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Abstract

This paper is concerned with the problem of validation in the
context of numerical computations in control. We explore the
possibility of using computer algebra tools and interval meth-
ods to compute solutions which have guarantees on accuracy,
e.g. which are not subject to unknown errors due to rounding
or approximation. We demonstrate that this is possible for two
common norms of a linear system (L2 andL∞) andH2-optimal
controller synthesis. We further discuss some of the issues in-
volved in achieving a validation property for other problems of
controller synthesis.

1 Introduction

The aim of this work is to investigate the development of nu-
merical methods for systems and control which have a guaran-
tee on accuracy. An end-product of such work is an algorithm
which could be described as ‘infallible’ in the following sense:
the user would specifya priori a tolerance as small as desired,
and the computer would provide an answer which was guaran-
teed to be accurate to the specified tolerance. A characteris-
tic feature of such work is the application of computer algebra
tools and the avoidance of floating-point arithmetic. This direc-
tion is an established subject within computer science, as well
as a few application areas in science and engineering (see [1]),
however it has not received attention so far in the control sys-
tems area.

The currentstatus quofor numerical computation in control,
which is based heavily on standard linear algebra routines and
high-speed floating point arithmetic, is unable to satisfy the rig-
orous requirement on accuracy indicated above. At first sight,
one might argue that a plant transfer function or state-space
realisation is never known with complete accuracy, and there-
fore small (rounding) errors arising during calculation do not
matter, and occasional larger errors are occupational hazards
which rarely cause major problems. We claim that this is an
unsatisfactory view for the following reasons.

1. In the majority of cases the user has no way to determine
the extent to which errors have accumulated during calcu-
lation. In other words, moderate or large errors might go
unnoticed.

2. Standard approaches to error analysis in numerical analy-

sis do not solve the problem, since error estimates (rarely
used in practice anyway) are themselves subject to round-
ing errors and can be erroneously computed [17].

3. The role played by computer power in this issue is de-
ceptive. To repeat a calculation at successively higher
precisions does not give a guarantee on accuracy, even
when the solutions appear to converge [17]. In prac-
tice, increased computer power is often deployed instead
for more involved calculations. Thus, the problem is not
likely to decrease as computer power increases (and might
even increase), if the current calculation methods persist.

4. Lack of attention to accuracy of solution has quite possi-
bly retarded the development of effective software tools in
certain areas. The example of`1-control is a case in point.

5. Although a ‘good engineer’ will always make checks
whenever possible on final answers by contrasting meth-
ods to verify that they are ‘sensible’, there is an advantage
if one source of errors can be eliminated. Moreover, it
is possible that computational instabilities can prevent the
desired answer from being found at all.

6. Although a solution to an engineering problem which is
highly sensitive to the data is not an acceptable engineer-
ing solution, it is important not to confuse this idea with
the numerical sensitivity of a particular algorithm. It is
perfectly possible for a solution (e.g. a controller that one
computes) to have low sensitivity to the given data (e.g.
plant parameters) and to be a good engineering solution,
but for the algorithm one uses to compute the solution to
be highly sensitive to the data. With such an algorithm
there is a clear difficulty in finding the solution one wants.

The above reasons are typical of the arguments that have been
accepted in computer science to justify research in ‘validated
numerical algorithms’. The authors believe that these argu-
ments also hold good in the context of computational methods
for control systems.

2 A Couple of Software ‘Glitches’ for Illustra-
tion

Let us take the following numerical example system and try to
find itsH∞-norm:

G(s) =
s2 +10−7s+1
s2 +10−8s+1

. (1)

By hand calculation, it is easy to show that‖G(s)‖∞ = 10 (with
the norm being achieved ats= j). However,hinfnorm, a Mat-



lab command to compute theH∞-norm based on a quadratic
convergent method proposed in [3, 4], fails to converge and
thus fails to find the norm:

>> out = hinfnorm(nd2sys([1 10ˆ-7 1],
[1 10ˆ-8 1]))

HINFNORM iteration DID NOT converge
a lower bound for the norm is 10
out = 10.00000001492336 Inf 1.00000000000000

