = x(t1) ∈ S−. If x1 ∈ S∗, the trajectory
will not switch again and converges asymptotically to the origin. Since we already know S∗

is a stable set, we need to concentrate on those points in S−\S∗ since those are the ones
that may lead to potentially unstable trajectories. So, assume the trajectory switches again
at time t2 > t1, and let x2 = x(t2) ∈ S+. Again, we would switch at x3 = x(t3) and so
on. The idea is to check if x3 is closer in some sense to S∗ than x1. If so, this would mean
that eventually x(t2N−1) ∈ S∗, for some large enough positive integer N , and prove that
the origin is globally asymptotically stable. This is the basic idea behind the results in the
next subsection.

x0

x2

3x

x1

V (  ).1

.
2V (  )

0

S*

S

Figure 9: Trajectory of an OFS

It is convenient to notice that x0, x1, x2 ∈ S can be parametrized. Let x0 = x∗
0 + ∆0,

x1 = x∗
1 + ∆1, and x2 = x∗

0 + ∆2, where x∗
0, x

∗
1 ∈ S, and C∆0 = C∆1 = C∆2 = 0. Also,

define x∗
0(t) (x∗

1(t)) as the trajectory of ẋ = A1x + B1 (ẋ = Ax), starting at x∗
0 (x∗

1), for
all t ≥ 0. Since x∗

i can be any points in S, we chose them to be such that Cx∗
i (t) < d

for all t > 0. As explained in appendix A.1, this is always possible, even when A1 is
unstable (as long as it has at least one stable eigenvalue with an associated eigenvector that
is not perpendicular to C ′). The reason for this particular choice of x∗

0 and x∗
1 is so that

Cx∗
i (t) − d 6= 0 for all t > 0. This will be necessary in proposition 6.1.
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There are two impact maps of interest associated with an OFS. The first impact map—
impact map 1—takes points from S+ (the departure set of impact map 1) and maps them
in S− (the associated arrival set). The second impact map—impact map 2—takes points
from S−\S∗ (the departure set of impact map 2) and maps them back to S+ (the associated
arrival set). Note that S∗ does not belong to the domain of either impact map since every
trajectory starting in S∗ does not switch again.

As in RFS [6], the impact maps associated with OFS are, in general, multivalued. Define
the sets of expected switching times T1 and T2 as the sets of all possible switching times
associated with each respective impact map (see definition 3.1). Define also St1 ⊂ S+ and
St2 ⊂ S−\S∗ similarly as St was defined in section 3. Considering first impact map 1, for
each point x0 ∈ S+ there is an associated switching time t1. For each t1 ∈ T1, define St1

as the set of all initial conditions x0 ∈ S+ such that Cx(t) ≥ d on [0, t1], and Cx(t1) = d.
Thus, St1 is the set of points in S+ that have an associated switching time t1. Analogously,
for each t2 ∈ T2 define St2 for impact map 2 as the set of all initial conditions x1 ∈ S−\S∗

such that y(t) ≤ d on [0, t2], and y(t2) = d. Note that both St1 and St2 are subsets of linear
manifolds of dimension n − 2.

6.3 Global asymptotic stability of on/off systems

Before presenting the main result of this section, we use theorem 3.1 to show that each im-
pact map associated with an OFS can be represented as a linear transformation analytically
parametrized by the correspondent switching time.

Proposition 6.1 Define

w1(t) =
CeA1t

d − Cx∗
0(t)

and w2(t) =
CeAt

d − Cx∗
1(t)

Let H1(t) = eA1t + (x∗
0(t) − x∗

1)w1(t) and H2(t) = eAt + (x∗
1(t) − x∗

0)w2(t). Then, for any
∆0 ∈ S+ −x∗

0 there exists a t1 ∈ T1 such that ∆1 = H1(t1)∆0. Such t1 is the switching time
associated with ∆1. Similarly, for any ∆1 ∈ S−\S∗ − x∗

1 there exists a t2 ∈ T2 such that
∆2 = H2(t2)∆1. Such t2 is the switching time associated with ∆2.

Next, define two quadratic Lyapunov functions V1 and V2 on the switching surface S

Vi(x) = x′Pix − 2x′gi + αi (11)

where Pi > 0, for i = 1, 2. Global asymptotically stability of the origin follows if both
impact maps are simultaneously quadratically stable, i.e., if there exist Pi > 0, gi, αi such
that

V2(∆1) < V1(∆0) for all ∆0 ∈ S+ − x∗
0 (12)

V1(∆2) < V2(∆1) for all ∆1 ∈ S−\S∗ − x∗
1 (13)

The next theorem is an extension of theorem 4.1 for the case where we have to simulta-
neously prove contraction of two impact maps. As a short hand, in the following result we
use Hit = Hi(t) and wit = wi(t).
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Theorem 6.1 Define

R1(t) = P1 − H ′
1tP2H1t − 2

(

g1 − H ′
1tg2

)

w1t + w′
1tαw1t

R2(t) = P2 − H ′
2tP1H2t − 2

(

g2 − H ′
2tg1

)

w2t − w′
2tαw2t

where α = α1 − α2. The origin of the OFS is globally asymptotically stable if there exist
P1, P2 > 0 and g1, g2, α such that

{

R1(t1) > 0 on St1 − x∗
0

R2(t2) > 0 on St2 − x∗
1

(14)

for all expected switching times t1 ∈ T1 and t2 ∈ T2.

As in corollary 4.1, a relaxation of the constraints on ∆0 and ∆1 in the previous theorem
results in computationally efficient conditions.

Corollary 6.1 The origin of the OFS is globally asymptotically stable if there exist P1, P2 >
0 and g1, g2, α such that

{

R1(t1) > 0 on S − x∗
0

R2(t2) > 0 on S − x∗
1

(15)

for all expected switching times t1 ∈ T1 and t2 ∈ T2.

For each t1, t2 these conditions are LMIs for which we can solve for P1, P2 > 0 and
g1, g2, α using efficient available software. As we will see in the next section, although these
conditions are more conservative than the ones in theorem 6.1, they are already enough to
prove global asymptotic stability of many important OFS.

Each condition in (15) depends only on a single scalar parameter, i.e., R1 depends only
on t1 and not on t2, and, similarly, R2 depends only on t2. Computationally, this means that
when we grid each set of expected switching times, this will only affect one of the conditions
in (15). Thus, if we need m1 samples of T1 and m2 samples of T2, we end up with a total of
m1 + m2 LMIs. Note that a less conservative condition than those in theorem 6.1 could be
obtained. Such condition, of the form R(t1, t2) > 0, would, however, lead to m1×m2 LMIs,
and the analysis problem would easily become computationally intractable. This difference
in complexity is even more obvious in the analysis of other, more complex classes of PLS
that may require the simultaneous analysis of a large number of impact maps.

As explained in section 4.1, it is possible to make conditions (14) less conservative at a
cost of increase computations. In section 8, and, in particular, section 8.3, we will explain
how to approximate conditions (14) with less conservative sets of LMIs than (15).

6.4 Examples

The following examples were processed in matlab code. The latest version of this software
is available at [7]. Before presenting the examples, we briefly explain the matlab function
we developed. The inputs to this function are a transfer function of an LTI system together
with the displacement of the nonlinearity switch d. If the OFS is proven to be globally
stable, the function returns the values of the parameters of the Lyapunov functions (11).
The matlab function also returns a graphic showing the minimum eigenvalues of each Ri(ti)
in (15), which must be positive for all expected switching times ti.
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For most OFS, the expected switching times include ti = 0 and large values of ti. Thus,
before moving into the examples, it is important to explain how the analysis is done when
ti is close to zero and when ti is large. We start with the analysis near zero.

