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Abstract

Iterative Feedback Tuning (IFT) is a data-based method for the tuning of restricted

complexity controllers. At each iteration, an update for the controller parameters is

estimated from data obtained partly from the normal operation of the closed loop system

and partly from a special experiment, in which the output signal obtained under normal

operation is fed back at the reference input. The choice of a prefilter for the input data to

the special experiment is a degree of freedom of the method. In the present contribution,

the prefilter is designed in order to enhance the accuracy of the IFT update. The optimal

prefilter produces a covariance of the new controller parameter vector that is strictly

smaller than the covariance obtained with the standard constant prefilter.
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1 Introduction

Iterative Feedback Tuning (IFT) is a data-based method to tune the parameters of a controller

with a given structure [2][3][4][6][7][9]. The objective of IFT is to minimize a quadratic per-

formance criterion defined on the space of controller parameters. IFT consists of an iterative

stochastic gradient descent scheme. The gradient of the performance criterion is estimated

from a set of data obtained partly from normal operation of the closed loop system with the

present controller, and partly from a special experiment on the plant, in which the output signal

obtained under normal operation is fed back to the reference input. This gradient estimate is

used to perform the next descent step in the iterations of the vector of controller parameters.

Under suitable assumptions the algorithm converges to a local minimum of the performance

criterion [3][5].

In the IFT procedure, the user is given the possibility of prefiltering the input data to the

special experiment. The choice of a particular prefilter is a degree of freedom of the procedure.

In the original formulation of IFT [7] this degree of freedom was not used. In practice, this

corresponds to using a trivial constant prefilter. In [2][4], it has been shown that the prefilter

influences the covariance of the gradient estimate. A prefilter was derived which minimizes the

weighted trace of the asymptotic covariance for a given weighting matrix. The main motivation

for this result was the fact that near the optimal point the asymptotic convergence rate of IFT,

measured as the rate of approach of the expected cost to the minimal value, can be optimized

by minimizing the weighted trace of the asymptotic covariance of the gradient estimate for a

specific and computable selection of the weight. By choosing that optimal weight, an optimal

prefilter was derived that maximally improves the asymptotic convergence rate of the algorithm.

The choice of the correct weight was based on an estimate of the Hessian of the design cost

function near the optimal point.
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As far as we know, there are no clear results that allow one to formalize a design criterion

for the convergence rate in the case where the current controller is far from the optimal one.

As a matter of fact, the convergence depends on the global shape of the performance criterion.

This shape is unknown and can hardly be estimated. Therefore, in this situation, the objective

is mainly the improvement of the accuracy of every single IFT step. By reducing the deviation

of the actual descent direction from the optimal direction at each iteration, one enhances the

robustness of the whole iterative procedure.

Since we do not know the effect of the covariance of the gradient estimate on the expected

cost of the IFT criterion for the reason explained above, we cannot compute the desired scalar

measure of the covariance matrix of the gradient estimate, whose minimization would entail

an optimal cost reduction. However, we show in this paper that it is possible, by prefiltering,

to obtain a covariance matrix that is smaller than the one obtained with the standard IFT

step, i.e. with a trivial constant prefilter. By smaller we mean that the difference between

the covariance matrix obtained with standard IFT and the new one is positive semidefinite.

We propose a design criterion for the prefilter that is consistent with this goal and show how a

prefilter can be computed that optimizes this design criterion. It turns out, as it was the case in

[4][2], that the proposed prefilter can be estimated from data collected under normal operating

conditions. Thus the computation of the prefilter does not require any special experiment on

the process and does not impose any additional cost.

Our optimal filter, computed and applied at every iteration of the IFT scheme, will have the

effect of decreasing the spread (as measured by the covariance) of the gradient estimate that

determines the descent direction in the iterative scheme. While this should on average improve

the convergence speed of the search procedure and reduce the occurrences of converging to

wrong local minima, it does in no way guarantee that the algorithm will not converge to an

unsatisfactory local minimum as a result of poor initial conditions.
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The paper is structured as follows. In the next section we recall some results on the statistical

properties of the gradient estimate in IFT. This enables us in Section 3 to establish a design

criterion that has to be minimized with respect to the prefilter in order to reduce the covariance

of the gradient estimate. We also show how to compute a prefilter that is optimal with respect

to this design criterion. In Section 4, we demonstrate, by a simulation example, the gain in

accuracy between the use of the optimal prefilter and the use of the trivial constant prefilter.

Finally, we draw some conclusions in the last section.