An old-fashioned slow converging bisection method imple-
mented by using existing Matlab functions converges and finds
theH∞-norm between 10.2041 and 10.2042 (the lower bounds
is in fact above the actualH∞-norm):

>> out = hinfnorm_bs(nd2sys([1 10ˆ-7 1],
[1 10ˆ-8 1]))

out = 10.20414352416992 10.20420074462891

Let us take another example. Consider the synthesis problem
of finding the gap-optimal controller forP = s−0.02

s2+1
. Using the

ncfsyncommand in Matlab:

>> P = nd2sys([1 -0.02], [1 0 1]);
>> [Kopt, emax] = ncfsyn(P, 1)
Kopt = 1.02019794021444
emax = 0.70000214192573
>> [er1, er2] = emargin(P, Kopt)
SYSTEM has closed-right-half plane poles
er1 = 0
er2 = Inf Inf 0

The command returns a controller without any warnings, so the
user would believe that there were no difficulties in the compu-
tation and that the controller is reasonably close to the actual
one. Nevertheless the controller is in fact NOT stabilising.

3 Previous Work

As pointed out above the idea of ‘validated numerical meth-
ods’ or ‘guaranteed accuracy’ is not new in the computer sci-
ence field. In [17], Krandick and Rump elucidate this idea
as a search for algorithms with a rigorous specification, i.e.,
methods that never fail. Several papers in [16] propose hybrid
symbolic-numerical approaches to validation. The underlying
idea is ‘to begin with infallible algorithms and to make them
faster’ [5]. Conventional researches on numerical methods are
‘to make fast algorithms less fallible’ [5]. We employ the for-
mer idea to solve problems in systems and control with a guar-
antee.

Two useful methodologies for validated numerical methods
which are exploited in this work are interval methods and poly-
nomial root localisation. Interval methods have been used to
examine the existence of a solution to a system of equations
in an interval and further to find a sequence of intervals which
converge to a solution [18, 22] (a detailed treatment of some
background theory on interval methods and applications can
be found in [13, 21, 26]). Using rationals as the underlying
number system these methods have the potential to localise

solutions with a guarantee. Although typical polynomial root
solvers employ floating point arithmetic, there are some stan-
dard techniques which can be used to find roots with guaran-
teed accuracy. These will be discussed further in Section 6.

The increasing interest in the use of symbolic methods in con-
trol systems is illustrated in [23, 24] and one of a variety of dif-
ferent objectives in those works is to improve numerics. Some
techniques such as Quantifier Elimination, Groebner bases and
Bernstein expansion have been applied to control problems,
which are illustrated in [11, 12, 27, 31]. It may be interesting to
point out that many of the articles in [12] are in fact related to
control problems. However, so far, there has been no attempt
to devise validated numerical methods for control in the precise
sense of Krandick and Rump.

4 Number Systems

The manner of representing real numbers on a computer goes to
the heart of the issue of accuracy in numerical calculations. In
floating pointarithmetic there is a mantissa and exponent with
fixed length. The advantage is that arithmetical operations can
be computed in fast hardware. Nevertheless the limited accu-
racy, i.e., sparseness, prevents one from finding a solution with
arbitrarily accuracy. More serious problems are that the float-
ing point system is not closed under arithmetical operations and
that the operations are neither associative nor distributive.

This problem is recognised in computer algebra packages and
the rational number system is provided to do exact arithmeti-
cal operations. Even though the rational number system is not
complete, rational numbers satisfy the axioms for algebraic op-
erations and for an ordered field. Moreover, since rational num-
bers are dense in the reals, they are suitable for finding solu-
tions with arbitrary accuracy. These advantages are achieved
at the price of slower arithmetical operations and the need for
‘dynamic’ data structures to store numbers.

5 The Meaning of Guaranteed Accuracy

When solving a problem which finds a single real number (e.g.
H∞-norm, stability margin etc), a guaranteed accuracy algo-
rithm has to use a computer representable number system and
also produce an interval, which is a pair of elements in the num-
ber system used, to bound the true answer. The following for-
mal definition is thus suggested.