Zero switching time corresponds to points in S such that CAx = 0. At those points,
the Lyapunov functions (11) must be continuous since this is the only way both V2(∆1) ≤
V1(∆0) and V1(∆2) ≤ V2(∆1) can be simultaneously satisfied, for all ∆0, ∆1, ∆2 = ∆0 such
that x∗

0 + ∆0 = x∗
1 + ∆1 and CA(x∗

0 + ∆0) = 0. Therefore, we need V1(∆0) = V2(∆1).
This imposes certain restrictions on P1, P2 > 0, g1, g2, and α. The details can be found in
appendix A.2.

Just like in RFS [6], we would like to obtain bounds on the expected switching times.
With the exception of 3rd-order systems, however, finding upper bounds timax on switching
times is, in general, not an easy task. The idea is to first guarantee conditions (15) are
satisfied in some intervals (0, timax) and then check if they are also valid for all ti > timax.
This is considered in appendix A.3. Note that the limits of R1(t) and R2(t) as t → ∞ are
equal to P1 and P2, respectively. Thus, it is guaranteed that (14) and (15) are satisfied at
t = ∞ since both P1 > 0 and P2 > 0.

Example 6.1 Consider the OFS on the left of figure 10 with d = 1. It is easy to see that
the origin of this system is locally stable.
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Figure 10: 3rd-order system with unstable nonlinearity sector

Using conditions (15), we show that the origin is in fact globally asymptotically stable.
The right side of figure 10 illustrates this fact: the minimum eigenvalue of each condition (15)
is positive on its respective set of expected switching times. The expected switching times in
this example are approximately T1 = (0, 1.85) and T2 = (0, 4.7). For instance, if t1 ≥ 1.85,
there is no point in S+ with switching time equal to t1.

u

y1

Figure 11: On/off controller versus constant gain of 1/2 (dashed)

Note that this system has an unstable nonlinearity sector. If the on/off nonlinearity
is replaced by a linear constant gain of 1/2, the system becomes unstable (see figure 11).
This is very interesting since it tells us that analysis tools like small gain theorem, Popov
criterion, Zames–Falb criterion, and integral quadratic constraints, would all fail to analyze
OFS of this nature.
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Example 6.2 Consider the OFS on the left of figure 12 with d = 1 and k > 0. Once again,
it is easy to see that the origin of this system is locally stable for any k > 0.
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i
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Figure 12: System with relative degree 7 (left); global stability analysis for k = 2 (right)

Note that ‖CeAtB‖L1
= k. Thus, the small gain theorem can be applied whenever

k ≤ 1. When k > 1, however, the small gain theorem fails to analyze the system.
Let k = 2. Using conditions (15), we show the origin is globally asymptotically stable.

The right side of figure 12 shows how conditions (15) are satisfied in some intervals (0, timax),
i = 1, 2. The intervals (0, timax) are bounds on the expected switching times. The results
in appendix A.3 guarantee the stability conditions are also satisfied for all ti > timax. For
details on how to find such bounds see appendix A.3.

Example 6.3 Consider the OFS in figure 13 with d = 1. It is easy to see that the origin
of this system is locally stable. A1, however, is unstable.
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(t))); Want them always positive

Figure 13: System with unstable A1

Although A1 is unstable, since this is a 3rd-order system, it is easy to find bounds on
the expected switching times for the subsystem ẋ = A1x + B1 due to the fact that the
switching surface is an hyperplane of dimension 2, which can be visualized. In this case,
no point in S+ has a switching time larger than 21.8. As for t2, we use the same ideas as
in the previous example, based on the results in appendix A.3. Using conditions (15), we
show that although A1 is unstable, the origin is globally asymptotically stable. The right
side of figure 13 shows how conditions (15) are satisfied in the intervals (0, timax), i = 1, 2
(the minimum eigenvalue of the second condition in (15) is scaled by 500 in figure 13, for
purpose of visualization).

6.5 Special case: d = 0

When d = 0 we can write stability conditions in the form of LMIs that are, in general,
much less conservative than conditions (15) and even conditions (30). First, since the
origin belongs to both systems ẋ = Ax and ẋ = (A + BC)x, it is only required that both
systems do not have real unstable poles. d = 0 also means x∗

0 = x∗
1 = g1 = g2 = 0 and

α = 0. All we need to find is P1, P2 > 0.
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In this case, ∆1 = eA1t1∆0 and ∆2 = eAt2∆1. Thus, the stability conditions are simply

{

∆′
1P2∆1 < ∆′

0P1∆0

∆′
2P1∆2 < ∆′

1P2∆1
⇔







∆′
0

(

P1 − eA′
1
t1P2e

A1t1
)

∆0 > 0

∆′
1

(

P2 − eA′t2P1e
At2

)

∆1 > 0

for some P1, P2 > 0, all ∆0 ∈ St1 , ∆1 ∈ St2 , and all expected switching times t1, t2.
Notice that C∆0 = 0, C∆1 = 0, and C∆2 = 0. Thus, CeA1t1∆0 = 0 and CeAt2∆1 = 0.

That is, for fixed values of t1 and t2, ∆1 and ∆2 are restricted to a subspace of dimension
n − 2. Let Π ∈ C⊥, where C⊥ are the orthogonal complements to C, i.e., matrices with a
maximal number of column vectors forming an orthonormal set such that CC⊥ = 0. Let
also lt1 ∈ (CeA1t1Π)⊥ and lt2 ∈ (CeAt2Π)⊥. We have the following result.

Theorem 6.2 The origin of the OFS with d = 0 is globally asymptotically stable if there
exist P1, P2 > 0 such that







l′t1Π
′
(

P1 − eA′
1
t1P2e

A1t1
)

Πlt1 > 0

l′t2Π
′
(

P2 − eA′t2P1e
At2

)

Πlt2 > 0
(16)

for all expected switching times t1 ∈ T1 and t2 ∈ T2.

7 Saturation Systems

The state space of on/off systems was divided in two partitions by a single switching surface.
In this section, we show how impact maps and SuLF can also be used to globally analyze
PLS with more than two state-space partitions and more than one switching surface.

To demonstrate these ideas, we chose a class of PLS known as saturation systems (SAT).
The class of SAT we consider consists of an LTI system in feedback with a saturation. The
study of such systems is motivated by the possibility of actuator saturation or constraints
on the actuators, reflected sometimes in bounds on available power supply or rate limits.
Because feedback is cut, control saturation induces a nonlinear behavior on the closed-loop
system that cannot be naturally dealt within the context of standard (algebraic) linear
control theory. It is well known that linear feedback laws when saturated can lead to
instability. Thus, the problem of stabilizing linear systems with bounded controls has been
extensively studied. See, for example, [16, 18, 19] and references therein.

In terms of analysis, there exist several results for SAT. The Popov criterion can be
used as a simplified approach to the analysis, but it is expected to be very conservative for
systems of order greater than three. The Zames–Falb criterion [20] can be used when the
nonlinearity’s slope is restricted, like in this case, but the method is difficult to implement.
IQC-based analysis [3, 10, 12, 13] gives conditions in the form of LMIs that, when satisfied,
guarantee stability of SAT. However, none of these analysis tools can be used when a SAT
has an unstable nonlinearity sector.