2 The IFT parameter update

We assume that the plant to be controlled is a SISO linear time-invariant system; its transfer

function is denoted by G(q). The output of the plant is affected by an additive stochastic

disturbance v(t) = H(q)e(t) where H(q) is a monic, stable and inversely stable transfer function

and e(t) is zero mean white noise with variance σ2. The transfer functions G(q) and H(q)

are unknown. We consider the closed loop system depicted in Fig. 1, where C(q, ρ) belongs

to a parameterized set of controllers with parameter vector ρ ∈ Rn. The transfer function

from v(t) to y(t, ρ) is denoted by S(q, ρ). In this paper, we consider the situation where the

control objective is to perform disturbance rejection only. Thus, normal operating conditions

are defined as those for which the reference signal r(t) is set at zero. The goal is to find a

minimizer for the cost function

J(ρ) =
1

2
E
[

y(t, ρ)2 + λu(t, ρ)2
]

, (1)

where λ ≥ 0 is a penalty on the control effort chosen by the user.

The IFT method is an iterative procedure that gives a solution to this problem. It is based

on the construction, at each iteration step, of an unbiased estimate of the gradient of J(ρ) from
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data collected on the plant with some present controller C(ρ) in operation. The cost function

J(ρ) is minimized with an iterative stochastic gradient descent scheme of Robbins-Monro type

[1]. After each iteration, the controller parameter vector is updated (ρi → ρi+1), and new data

are collected on the closed loop system with this updated controller in order to estimate the

next gradient. Under some suitable assumptions [3][7], the sequence of controllers converges to

a local minimum of J(ρ).

Since every iteration proceeds in the same fashion, and since this paper analyzes (and

optimimizes in a sense to be defined) the covariance of the gradient estimate in a single iteration,

we shall in the sequel analyze the step where we move from the current controller parameter,

denoted ρ0, to the updated parameter ρ1. The IFT parameter update rule is given by

ρ1 = ρ0 − γR−1 estN

[

∂J

∂ρ
(ρ0)

]

(2)

where γ is a positive step size and R is a positive definite matrix. The reader is referred to [7]

for details of the algorithm to construct the gradient estimate.

Here it suffices to recall that, in order to construct estN

[

∂J
∂ρ

(ρ0)
]

, first a batch

{u1(t, ρ0), y1(t, ρ0)}t=1,...,N of N data is collected with the controller C(q, ρ0) in the loop under

normal operating conditions, i.e. with r(t) = 0. Then, this batch of data is used to construct

the signal sequence {r(t) = −K(q)y1(t, ρ0)}t=1,...,N which is applied to the reference input of

the system (see Fig. 1); this is the “special experiment”, which deviates from normal operating

conditions. It produces a second batch of input and output data {u2(t, ρ0), y2(t, ρ0)}t=1,...,N ,

which are used to construct the following estimates of the gradients of u1(t, ρ0) and y1(t, ρ0):

est

[

∂u1

∂ρ
(t, ρ0)

]

=
1

K(q)

∂C

∂ρ
(q, ρ0) u2(t, ρ0) ,

est

[

∂y1

∂ρ
(t, ρ0)

]

=
1

K(q)

∂C

∂ρ
(q, ρ0) y2(t, ρ0) .
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An estimate of the gradient of J(ρ) at ρ0 is then obtained as

estN

[

∂J

∂ρ
(ρ0)

]

=
1

N

N
∑

t=1

[

y1(t, ρ0)est

[

∂y1

∂ρ
(t, ρ0)

]

+ λu1(t, ρ0)est

[

∂u1

∂ρ
(t, ρ0)

]]

(3)

The choice of the prefilter K(q) is a degree of freedom of the algorithm and is basically left

to the user. In the original formulation of IFT the prefilter was not used, which corresponds to

setting K(q) = const. The prefilter K(q) influences the statistical properties of the IFT update

as has been shown in [7]. More specifically, we have the following proposition.

Proposition 2.1 Let P̄ = limN→∞ NCov [ρ1]. Then P̄ can be decomposed as P̄ = Ē + S̄

where Ē is given by

Ē = γ2R−1

[

σ4

2π

∫ π

−π

|S(ejω, ρ0)H(ejω)|4

|K(ejω)|2
[

1 + λ|C(ejω, ρ0)|
2
]2 ∂C

∂ρ
(ejω, ρ0)

∂C∗

∂ρ
(ejω, ρ0) dω

]

R−T

and S̄ is a constant matrix which does not depend on the choice of K(q).

Proof. See [3]. 2

This result shows how the covariance matrix of the parameter update depends on the prefilter

K(q). It is the sum of a constant term and a term that is a frequency weighted integral of the

inverse of K(q). In the next section we will show how to choose K(q) in order to make this

covariance matrix smaller than what is obtained with a constant prefilter.