Definition 1. Let f : Rn → R be well-defined (not necessarily
continuous). Let A be some given algorithm taking the form of
an executable procedure, which generates a well-defined func-
tion A : (Fn,F) → F2 whereF ⊂ R is a set of computer repre-
sentable numbers and A(P,ε) = ( f`, fr) where f̀ < fr . Then, A
is said to be a guaranteed accuracy algorithm for f overF if,
for anyP∈ Fn and anyε ∈ F, ε > 0, the true f(P) is contained
in the closed interval[ f`, fr ] and fr − f` < ε.

In our approach, the rational number system is used, i.e.,F in
the definition will always be taken to beQ.

The above definition is reminiscent of a standard approach to



computing theL∞-norm by a bisection method. However there
is an important difference to standard implementations using
floating point arithmetic in that it is mandatory that the state-
ment f (P) ∈ [ f`, fr ] refers to the ‘true’ real numberf (P), and
not some approximation of it. We point out that the intention
of the Matlab algorithms in Section 2 is to produce an inter-
val containing the trueH∞-norm, but there is a failure to do so
because of rounding errors.

6 Polynomial Root Localisation

Polynomial root solvers typically employ floating point arith-
metic, and as such, do not find roots with guaranteed accu-
racy. For a real polynomial there is a well-known approach to
localise thereal roots using the method of Sturm chains [8]
which is very suitable for a guaranteed accuracy implementa-
tion. In computer algebra packages this is often implemented
using Descartes’ rule of signs suggested in [2]. Several real root
localisation algorithms using the above two methods and oth-
ers are discussed and calculation speed comparisons are made
in [6].

It is also possible to do root localisation for the complex roots
of a polynomial with guaranteed accuracy via the Lehmer-
Schur method [19], which examines the existence of roots of
a polynomial inside the unit circle. By a suitable transforma-
tion one can examine whether a root is inside a circle centred at
an arbitrary location and with an arbitrary radius. Some meth-
ods of determining whether a rectangle in the complex plane
contains a root are suggested in [5, 7, 28, 30].

Guaranteed root localisation methods will find an application
in the present work for various substeps in the algorithms to
be developed. One example will be the problem of factoring a
polynomial into a product of a stable factor and an anti-stable
factor with guaranteed accuracy. In particular for a monic poly-
nomial f (s) with no imaginary axis roots we will need a fac-
torisation f (s) = fs(s) fa(s) where fs(s) is monic and has only
left half plane (LHP) roots andfa(s) is monic and has only right
half plane (RHP) roots. The approach used will find intervals
for the coefficients offs(s) and fa(s) which may be as tight as
desired. One technique which will be used to successively nar-
row the intervals employs the Krawczyk operator [18], which
may be computationally more efficient than one which repet-
itively uses a guaranteed root localisation method. A detailed
algorithm may be found in [15].

7 Computation of the L2-norm with Guaran-
teed Accuracy

We begin with a problem that is rather trivial to solve in a guar-
anteed accuracy way, namely theH2-norm. Let us recall a
standard state-space method for its computation. Given a stable

systemG(s) =
[

A B
C 0

]
, its H2-norm can be calculated by

‖G(s)‖2 =
√

trace(CPC∗)

whereP is the solution of the following Lyapunov equation

AP+PA∗+BB∗ = 0 .

In standard approaches using floating point arithmetic round-
ing error is inevitable, no matter how numerically stable the
routines are. This problem can in fact be avoided since the
Lyapunov equation is a set of linear equations. If rational num-
ber representations are employed, computer algebra can then
be used to calculate the exact solution using algebraic opera-
tions only.