Here, we propose to construct SuLF for SAT to show that impact maps associated with
the system are contracting in some sense. This, in turn, proves the origin of a SAT is globally
asymptotically stable. As in the case of on/off systems, a large number of examples was
successfully proven globally stable. These include high-order systems, systems of relative
degree larger than one, and systems with unstable nonlinearity sectors for which all classical
methods fail to analyze. In fact, existence of an example with a globally stable equilibrium
point that could not be successfully analyzed with this new methodology is still an open
problem.
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7.1 Problem Formulation

We start by defining a saturation system (SAT) followed by some necessary conditions for
global stability of a unique locally stable equilibrium point. We then talk about some of
the properties of this class of PLS.

Consider a SISO LTI system (9) in feedback with a saturation controller (see figure 14)
defined as

u(t) =











−d if y(t) < −d
y(t) if |y(t)| ≤ d
d if y(t) > d

(17)

where d > 0 (if d = 0 then the system is simply linear). By a solution of (9),(17) we mean
functions (x, y, u) satisfying (9),(17). Since u is continuous and globally Lipschitz, Ax+Bu
is also globally Lipschitz. Thus, the SAT has a unique solution for any initial state.

LTI
yu

Figure 14: Saturation system

In the state space, the saturation controller introduces two switching surfaces composed
of hyperplanes of dimension n − 1 given by

S = {x ∈ IRn : Cx = d}

and
S = −S = {x ∈ IRn : Cx = −d}

On one side of the switching surface S (Cx > d), the system is governed by ẋ = Ax+Bd. In
between the two switching surfaces (|Cx| ≤ d), the system is given by ẋ = Ax+BCx = A1x,
where A1 = A + BC. Finally, on the other side of S (Cx < −d) the system is governed by
ẋ = Ax−Bd. Note that the vector field (9),(17) is continuous along the switching surfaces
since, for any x ∈ S, A1x = (A + BC)x = Ax + Bd, and for any x ∈ S, A1x = Ax − Bd.

SAT can exhibit extremely complex behaviors. Some SAT may be chaotic, others may
have one, three, or a continuum of equilibrium points, or limit cycles, or even some combi-
nation of all these behaviors. We are interested in those SAT with a unique locally stable
equilibrium point. Only here can a SAT be globally stable. For that, it is necessary that
A + BC is Hurwitz in order to guarantee the origin is locally stable, and, if A is invertible,
that −CA−1B < 1, so the origin is the only equilibrium point. It is also necessary that A
has no eigenvalues with positive real part, or otherwise there are initial conditions for which
the system will grow unbounded (see, for example, [17]).

Consider a subset S+ of S given by

S+ = {x ∈ S : CA1x ≥ 0}

As in OFS, this set tells us which points in S correspond to the first switch of trajectories
starting at any x0 such that Cx0 < d. In other words, S+ is the set of points in S that can
be reached by trajectories of (9),(17) when governed by the subsystem ẋ = A1x. In a similar
way, define S− ⊂ S as S− = {x ∈ S : CA1x ≤ 0} and also S+ = −S+ and S− = −S−.
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As in OFS, since A1 must be Hurwitz, there is a set of points in S− such that any
trajectory starting in that set will not switch again and will converge asymptotically to the
origin. In other words, let S∗ ⊂ S− be the set of points x0 such that CeA1tx0 = ±d do not
have a solution for any t > 0. Note that this set S∗ is not empty. To see this, let P > 0
satisfy PA1 + A′

1P = −I. Then, an obvious point in S∗ is the point x∗
1 obtained from the

intersection of S with the level set x′Px = k, where k ≥ 0 is chosen such that the ellipse
x′Px = k is tangent to both S and S.

7.2 Impact maps for saturation systems

The problem we propose to solve is to give sufficient conditions that, when satisfied, prove
the origin of a SAT is globally asymptotically stable. The strategy of the proof is similar to
OFS. The main difference is that a trajectory starting at some point x1 ∈ S−\S∗ can either
switch at some point in S or switch at some point in S (see figure 15). Let Sd ⊂ (S−\S∗)
(S−d ⊂ (S−\S∗)) be the set of points that will switch in S (S). If x1 ∈ Sd (x1 ∈ S−d) the
trajectory switches in finite time t2a (t2b) at x2a = x(t2a) ∈ S+ (x2b = x(t2b) ∈ S+). Then,
it would switch again at x3a = x(t3a) (x3b = x(t3b)), and so on. As in section 6, the idea
is to check if x3a or −x3b are closer in some sense to S∗ than x1. If so, this would mean
that eventually x(tN ) ∈ S∗, for some large enough N , and prove that the origin is globally
asymptotically stable.

x0

x1

V (  ).1

.
2V (  )

S

x0

x1

V (  ).1

.
2V (  )

S

x2b

x3b

−x2b

−x3b

S

S*

0

S

x3aS*

0x2a

Figure 15: Possible state-space trajectories for a SAT

Since x0, x1, x2a ∈ S and x2b ∈ S, we can write x0 = x∗
0 + ∆0, x1 = x∗

1 + ∆1, x2a =
x∗

0 + ∆2a and x2b = −x∗
0 + ∆2b, where x∗

0, x
∗
1 ∈ S and C∆0 = C∆1 = C∆2a = C∆2b = 0.

Also, define x∗
0(t) (x∗

1(t)) as the trajectory of ẋ = Ax + Bd (ẋ = A1x), starting at x∗
0 (x∗

1),
for all t ≥ 0. Since x∗

i are any points in S, we chose them to be such that Cx∗
i (t) < d for

all t > 0. The reason for this particular choice of x∗
0 and x∗

1 is so that Cx∗
i (t)− d 6= 0 for all

t > 0. This choice of x∗
0 and x∗

1 is always possible. x∗
1 is found as explained above. In this

case, x∗
1 ∈ S∗ is given by

x∗
1 =

P−1
d C ′

CP−1
d C ′

d

where Pd > 0 satisfies PdA1 + A′
1Pd = −I. In a similar way, whenever A is a stable matrix,

x∗
0 is given by

x∗
0 = (d + cA−1Bd)

P−1
u C ′

CP−1
u C ′

− A−1Bd

where Pu > 0 satisfies PuA+A′Pu = −I. If A is not stable, x∗
0 is found as in appendix A.1.

Just like RFS, a property of SAT is their symmetry around the origin. Thus, for analysis
purposes, it is equivalent to consider the trajectory starting at x2b or −x2b (see figure 15).
This means that the impact maps of interest associated with a SAT reduce to only three.
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The fist impact map (impact map 1) takes points from S+ and maps them in S−. The
second impact map (impact map 2a) takes points from Sd ⊂ S− and maps them back to
S+. Finally, the third impact map (impact map 2b) takes points from from S−d ⊂ S−

and maps them in S+. As in RFS and OFS, the impact maps associated with SAT are, in
general, multivalued. Define the sets of expected switching times T1, T2a, and T2b as the sets
of all possible switching times associated with each respective impact map. In appendix B,
we show how to obtain bounds on these sets. Define also St1 , St2a

, and St2b
as in section 3

and 6.2.

7.3 Global asymptotic stability of saturation systems

The linear representation of impact maps associated with SAT follows as in theorem 3.1
and OFS.