3 Design of an optimal prefilter

By Proposition 2.1 we can influence the covariance term Ē by choice of the prefilter K(q). Our

goal is to make Ē as small as possible by choosing K(q) appropriately. However, here we deal

with a matrix-valued object, minimization of which has no well-defined meaning. Nevertheless,

there exists a partial ordering on the space of symmetric matrices. Namely, if the difference
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P̄2 − P̄1 of two symmetric matrices P̄1, P̄2 is positive definite, we can say that P̄1 is strictly

smaller than P̄2. Clearly, if we have a choice between two different prefilters K(q) yielding two

different covariance matrices, which are comparable in this sense, then it is preferable to use

that prefilter which leads to the smaller covariance matrix.

Specifically, if we can find a prefilter which leads to a covariance matrix P̄ which is strictly

smaller than the covariance matrix obtained by using no prefilter at all, then it is preferable to

use this prefilter. In this section we point out a subset of prefilters which lead to such covariance

matrices, and we propose an algorithm to construct the prefilter in that set which leads to the

smallest covariance matrix.

We shall proceed as follows. First we clarify the structure of the set of all covariance matrices

P̄ which can be obtained at all by using all possible prefilters K(q). This will give us clues for

the construction of a prefilter which leads to a covariance matrix that is smaller than the one

obtained with some given prefilter. We will then construct a prefilter that yields a covariance

matrix which is smaller than the one obtained by using no prefilter at all (i.e. by using the

trivial constant prefilter).

3.1 The set of achievable covariance matrices

By Proposition 2.1 we can write

Ē =

∫ π

0

1

|K(ejω)|2
M(ω) dω, (4)

i.e. Ē is a weighted integral over a frequency-dependent real positive semidefinite matrix M(ω),

which itself does not depend on the prefilter K(q). The prefilter is assigned the role of a positive

weighting function. Thus, by choice of a suitable prefilter, we can assign to the expression Ē a

value that is arbitrarily close to any given matrix in the convex conic hull of the matrix-valued
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curve M(ω). By Proposition 2.1, the closure of the set of all asymptotic covariance matrices P̄

that can be achieved by choosing a prefilter is an affine closed convex cone with offset S̄. Let

us denote this cone by C.

Since Ē is inversely proportional to the squared magnitude of the prefilter K(q), we could

make it as small as we wish by choosing a prefilter with a sufficiently large magnitude. However,

this would be at the cost of a higher input energy for the reference signal r(t) = −K(q)y1(t, ρ0)

of the special experiment and this would represent a bigger perturbation of the process, which

is not desirable. Thus we have to restrict the set of allowed prefilters K(q) by imposing

some bound α on this input energy E [r(t)2]. This bound represents the level of accept-

able perturbation of the normal operating conditions during the special experiment. Since

r(t) = −K(q)y1(t, ρ0) and y1(t, ρ0) = S(q, ρ0)H(q)e(t), we impose the following restriction on

the magnitude of K(q):
σ2

2π

∫ π

−π

|K(ejω)|2|S(ejω, ρ0)H(ejω)|2 dω ≤ α. This can be written as

∫ π

0

|K(ejω)|2w(ω) dω ≤ 1, (5)

where w(ω) = σ2

απ
|S(ejω, ρ0)H(ejω)|2 is a positive frequency-dependent scalar function. The set

of covariance matrices P̄ that can be obtained by prefiltering under restriction (5) is naturally

smaller than the entire cone C defined above. We shall now investigate this set.

Let P̄in = S̄ + Ēin ∈ C \ {S̄} be an arbitrary covariance matrix which can be achieved by

prefiltering with some prefilter satisfying constraint (5). Then the ray {P (κ) = S̄+κĒin |κ ≥ 0}

is contained in the cone C. It is easily seen that there exists a unique κopt > 0 such that any

matrix P (κ) = S̄ + κĒin with κ ≥ κopt can be approximated arbitrarily well by choosing

prefilters satisfying constraint (5), but matrices P (κ) with κ < κopt cannot. The union of the

matrices P̄opt = S̄ + κoptĒin for all rays in C forms a section S of the cone C (see Fig. 2).

Proposition 3.1 The section S is a convex hypersurface.