When a function inRL2 is given exactly (with rational con-
stants), itsL2-norm can be computed with guaranteed accu-
racy. Consider a (not necessarily stable) SISO systemG(s) =
n(s)
d(s) whered(s) has no imaginary axis roots and the degree of

n(s) is strictly smaller thand(s). Writed(s) = ds(s)da(s) where
ds(s) has only LHP roots andda(s) has only RHP roots, i.e., the
stable/anti-stable factors. Then, since(

n( jω)
d( jω)

)∗ n( jω)
d( jω)

=
n(− jω)
d(− jω)

n( jω)
d( jω)

=
n(− jω)

ds(− jω)da( jω)
n( jω)

ds( jω)da(− jω)
,

theL2-norm ofG is equal to theH2-norm of n(s)
ds(s)da(−s) . Notice

thatds(s)da(−s) has only LHP roots. The method of the previ-
ous paragraph along with interval matrix inversion [10] can be
applied and a bound for‖G(s)‖2 can be obtained with ‘guar-
anteed accuracy’ in the sense of Definition 1. This method
can immediately extended to the MIMO case since, when
G(s) = (Gi j (s)), ‖G(s)‖2

2 = ∑i, j

∥∥Gi j (s)
∥∥2

2.

8 Computation of the L∞-norm with Guaran-
teed Accuracy

The standard approach to computing theL∞-norm findsHγ, the
HamiltonianA-matrix of Φγ(s) = γ2I −GT(−s)G(s), and uses
floating point methods to find the smallestγ for which Hγ has
no eigenvalues on the imaginary axis [3, 4]. It is well known
that this last step is prone to numerical difficulties. Further-
more, because of repetitive computation of eigenvalues and the
largest singular values, the method does not seem suitable for
implementation in a computer algebra system. Unlike theL2-
norm computation, alternative approaches need to be taken to
construct an algorithm with guaranteed accuracy.

The following approach, which involves reducing the problem
to real root localisation of a polynomial rather than an eigen-
value test, does allow a guaranteed accuracy algorithm to be
implemented. The idea is summarised in the following theo-
rem.

Theorem 2 ([15]). Let G(s) ∈ RL∞ and assume that itsL∞-
normγ∞ = ‖G(s)‖∞ is not achieved at s= 0 or j∞ (ω = 0 or ∞),
i.e.,γ∞ > σ(G(0)) andγ∞ > σ(G( j∞)) whereσ(·) is the largest
singular value. Furthermore, letΦγ(s) = γ2I −GT(−s)G(s)

and denote gγ(s2) = detΦγ(s). Moreover, write gγ(x) = nγ(x)
dγ(x)

.



Let hγ(x) be the square-free part of nγ(x) considered as a poly-
nomial in x andγ. Then, if γ > γ∞, hγ(x) has no root in
−∞ < x< 0. Further, hγ∞(x) has a multiple root in−∞ < x< 0.

The candidate values for theL∞-norm are thenσ(G(0)),
σ(G( j∞)) and the real rootsγ of the discriminant ofhγ(x),
which is a polynomial inγ2. Note that all the candidate val-
ues can be found to desired accuracy via real root localisation
methods mentioned in Section 6. The true one can be cho-
sen from the candidates using the Sturm test. Namely, we
find the candidateγ for which the corresponding upper bound
(resp. lower bound) gives no (resp. some) roots ofhγ(x) in
−∞ < x< 0. In this way, using a computer algebra system, the
L∞-norm can be found with guaranteed accuracy in the sense
of Definition 1.

A Maple program implementing the above method found the
H∞-norm of (1) to be between 10 and 10.00001 in less than 0.2
seconds on a 750 MHz Pentium. The bound indeed contains
the actual value. We illustrate the method on a further specific
example. TheL∞-norm of the plant in Example 4.2 in [32]

G(s) =
 s2+0.15s+2.5

s4+0.35s3+3.51s2+0.45s+2.0
0.2s+1.0

2(s4+0.35s3+3.51s2+0.45s+2.0)

0.1s+0.5
s4+0.35s3+3.51s2+0.45s+2.0

s2+0.2s+1.0
2(s4+0.35s3+3.51s2+0.45s+2.0)




is found to be one of the roots of the following 12th order poly-
nomial inγ (or 6th order inγ2) with integercoefficients:

15405834505989388373γ12 −2070088084346678781094γ10

+5707237953777309755325γ8 −4082948339683566097500γ6

+890200949929650000000γ4 −26280511750000000000γ2

+3240000000000000000.