Proposition 7.1 Define

w1(t) =
CeAt

d − Cx∗
0(t)

, w2a(t) =
CeA1t

d − Cx∗
1(t)

, w2b(t) =
CeA1t

−d − Cx∗
1(t)

Let H1(t) = eAt + (x∗
0(t) − x∗

1)w1(t), H2a(t) = eA1t + (x∗
1(t) − x∗

0)w2a(t) , and H2b(t) =
eA1t + (x∗

1(t) + x∗
0)w2b(t). Then, for any ∆0 ∈ S+ − x∗

0, ∆1 ∈ Sd − x∗
1, and ∆1 ∈ S−d − x∗

1,
there exist ti ∈ Ti, i = {1, 2a, 2b}, such that

∆1 = H1(t1)∆0, ∆2a = H2a(t2a)∆1, ∆2b = H2b(t2b)∆1

respectively. Such ti are the switching times associated with ∆i, i = {1, 2a, 2b}.
To show that these three impact maps are contracting in some sense, define two quadratic

Lyapunov functions on the switching surface S. Let V1 and V2 be given by

Vi(x) = x′Pix − 2x′gi + αi (18)

where Pi > 0, for i = 1, 2. Global asymptotically stability of the origin follows if there exist
Pi > 0, gi, αi such that

V2(∆1) < V1(∆0) for all ∆0 ∈ S+ − x∗
0

V1(∆2a) < V2(∆1) for all ∆1 ∈ Sd − x∗
1

V1(−∆2b) < V2(∆1) for all ∆1 ∈ S−d − x∗
1 (19)

Note that in (19) we have mapped the point ∆2b ∈ S+ + x∗
0 into S+ − x∗

0, taking advantage
of the symmetry of the system. Let Hit = Hi(t) and wit = wi(t).

Theorem 7.1 Define

R1(t) = P1 − H ′
1tP2H1t − 2

(

g1 − H ′
1tg2

)

w1t + w′
1tαw1t

R2a(t) = P2 − H ′
2atP1H2at − 2

(

g2 − H ′
2atg1

)

w2at − w′
2atαw2at

R2b(t) = P2 − H ′
2btP1H2bt − 2

(

g2 + H ′
2btg1

)

w2bt − w′
2btαw2bt

where α = α1 − α2. The origin of the SAT is globally asymptotically stable if there exist
P1, P2 > 0 and g1, g2, α such that











R1(t1) > 0 on St1 − x∗
0

R2a(t2a) > 0 on St2a
− x∗

1

R2b(t2b) > 0 on St2b
− x∗

1

(20)

for all expected switching times t1 ∈ T1, t2a ∈ T2a, and t2b ∈ T2b.
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As in corollaries 4.1 and 6.1, a relaxation of the constraints on ∆0 and ∆1 in the previous
theorem results in computationally efficient conditions.

Corollary 7.1 The origin of the SAT is globally asymptotically stable if there exist P1, P2 >
0 and g1, g2, α such that











R1(t1) > 0 on S − x∗
0

R2a(t2a) > 0 on S − x∗
1

R2b(t2b) > 0 on S − x∗
1

(21)

for all expected switching times t1 ∈ T1, t2a ∈ T2a, and t2b ∈ T2b.

For each t1, t2a, t2b, these conditions are LMIs which can be solved for P1, P2 > 0 and
g1, g2, α using efficient available software. As we will see in the next section, although these
conditions are more conservative than the ones in theorem 7.1, they are already enough to
prove global asymptotic stability of many important SAT.

Note that in many cases, conditions (20) and (21) do not need to be satisfied for all
expected switching times. Appendix B shows that bounds on the expected switching times
can be obtained when A is Hurwitz. Basically, since |u| ≤ d is a bounded input, there exists
a bounded set such that any trajectory will eventually enter and stay there. This will lead
to bounds on the difference between any two consecutive switching times. Let ti− and ti+,
i = 1, 2a, 2b, be bounds on the minimum and maximum switching times of the associated
impact maps. The expected switching times Ti can, in general, be reduced to a smaller set
(t−i, ti+). Conditions (20) and (21) can then be relaxed to be satisfied only on (ti−, ti+)
instead on all ti ∈ Ti. See appendix B for details.

7.4 Examples

The following examples were processed in matlab code. The latest version of this software
is available at [7]. Before we present the examples, we briefly explain the matlab function
we developed. The input to this function is a transfer function of an LTI system together
with a parameter d > 0. If the SAT is proven globally stable, the matlab function returns
the parameters of the two quadratic surface Lyapunov functions (18). We then confirm
conditions (21) are satisfied by plotting the minimum eigenvalues of each Ri(t) on (ti−, ti+),
and showing that these are indeed positive in those intervals.

Example 7.1 Consider the SAT on the left of figure 16 with d = 1. It is easy to see
the origin of this system is locally stable. The question is if the the origin is also globally
asymptotically stable.

−2
s +2s +2s+33 2

s +s+62
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0.09

min(eig(R
i
(t))).  Want them to be always positive

Figure 16: 3rd-order system with unstable nonlinearity sector

Using conditions (21), we show that the origin is in fact asymptotically globally stable.
The right side of figure 16 illustrates this fact: the minimum eigenvalue of each condition (21)
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is positive on its respective set of expected switching times. The expected switching times in
this example are approximately T1 = (0, 3), T2a = (0, 3.3), and T2b = (0, 3.1). For instance,
if t1 ≥ 3, there is no point in S+ with switching time equal to t1.

u

y

1
−1

1
−1

Figure 17: Saturation controller versus constant gain of 1/2 (dashed)

Note that this system has an unstable nonlinearity sector. If the saturation is replaced
by a linear constant gain of 1/2, the system becomes unstable (see figure 17). This is
very interesting since it tells us that classical analysis tools like small gain theorem, Popov
criterion, Zames–Falb criterion, and integral quadratic constraints, fail to analyze SAT of
this nature.

Example 7.2 Consider the SAT in figure 18 with d = 1 and k > 0. The origin of the SAT
is locally stable for any k > 0.
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i
(t))).  Want them to be always positive

Figure 18: System with relative degree 7 (left); global stability analysis when k = 2 (right)

As seen in example 6.2, ‖CeAtB‖L1
= k, and the small gain theorem can only be applied

when k < 1.
Let k = 2. The right side of figure 18 shows how conditions (21) are satisfied in

some intervals (ti−, ti+), i = 1, 2a, 2b. The intervals (ti−, ti+) are bounds on the expected
switching times. Such bounds are such that if conditions (21) are satisfied on (ti−, ti+),
then the system is globally asymptotically stable. For details on how to find these bounds
see appendix B.

Example 7.3 Consider the SAT in figure 19 with d = 1. This system is globally asymp-
totically stable. This can be proven by direct application of the Popov criterion (see, for
example, [11, pages 419–420]). What is interesting about this example is that the system is
not exponentially stable. Thus, the method of analysis using piecewise quadratic Lyapunov
functions [9] fails to analyze the system.

Quadratic surface Lyapunov functions can, however, be used to analyze and prove global
asymptotic stability of the system. The right side of figure 19 shows how conditions (21)
are satisfied in some intervals (ti−, ti+), i = 1, 2a, 2b. It is important to notice that these
intervals cannot be found as in the previous examples or as explained in appendix B. The
reason is that here A is not Hurwitz. Thus, a bounded invariant set cannot be guaranteed
as in appendix B. Alternatively, the analysis must be done for all ti ≥ 0. The idea of proof
is the following: analysis near the origin is done as in appendix A.2. For large values of ti,
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Figure 19: Second order system not exponentially stable

analysis can be as in appendix A.3 for impact maps 2a and 2b since the matrix A1 is stable.
For impact map 1, it is required some further analysis. The constraint P1 = P2 implies that
R1(∞) = 0, which is a requirement since the system is not exponentially stable. For a large
enough t1+, it can be shown that R1(t) > 0 for all t ≥ t1+. The idea here is to show that
Ṙ1(t) < 0 for all t ≥ t1+.

8 Improvement of stability conditions

It is possible to improve condition (8), and consequently conditions (15) and (21), at a cost
of increased computations. This section explains how to approximate condition (7) with a
less conservative set of LMIs than (8).

8.1 Meaning of condition (7)

As seen in several examples in sections 6 and 7, although condition (8) is more conservative
than (7), this is enough to prove global asymptotic stability of many important systems.
There are, however, examples where (8) fails to prove stability [6]. Condition (8) only takes
into account that ∆0 ∈ S0−x∗

0, independently of the value of t ∈ T . Condition (7), however,
uses the information that, for a given t ∈ T , ∆0 ∈ St − x∗

0. Note that the set St has one
dimension less than S0.

The problem with condition (7) is that, in general, the set St is not easily characterized.
Let’s first see what exactly is condition (7). For every t ∈ T , we need ∆′

0R(t)∆0 > 0 for all
∆0 ∈ St, or equivalently, that











∆0 ∈ {x ∈ S0| x can be reached by some trajectory of the PLS} − x∗
0

C1H(t)∆0 = 0
x(τ) ∈ X̄, for all τ ∈ [0, t]

(22)

Next, we explain in detail each constraint in (22), starting with the first inclusion.
The switching surfaces S0 and S1, together with (1), are part of some PLS. The set Sd

0

can exclude those points in S0 that cannot be reached by a trajectory of the PLS starting
somewhere in IRn \S0, since such points play no role in the stability analysis of the system.

Example 8.1 Figure 20 shows a PLS with both switching surfaces S0 and S1, and X
defined between them. Above the switching surface S0 we have system ẋ = A1x + B1. In
the figure we see the vector fields of systems ẋ = A1x+B1 and (1) along the switching surface
S0 (above and below, respectively), and the vector field of (1) along the switching surface
S1. The points x̄0, x̄1, and x̄2 are the points where C0(A1x̄0 + B1) = 0, C0(Ax̄1 + B) = 0,
and C1(Ax̄2 +B) = 0. Note that x̄1 must be to the left of x̄0 in order to guarantee existence
of solutions.
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Figure 20: Sd
0 ⊂ S0 and Sa

1 ⊂ S1 are some sets defined to the right of x̄0 and x̄2, respectively

As seen in figure 20, points to the left of x̄1 do not belong to the domain of the impact
map from S0 to S1. Also, points in S0 between x̄0 and x̄1 cannot be reached by any
trajectory starting somewhere in IRn \ S0. Thus, only points to the right of x̄0 need to be
considered for stability analysis purposes. Note that those are exactly the points that can
be reached by system ẋ = A1x + B1. Similarly, only some points to the right of x̄2 can be
reached by (1). Hence, Sa

1 ⊂ S1 is some set defined to the right of x̄2.

The first inclusion in (22) is then composed of a linear equality together with a set of
linear inequalities. The equality, C0∆0 = 0, comes from the fact that ∆0 ∈ S0 − x∗

0. As for
the inequalities, they are necessary to ensure that every point in Sd

0 can be reached by some
trajectory of the PLS, starting somewhere in IRn \ S0. Such points in S0 are those where
the vector field along S0 points inward, for each system i that shares a boundary with X
through S0 (thicker segments of line in S0 in figure 21). As in the left of figure 21, assume
C ′

0 orientation points toward X (if this is not the case, just consider −C ′
0 and −d0). The set

of points in S0 where the vector field of system i is parallel to S0 are those where C0ẋ = 0,
i.e., C0(Aix + Bi) = 0, x ∈ S0. Thus, the set of points in S0 that can be reached by system
i is some subset of the set of points such that C0(Aix + Bi) > 0, x ∈ S0.

S0

C’0

S0

Xi

Xk

XX

x=A x+Bi i

Figure 21: Points in S0 that can be reached by trajectories of the system

The equality in (22) arises from the fact that ∆1 ∈ S1 − x∗
1, i.e., C1∆1 = 0. In terms of

∆0, we have equality (3), that we repeat here

C1e
At∆0 = d1 − C1x

∗
0(t) (23)

This equality automatically excludes those points in S0 that do not intersect S1, since such
points do not have a finite solution t > 0 satisfying (23). Note that (23) depends on t ∈ T ,
contrasting with the first equality C0∆0 = 0, which is independent of t.

The last inclusion in (22) ensures that a trajectory x(τ), starting at some point in S0,
stays in the closure of X, i.e., in X̄, for all τ ∈ [0, t]. Thus, the first switch must occur
at S1 (see figure 22). The inclusion consists of several infinite dimensional sets of linear
inequalities, one for each boundary of X. For instance, in figure 22, it must be true that
Cjx(τ) ≥ dj , j = 0, 1, 2, for all τ ∈ [0, t], assuming C ′

j orientations point toward X, as in
the figure.
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S2

S0

S1
C’1

C’2

C’0

X

Figure 22: Trajectories starting at S0 must remain in X

8.2 Less conservative conditions

It was clear from the above description of the set St why condition (7) cannot, in general,
be written as an equivalent set of LMIs. Basically, the characterization of the set St is too
complicated. A straightforward transformation of (7) into a set of LMIs was to use only
equality C0∆0 = 0. This resulted in a more conservative condition (8). To reduce the
conservatism, other inequalities can be incorporate using the S-procedure [1]. The problem
is that the S-procedure only results in equivalent, and therefore non-conservative conditions
when a quadratic function is subject to a single quadratic constraint. Next, using the S-
procedure, we show how equality (23) plus other inequalities can be used to approximate (7)
with a set of LMIs. We start by incorporating a single inequality.

First, we approximate St with a larger set. For a given t ∈ T , let S̃t ⊃ St be the set of
points in S0 where C1x(t) = d1. This can be obtained from (23) yielding

S̃t =
{

x∗
0 + ∆0 ∈ S0 : C1e

At∆0 = d1 − C1x
∗
0(t)

}

(24)

To see the differences between St and S̃t, consider again example 3.1. Figure 23 shows the
solution C1x(t) for two different initial conditions in Sd

0 .

tt1 2t
d 0

d1

C x(t)1

tt1 t2
d 0

d1

C x(t)1

Figure 23: On the left: C1x(t) ≥ d1 for 0 ≤ t ≤ t2; on the right: C1x(t) < d1 for t1 < t < t2

On the left of figure 23, t∆0
= {t1, t2}. This means x∗

0 + ∆0 belongs to both St1 , and
St2 . The right side of figure 23 shows what would have happened to C1x(t) if the switching
surface S1 was not present and no switch had occurred at t1. In that case, it would have
resulted in the dashed curve in the figure, intersecting S1 again at t = t2. This means
that although t2 is a solution of (23), it is not a valid switching time since C1x(t) < d1

for t1 < t < t2. In other words, the switching time t2 does not satisfy the inequality
C1x(t) ≥ d1 on [0, t2]. Although both t1 and t2 satisfy (23), only t1 is a valid switching
time, i.e., t∆0

= {t1}. Thus, x∗
0 + ∆0 belongs to S̃t1 , St1 , and S̃t2 , but not to St2 .

Since St ⊂ S̃t, condition (7) holds if there exist P1, P2 > 0, g1, g2, α such that

R(t) > 0 on S̃t − x∗
0 (25)

for all expected switching times t ∈ T . In order to transform this matrix inequality into
a set of LMIs, we need to better characterize the set S̃t. For that, we are going to use
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one inequality from (22) together with equality (23). As discussed above, there are many
inequalities to choose from. For the purpose of demonstrating the procedure, assume we
choose one of these inequalities, represented here by some L and m such that L∆0 > m. In
section 8.3, we give an example on how to pick one of these inequalities. A less conservative
condition than (25) is then

R(t) > 0 on
(

S̃t

⋂

{x∗
0 + ∆0| L∆0 > m}

)

− x∗
0 (26)

for all expected switching times t ∈ T (see figure 24).