Via a real root localisation method the actualL∞-norm can be
found with guaranteed accuracy. Specifying, say, sixteen dec-
imal places to be accurate in advance, theL∞-norm was com-
puted to be 11.4703965432689763.We guarantee that this an-
swer is accurate to 16 places (which was obtained in less than
1.4 seconds)!

9 H2-optimal Controller Synthesis with Guar-
anteed Accuracy

This section is devoted to the guaranteed solution to the nor-
malised H2-optimal controller synthesis problem described
in [14] in the SISO case. We discuss how to obtain bounds
for the coefficients of the optimal controller with guaranteed
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Figure 1:H2 -optimal Feedback Configuration

accuracy. In the feedback configuration in Figure 1, letP
be the plant to be controlled which is expressed by a strictly
proper rational transfer function and let the transfer function
from w = (d1 d2)T to z= (y1 y2)T be denoted byTwz(s). We
consider the problem of minimising‖Twz(s)‖2 over all stabil-
ising controllersK. Write P = PN/PD wherePN and PD are
coprime polynomials. LetMD be a stable polynomial with pos-
itive leading coefficient that satisfiesM∼

D MD = P∼
N PN + P∼

D PD

where f∼(s) = f (−s) for a real polynomialf (s). The coeffi-
cients ofMD can be found with guaranteed accuracy as men-
tioned in Section 6. Then,P = N/M, whereM = PD/MD and
N = PN/MD, is a normalised coprime factorisation. Any sta-
bilising rational controller can be factorised asK = U/V such
thatU,V ∈ RH∞ satisfy the Bezout identityMV −NU = 1. It
is not difficult to deduce from [20, 25] that the denominators of
U andV for the optimal controller areMD. WriteU = UN/MD

andV = VN/MD. UN andVN can be found from the Bezout
identity which is now equivalent to

PDVN−PNUN = M2
D . (2)

When the order of the plantP is n, the degrees ofPD, MD and
VN are alln and those ofPN andUN are at mostn−1. It can be
shown that a pair ofUN andVN that satisfy the degree require-
ments and also (2) is unique and, moreover,UN andVN thus
obtained yield the optimal controller. Equating the coefficients
of (2), a matrix equationSbp = bm is obtained whereS is a ma-
trix whose elements consist of the coefficients ofPN andPD, bp

is a column vector that is composed of the coefficients ofUN

andVN andbm is a column vector whose elements are polyno-
mials in the coefficients ofMD. S is nonsingular and hence the
elements ofbp, or the coefficients ofUN andVN, are expressed
as polynomials in the coefficients ofMD. Since the coefficients
of MD can be found with guaranteed accuracy, the coefficients
of UN andVN can also be found with guaranteed accuracy.

10 Synthesis Problems with Guaranteed Accu-
racy

The extension of Definition 1 to problems in which a vector
or matrix is sought is straightforward. In the previous section
bounds for the coefficients of the optimal controller were used
to guarantee accuracy. However in a controller synthesis prob-
lem there may be more desirable ways to specify ‘guaranteed
accuracy’ than in terms of the coefficients of the controller’s
transfer function or state-space realisation. Other possibilities
might be to guarantee that the gap between the computed solu-
tion and the true solution is less than some givenε > 0, or that
the achieved performance measure is guaranteed to be within
someε > 0 of the true performance measure.

However another difficulty arises when a discontinuity in the
solution of a synthesis problem occurs. A synthesis problem
in general consists of a multiple stage procedure. When the
outputs from the previous stages are given as intervals rather
than exact values, the following stage inevitably has to work
with these intervals which is problematic in the case where a
discontinuity occurs nearby. Evidently basic questions relating



to continuity of solution need to be answered along with algo-
rithm development. The following example illustrates this.