L     =m
L     >m

L     <m
x*0

∆ 0

∆0

∆0

St
~

Figure 24: Region in S0 defined by equality (23) and the inequality L∆0 > m satisfies a
conic relation

As seen in figure 24, ∆0 ∈
(

S̃t
⋂ {x∗

0 + ∆0| L∆0 > m}
)

− x∗
0 satisfies a conic relation

∆′
0βt∆0 > 0, for some matrix βt (the construction of this matrix will be addressed in

appendix C). Using the S-procedure, condition (26) is equivalent to

R(t) − τtβt > 0 on S0 − x∗
0 (27)

for some scalar function τt > 0, and for all expected switching times t ∈ T . Note that, for
each t, (27) is now an LMI.

It is still possible to improve conditions (27) further more. They do not take advantage
of all other inequalities, including all of those arising from the last inclusion in (22). In
order to guarantee, for instance, that x(τ) ∈ X̄ on [0, t], it is necessary that the trajectory
x(τ) stays to the correct side of all switching surfaces that compose the boundary X. In
particular, it must be true that C1x(τ) ≥ d1 for all τ ∈ [0, t], i.e.,

C1

(

eAτ∆0 + x∗
0(τ)

)

≥ d1

for all τ ∈ [0, t]. This is an infinite dimensional set of linear inequalities. To overcome this
difficulty, we consider a finite number of values of τ in [0, t]. For example, at τ = t/2, we
have the following linear constraint on ∆0:

C1e
At/2∆0 ≥ d1 − C1x

∗
0(t/2)

As before, this inequality together with S̃t satisfies a conic relation ∆′
0γt/2∆0 > 0 in

which (27) would be improved to

R(t) − τtβt − τ1tγt/2 > 0 on S0 − x∗
0 (28)

for some scalar function τ1t > 0, and for all expected switching times t ∈ T .
There is an infinite number of constraints that can be added to condition (28) in order

to further reduce the level of conservatism. On one hand, the more constraints, the less
conservative conditions we get and, in turn, better chances of finding quadratic surface
Lyapunov functions (5). On the other hand, increasing the number of constraints will even-
tually make the problem computationally intractable. It is interesting to notice, however,
that many important PLS are analyzed with just conditions of the form of (8), as seen
in [6], and sections 6 and 7.
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8.3 Application to on/off

Next, we explain how the ideas discussed in the previous section can be used to derive
less conservative conditions than (15) for on/off systems, similar to those obtained in (27)
and (28). Note that all the ideas discussed in this subsection apply analogously to saturation
systems.

Define the sets S̃ti ⊃ Sti , i = 1, 2, as in (24). In the case of OFS these are S̃t1 =
{x∗

0 + ∆0 ∈ S : w1t∆0 = 1} and S̃t2 = {x∗
1 + ∆1 ∈ S : w2t∆1 = 1}.

Note that the domain of impact map 1 is S+. This set is characterized by all points in
x ∈ S such that CAx ≥ 0. Similarly, the domain of impact map 2 is a subset of S−. The set
S− is characterized by all points in x ∈ S such that CAx ≤ 0. Therefore, conditions (14)
hold if there exist P1, P2 > 0, g1, g2, α such that







R1(t1) > 0 on
(

S̃t1

⋂ {x| CAx > 0}
)

− x∗
0

R2(t2) > 0 on
(

S̃t2

⋂ {x| CAx < 0}
)

− x∗
1

(29)

for all expected switching times t1, t2, which are less conservative conditions than (15).
As explained in previous sections, ∆i satisfies a conic relation ∆′

iβti∆i > 0, for some
matrices βti (see appendix C for details on the construction of such matrices). Using the
S-procedure we obtain equivalent conditions to (29)

{

R1(t1) − τt1βt1 > 0 on S − x∗
0

R2(t2) − τt2βt2 > 0 on S − x∗
1

(30)

for some Pi > 0, gi, α, some scalar functions τti > 0, and for all expected switching times ti.
For each t1, t2 these conditions are LMI which again can be solved using efficient available
software. Note that these conditions can still be further improved as in (28).

9 Conclusions

Motivated by the need of new and alternative global analysis tools for certain classes of
hybrid systems, this paper developed an entirely new constructive analysis methodology for
PLS using impact maps and quadratic surface Lyapunov functions (SuLF). This method-
ology consists of inferring global properties of PLS solely by studying their behavior at
switching surfaces. The main idea is to efficiently construct SuLF to show that impact
maps associated with the PLS are contracting in some sense. The success and power of
this new methodology has been demonstrated in globally analyzing equilibrium points and
limit cycles of several classes of PLS: relay feedback systems, on/off systems, and saturation
systems. A large number of examples of these classes of PLS with a locally stable limit cycle
or equilibrium point were successfully globally analyzed. In fact, it is still an open problem
whether there exists an example with a globally stable limit cycle or equilibrium point that
could not be successfully analyzed with this new methodology.

For the classes of systems we considered so far, there were only advantages using SuLF
comparing with piecewise quadratic Lyapunov functions [9]. We could analyze limit cycles
for relay feedback systems, no extra complexity was added (i.e., no need for extra parti-
tions), worked exactly the same way for any system dimension, and we could prove global
asymptotic stability of PLS that were not exponentially stable. There are, however, limita-
tions to SuLF. It is under investigation how to systematically analyze general PLS, which,

31



at this time, is much simpler in [9]. Also, if a PLS has a large enough number of partitions
such that the method in [9] does not require extra partitions to analyze the system, then
SuLF does not seem the right tool since the large number of partitions will lead to many
impact maps to analyze that, in turn, will have an associated infinite dimensional LMI that
needs to be gridded along scalar variables.

A final word to mention that the reason why we chose “SuLF” instead of “QSuLF”
(quadratic SuLF) is due to the fact that new tools are emerging that allows the search for
polynomial Lyapunov functions to be done by solving a semi-definite program [14]. Thus,
future work will allow the use of high dimensional surface Lyapunov functions instead of
just quadratic.

Appendix: Technical Details

A Technical details for on/off systems

A.1 Choice of x
∗
0 and x

∗
1

We now explain how we chose x∗
0 and x∗

1 such that both Cx∗
0(t) < d and Cx∗

1(t) < d for all
t > 0. We start with x∗

1.
x∗

1 is found as explained in section 6.1 (see the right side of figure 8). In this case,
x∗

1 ∈ S∗ is given by x∗
1 = (P−1

d C ′d)/(CP−1
d C ′), where Pd > 0 satisfies PdA + A′Pd = −I.

The choice of x∗
0 is more tricky since A1 may be unstable. If A1 is stable then we can

use the same ideas as we did for x∗
1. First, let Pu > 0 satisfy PuA1 + A′

1Pu = −I. Then

x∗
0 = (d + cA−1

1 B1)
P−1

u C ′

CP−1
u C ′

− A−1
1 B1

If A1 is not stable (but has at least one stable eigenvalue) then we need to find a point
in S such this belongs to a stable mode of A1. If A1 has real poles then these must be
stable. Let λ be a real eigenvalue of A1 with associated eigenvector v (assume Cv 6= 0).
Then, if we find a point in S that only excites this mode, the trajectory x(t) will converge
to −A−1

1 B1 and Cx(t) < d for all t > 0. such a point in S is given by

x∗
0 = −A−1

1 B1 +
d + CA−1

1 B1

Cv
v

In case A1 only has complex poles, pick a stable complex conjugate pair of eigenvalues
λ, λ with associated eigenvectors v, v, where x stands for the complex conjugate of x. Let,
va = v + v and vb = i(v− v). Then, any initial condition starting in the hyperplane defined
by −A−1

1 B1 + αava + αbvb, αa, αb ∈ IR will converge to −A−1
1 B1 as time goes to infinity

since it only excites this stable complex conjugate mode. An orthogonal basis in this plane
can be defined by letting vc = −(v′avb)va + vb. The basis is then given by

V =

[

va

‖va‖
vc

‖vc‖

]

The trajectory in this basis satisfies α̇ = V ′A1V α = Avα. We need to find an α0 such that
C(−A−1

1 B1+V α0) = d and C(−A−1
1 B1+V α(t)) < d for all t > 0. This is a similar problem

to the one we dealt above when finding x∗
1. In this case, α0 is given by

α0 =
d + CA−1

1 B1

CV P−1
v V ′C ′

P−1
v V ′C ′
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where Pv > 0 satisfies PvAv + A′
vPv = −I. Finally, x∗

0 = −A−1
1 B1 + V α0.

If A1 only has complex unstable eigenvalues, then for any choice of x∗
0, Cx(t) = d will

have an infinity number of solutions for t > 0. In this case, x∗
0 must be chosen such that

the smallest solution t > 0 of Cx(t) = d is higher than the maximum possible expected
switching time. Note that such x∗

0 may not exist. If that is the case, the linearization of
the impact map must be parametrized by another variable at those values of t ∈ T where
Cx(t) = d, as explained in section 3.

A.2 Constraints imposed when ti = 0

As seen in section 6.4, when ti = 0, V1(∆0) = V2(∆1), for all ∆0, ∆1 such that CA(x∗
0+∆0) =

CA(x∗
1+∆1) = 0 and C∆0 = C∆1 = 0. This is equivalent to have R0 = R1(0) = R2(0) = 0.

Since analyzing R1(t) or R2(t) near zero will lead to the same results, we analyze R1(t) at
t = 0. From section 6.3, R0 = R1(0) is given by

R0 = P1 − P2 − (g1 + P2v0 − g2) w − w′ (g1 + P2v0 − g2)
′ + w′w

(

α + 2v′0g2 − v′0P2v0
)

where v0 = x∗
0 − x∗

1 and

w∆0 = lim
t→0

w1(t)∆0 = − CA

C (Ax∗
0 + Bd)

∆0

Let l ∈ w⊥5, z = w′/(ww′), and P = P1 − P2. Since R0 = 0, then l′R0l = l′Pl = 0. This
means that in the basis (l, z), the matrix P must have the following structure

PF =

(

0 Γ1

Γ′
1 Γ2

)

for some Γ1 ∈ IRn−1 and Γ2 ∈ IR. Thus, P = FPF F ′, where F = [l z]. Therefore, once
P2 > 0 is fixed, P1 > 0 must satisfy P1 = FPF F ′ + P2. The same way l′R0z = 0, or
l′ (Pz − g1 − P2v0 + g2) = 0. Hence, Pz − g1 −P2v0 + g2 = kz for some k ∈ IR. For a given
g2, g1 is then given by

g1 = (P1 − P2)z − P2v0 + g2 − kz

Finally, it must be true that z′R0z = 0 leading to

α = −z′ (P1 − P2) z + 2z′ (g1 + P2v0 − g2) + v′0P2v0 − 2v′0g2

In conclusion, the constraints imposed when ti = 0 reduce the free variable in condi-
tions (14) and (15) to P2, Γ1, Γ2, g2, and k.

A.3 Checking stability conditions for ti > timax

For simplicity, we are going to present the case when d = 0. The other cases follow analo-
gously. Assume conditions (16) are satisfied for all ti ≤ timax. We would like to easily check
if they will also be satisfied for all ti > timax. Let’s first concentrate on condition

l′t2Π
′eA′t2P1e

At2Πlt2 < l′t2Π
′P2Πlt2

5w⊥ are the orthogonal complements to w, i.e., matrices with a maximal number of column vectors

forming an orthonormal set such that w′w⊥ = 0.
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It is sufficient to show that
Π′eA′t2ΠQ1Π

′eAt2Π < Q2

for all t > t2max, and where Qi = Π′PiΠ. Next, we find an upper bound on the left side
of the last inequality. Let Az = Π′AΠ. Since A is a stable matrix, it is possible to find
a Q and a λ > 0 such that QAz + A′

zQ < −λQ. This in turn implies that z′(t)Qz(t) <
e−λtz′0Qz0, where z(t) is the solution of ż = Azz with initial condition z0. Using the fact
that eAzt = Π′eAtΠ, we have

z′0Π
′eA′t2ΠQΠ′eAt2Πz0 < e−λtz′0Qz0

or simply
Π′eA′t2ΠQΠ′eAt2Π < e−λtQ

Hence, for some k

Π′eA′t2ΠQ1Π
′eAt2Π < Π′eA′t2ΠkQΠ′eAt2Π

< ke−λtQ

< ke−λt2maxQ

Therefore, we need to guarantee ke−λt2maxQ < Q2. Note that we want to chose the largest
λ and the smallest k.

If A1 is stable, a similar condition can be found analogously. If A1 (and also A if d = 0)
has unstable complex poles, however, this approach will not work since eA1t is unbounded
when t → ∞. In such cases, it is fundamental to get an upper bound on t1max. How to find
such bound is currently under investigation.

B Technical details for saturation systems: bounds on switch-
ing times

In this section, we will talk about computational aspects related to finding Pi > 0, gi,
and α in (20) or (21). For many SAT, the sets of expected switching times are [0,∞).
Computationally, in general, it is impossible to check directly if the stability conditions (20)
or (21) are satisfied for all expected switching times. An alternative is to find some intervals
(ti−, ti+) such that if (20) or (21) are satisfied in those intervals, then stability follows. Notice
there are many ways to finds such bounds, and the method we propose here is not unique.

In [6], we showed that in the case of relay feedback systems, there is a bounded invariant
set where every trajectory will eventually enter. Hence, bounds on the expected switching
times could be found by computing bounds on switching times of trajectories inside that
bounded invariant set. This same idea can be used here whenever A is Hurwitz. In fact,
since u = ±d is a bounded input, a bounded and invariant set such that any trajectory will
eventually enter can be found. This will lead to bounds on the difference between any two
consecutive switching times. This way, the search for Pi > 0, gi, and α in (21) and (21)
becomes restricted to 0 ≤ ti− < t < ti+ < ∞, i = 1, 2a, 2b.

First, notice that t1− = t2a− = 0 since the associated impact maps are defined on the
same switching surface and are allowed to have zero switching time. Analysis of impact
maps 1 and 2a at ti = 0 imposes the same constraints on the parameters of the Lyapunov
functions as in OFS. See appendix A.2 for details.
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As for impact map ∆1 → ∆2b, zero switching never occurs since there is a “gap” between
S and S, resulting in a nonzero switching time for every trajectory starting in S−d. For
certain large values of ‖∆1‖, the switching times can be made arbitrarily small. In the
invariant bounded set described above, however, switching times for the impact map 2b
cannot be made arbitrarily small, and a lower bound t2b− can be found. Using the same
ideas, upper bounds on expected switching times for all impact maps can be found. Bounds
on switching times for the case where A has unstable imaginary eigenvalues can be found
as explained in example 7.3.