Consider the plants+ε
s2+1

(see Section 2). Withε = 0, it is known
from [9] that the gap-optimal controller is equal to−1. When
ε 6= 0, the controller takes a different form. Using a specialised
routine developed in Maple, the following formula was found
for the controller [15]:

−σs−σa+ σc+1
s+a+c−σ

whereσ is the positive (resp. negative) root of

(1+ ε2)σ2 +

{√
−1+2

√
1+ ε2ε2

√
1+ ε2+1

− ε
(
−1+2

√
1+ ε2

)}
σ

−ε2 + ε
√
−1+2

√
1+ ε2−

√
1+ ε2 = 0

for positive (resp. negative)ε, a =
√

−1+2
√

1+ ε2, b =√
1+ ε2 andc = (σa−1)b

σ(b−1)+ε . The reason for the discontinuity in
this case is that the top singular value in the underlying Nehari
extension problem is repeated whenε = 0. Since the repeated
root occurs at an intermediate stage in the algorithm, the algo-
rithm needs to be able to cope with such a circumstance in a
guaranteed accuracy context.

The above situation in which an actual discontinuity of solution
occurs is likely to be the most challenging. Fortunately, many
synthesis procedures have continuity properties, e.g.H2 syn-
thesis [9] and alsoH∞ maximum entropy [29] solutions, which
makes them more promising for guaranteed accuracy solutions.

11 Concluding Remarks

The purpose of this paper is to raise the issue of validation in
the context of numerical computations in systems and control
and to show that progress can be made in some situations. The
range of problems for which this goal can be achieved in a
tractable way remains open.

For the problems investigated in this paper, numerical algo-
rithms based on floating-point arithmetic are commercially
available. A further target of this research is to tackle some
problems for which satisfactory algorithms using ordinary
floating-point arithmetic have proven difficult to develop. It
is our view that the lack of reliable computational tools has
prevented some theoretical developments from being used in
practice.

The issue of computational speed is bound up with this topic in
several ways, since guaranteed accuracy algorithms are likely
to be more expensive in computer time. However increased
computer power makes such methods a more practical propo-
sition.
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Interval Analysis. Springer-Verlag, London, 2001.

[14] E. A. Jonckheere and L. M. Silverman. A new set of in-
variants for linear systems — application to reduced or-
der compensator design.IEEE Transactions on Automatic
Control, AC-28(10):953–964, October 1983.

[15] M. Kanno. Guaranteed Accuracy Computations in Sys-
tems and Control. PhD thesis, University of Cambridge,
2003. In preparation.

[16] W. Krandick and S. Rump, editors.Journal of Sym-
bolic Computation: Special Issue on Validated Numerical
Methods and Computer Algebra, volume 24, number 6.
Academic Press, December 1997.



[17] W. Krandick and S. Rump. Special issue on validated
numerical methods and computer algebra: Foreword of
the guest editors. Journal of Symbolic Computation,
24(6):625–626, December 1997.

[18] R. Krawczyk. Newton-Algorithmen zur Bestimmung von
Nullstellen mit Fehlerschranken.Computing, 4(3):187–
201, 1969.

[19] D. H. Lehmer. A machine method for solving polyno-
mial equations.Journal of the Association for Computing
Machinery, 8(2):151–162, April 1961.

[20] D. G. Meyer and G. F. Franklin. A connection between
normalized coprime factorizations and linear quadratic
regulator theory.IEEE Transactions on Automatic Con-
trol, AC-32(3):227–228, March 1987.

[21] R. E. Moore.Interval Analysis. Prentice-Hall, Englewood
Cliffs, NJ, 1966.

[22] R. E. Moore. A test for existence of solutions to non-
linear systems. SIAM Journal on Numerical Analysis,
14(4):611–615, September 1977.

[23] N. Munro, editor. Computing & Control Engineering
Journal: Special Issue on Symbolic Computation, vol-
ume 8, number 2. Institution of Electrical Engineers,
April 1997.

[24] N. Munro, editor. Symbolic Methods in Control System
Analysis and Design, volume 56 ofIEE Control Engi-
neering Series. The Institution of Electrical Engineers,
Stevenage, 1999.

[25] D. Mustafa and K. Glover.Minimum Entropy H∞ Control,
volume 146 ofLecture Notes in Control and Information
Sciences. Springer-Verlag, Berlin Heidelberg, 1990.

[26] A. Neumaier.Interval Methods for Systems of Equations.
Cambridge University Press, Cambridge, 1990.
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