Before finding bounds on expected switching times, we need to characterize a bounded
set such that any trajectory will eventually enter and stay there. The following proposition
is similar to [6, proposition 7.1]. Thus, the proof is omitted here.

Proposition B.1 Consider the system ẋ = Ax + Bu, y = Fx, where A is Hurwitz, u(t) =
±d, and F is a row vector. Then

lim sup
t→∞

|Fx(t)| ≤ d‖FeAtB‖L1

Remember that, by definition, ‖FeAtB‖L1
is given by

‖FeAtB‖L1
=

∫ ∞

0

∣

∣

∣FeAtB
∣

∣

∣ dt

As a remark, if F = C and ‖FeAtB‖L1
< 1, it follows the origin is globally asymptoti-

cally stable. When lim supt→∞ |Cx(t)| < d, eventually all trajectories enter and remain in
the set {x| |Cx| < d}, where the system is linear and stable. Note that this remark also
follows from the well known small-gain theorem.

We first focus our attention on upper bounds of the switching times ti+, starting with
t1+. A trajectory x(t) starting at x0 ∈ S+ is given by x(t) = eAt(x0 + A−1Bd) − A−1Bd.
Thus, the output y(t) = Cx(t) is given by

y(t) = CeAt(x0 + A−1Bd) − CA−1Bd

Since we are assuming −CA−1Bd < d, and A Hurwitz, it is easy to see that y(t) cannot
remain larger than d for all t > 0. For any initial condition x0 ∈ S+, CeAt(x0+A−1Bd) → 0
as t → ∞, which means y(t) = d for some t. Thus, a switch must occur in finite time. Since
for a sufficiently large enough time t, x(t) enters a bounded invariant set (from the above
proposition), an upper bound on this switching time t1+ can be obtained. The following
proposition is similar to [6, proposition 7.2].

Proposition B.2 Let t1+ > 0 be the smallest solution of

∫ ∞

t1+

∣

∣

∣CeAtB
∣

∣

∣ dt + |CeAt1+A−1B| ≤ (CA−1B + 1)

If ta and tb are sufficiently large consecutive switching times of the first impact map then
|ta − tb| ≤ t1+.

Next, we find upper bounds on the expected switching times of impact maps 2a and 2b.
The idea here is to find the minimum t2 ≥ 0 such that |y(t)| = |CeA1tx0| ≤ d, for all t ≥ t2
and all x0 in the bounded invariant set. In this derivation, t2a+ = t2b+ = t2.
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Proposition B.3 Let t2 > 0 be the smallest solution of

∫ ∞

0

∣

∣

∣CeA1t2eAtB
∣

∣

∣ dt ≤ 1 (31)

If ta and tb are sufficiently large consecutive switching times of impact maps 2a or 2b, then
|ta − tb| ≤ t2, and t2a+ = t2b+ = t2.

We now focus on the lower bound on the expected switching times of impact map 2b,
i.e, t2b−. Remember that if x0 ∈ S+, then y(0) = d. Since d > 0, it must be true that
y(t) > −d at least in some interval (0, ε). Basically, the time it takes to go from S to S
must always be nonzero. The next result shows that when a trajectory enters the bounded
invariant set characterized above, ε cannot be made arbitrarily small. Thus, a lower bound
on the time it takes between two consecutive switches from S to S can be obtained.

Proposition B.4 Let kdd = ‖CA2
1e

AtB‖L1
, and kdl = ‖CA1e

AtB‖L1
and define t21 =

2/
√

kdd, t22 = 2/kdl. Let t2b− = max {t21, t22}. If ta and tb are sufficiently large consecutive
switching times of impact map 2b, then |ta − tb| ≥ t2b−.

The proof is similar to the proof of [6, proposition 7.3].

C Construction of conic relations

We now describe how to construct the cones βt introduced in section 8.2. Remember
that for each t > 0, the cone is defined by two hyperplanes in S0: one is the hyperplane
parallel to S̃t containing x∗

0 and the other is the hyperplane defined by the intersection of
M = {x∗

0 + ∆0 ∈ S0| L∆0 = m} and S̃t, and containing the point x∗
0 (see figure 24). Let

Π0lt and Π0st, respectively, be vectors in S0 perpendicular to each hyperplane. Once these
vectors are known, the cone can easily be characterized. This is composed of all the vectors
∆0 ∈ S0 − x∗

0 such that ∆′
0Π0(stl

′
t + lts

′
t)Π

′
0∆0 ≥ 0. The symmetric matrix βt introduced

in (27) is just βt = Π0β̄tΠ
′
0 where β̄t = stl

′
t + lts

′
t. Remember that the cone is centered at

x∗
0 and note that after lt is chosen, st must have the right direction in order to guarantee

(S̃t ∩ {x∗
0 + ∆0| L∆0 > m}) ⊂ {x∗

0 + ∆0 ∈ S0| ∆′
0βt∆0 > 0}.

We first find Π0lt, the vector perpendicular to S̃t. Looking back at the definition of S̃t,
lt is given by

lt =
(C1e

AtΠ0)
′

‖C1eAtΠ0‖2
(d1 − C1x

∗
0(t))

The derivation of st is not as trivial as lt. We actually need to introduce a few extra variables.
The first one is Π0l0, the vector perpendicular to the set M, given by l0 = (LΠ0)

′m/‖LΠ0‖2.

Proposition C.1 The hyperplane defined by the intersection of M and S̃t, and containing
the point x∗

0 is perpendicular to the vector

Π0lt
‖lt‖

‖l0‖ −
Π0l0
‖l0‖

‖lt‖

Proof: M can be parameterize the following way

M =
{

x∗
0 + ∆0 ∈ S0| ∆0 = Π0(l0 + l⊥0 z), z ∈ IRn−2

}
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and S̃t

S̃t =
{

x∗
0 + ∆0 ∈ S0| ∆0 = Π0(lt + l⊥t w), w ∈ IRn−2

}

The intersection of M and S̃t occurs at points in S0 such that l0+l⊥0 z = lt+l⊥t w. Multiplying
on the left by l′t we have l′tl0 + l′tl

⊥
0 z = l′tlt or

l′tl
⊥
0 z = ‖lt‖2 − l′tl0 (32)

We want to show that

(

lt
‖lt‖

‖l0‖ −
l0
‖l0‖

‖lt‖
)′

(

l0 + l⊥0 z
)

= 0

Using (32) we have

(

lt
‖lt‖

‖l0‖ −
l0
‖l0‖

‖lt‖
)′

(

l0 + l⊥0 z
)

=
l′tl0
‖lt‖

‖l0‖ +
l′tl

⊥
0 z

‖lt‖
‖l0‖ −

l′0l0
‖l0‖

‖lt‖

=
l′tl0
‖lt‖

‖l0‖ +
‖lt‖2 − l′tl0

‖lt‖
‖l0‖ − ‖l0‖‖lt‖

= 0

The characterization of st is not complete yet. The orientation of st must be carefully
chosen to guarantee that the cone Ct contains S̃t ∩ {x∗

0 + ∆0| L∆0 > m}.

Proposition C.2 If

st = m

(

l0
‖l0‖

‖lt‖ −
lt
‖lt‖

‖l0‖
)

then the cone {x∗
0 + ∆0 ∈ S0| ∆′

0βt∆0 > 0} contains S̃t ∩ {x∗
0 + ∆0| L∆0 > m}.

The proof, omitted here, is based on taking a point ∆0 ∈ (S̃t∩{x∗
0+∆0| L∆0 > m})−x∗

and showing that ∆′
0βt∆0 > 0.
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