7



Proof. It is sufficient to show that the closure of the set of all covariance matrices that can

be achieved by prefiltering under restriction (5) is convex. Let K1(q), K2(q) be two prefilters

satisfying (5) and yielding covariance matrices P̄1, P̄2 ∈ C, respectively. Let Kτ (q) be such that

1
|Kτ (q)|2

= τ 1
|K1(q)|2

+ (1 − τ) 1
|K2(q)|2

, τ ∈ [0, 1]. Then by convexity of the function f(x) = 1
x

every filter Kτ (q) satisfies restriction (5). Thus the matrices on the line segment between the

covariance matrices P̄1, P̄2 can be approximated arbitrarily well along with the endpoints of

this segment. 2

Prefilters K(q) satisfying (5) and leading to covariance matrices on the surface S are optimal

in the following sense. Suppose we are given some prefilter Kin(q) satisfying (5) and leading

to a covariance matrix P̄in = S̄ + Ēin in the convex hull of S. Then the covariance matrix

P̄opt = S̄ + κoptĒin ∈ S is the smallest covariance matrix on the ray {S̄ + κĒin |κ ≥ 0} which

can be approximated by using prefilters satisfying (5). In particular, we have κopt ≤ 1 and

P̄opt is smaller than P̄in. In this sense a prefilter Kopt(q) which satisfies (5) and produces the

covariance matrix P̄opt is optimal along the given ray. In the next subsection we shall construct

this optimal prefilter.

3.2 The optimal prefilter

The problem of finding the optimal prefilter Kopt(q) for which the corresponding covariance

matrix P̄opt is smaller than some given initial covariance matrix P̄in can be cast as the following

optimization problem (compare (4), (5)). Given an initial prefilter Kin(q) which realizes a

covariance matrix P̄in = S̄ + Ēin, minimize κ, by choice of K(ejω), under the constraints

∫ π

0

|K(ejω)|2w(ω) dω ≤ 1,

∫ π

0

1

|K(ejω)|2
M(ω) dω = κĒin.
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The solution of this optimization problem yields Kopt and κopt ≤ 1, with P̄opt = S̄ + κoptĒin ≤

P̄in. A natural choice of the initial prefilter Kin(q) is the trivial constant prefilter with maxi-

mum gain satisfying the energy constraint.

We shall now solve this problem. By associating a scalar Lagrange multiplier λ0 ≥ 0 and a

matrix-valued Lagrange multiplier Λ with the two constraints, we obtain the Lagrange function

L = κ + λ0

(
∫ π

0

|K(ejω)|2w(ω) dω − 1

)

+

〈

Λ,

∫ π

0

1

|K(ejω)|2
M(ω) dω − κĒin

〉

,

where 〈A,B〉 denotes trace(AT B). By setting the gradient of L with respect to the design

variables κ and K(ω) to zero and inserting the resulting equations into the constraints, we get

|Kopt(ω)|2 =

√

〈Λ,M(ω)〉

w(ω)
∫ π

0

√

〈Λ,M(ω)〉w(ω)
, (6)

∂

∂Λ

(

− ln

∫ π

0

√

〈Λ,M(ω)〉w(ω) dω +
1

2
〈Λ, Ēin〉

)

=
∂f(Λ)

∂Λ
= 0.

The function f(Λ) is convex with respect to Λ. In order to determine Λ we thus have to solve

the following convex optimization problem.

minimize f(Λ) s.t. 〈Λ,M(ω)〉 ≥ 0 ∀ω. (7)

The matrix-valued function M(ω) is rational in cos(ω). Therefore the constraint 〈Λ,M(ω)〉 >

0 ∀ω is semidefinite representable and can be formulated as an LMI (Linear Matrix Inequality).

Problem (7) is thus a standard convex optimization problem for which efficient numerical

solution algorithms are available. Note that the gradient of f tends to infinity as Λ approaches

the boundary of the feasible set. Hence at the optimum, if it exists, the inequality in (7) is
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strict. Having determined Λ, one can compute the magnitude of the prefilter according to (6).

Then, there exist standard tools to approximate a given magnitude function by a minimum

phase filter.

Practical aspects. The solution of (7), and hence the computation of the optimal prefilter,

requires knowledge of M(ω) and w(ω): see (4), (5) and Proposition 2.1. The only unknown

in M(ω) and w(ω) is the spectral density |S(ejω, ρ0)H(ejω)|2 of the signal y(t, ρ0) which is

the output of the plant under normal operating conditions, i.e. with r(t) = 0. Such estimate

can be obtained with standard techniques in the time or in the frequency domain [8][10] from

the measured signal y(t, ρ0). By assuming periods of normal operating conditions to be much

longer than the length of the special experiment from which the gradient is estimated, the

contribution of the variability in the estimate of |S(ejω, ρ0)H(ejω)|2 to the variability of the

gradient estimate can be considered as being negligible.

Before closing this section, let us remind the reader that the optimal prefilter is guaranteed

to yield a smaller covariance matrix of the updated parameter vector than the one which would

be obtained with the standard IFT procedure. It is optimal in the sense described in the

previous subsection.

4 Simulation example

Consider the system described by G(q) = q−1−0.5q−2

1−0.3q−1−0.28q−2 and H(q) = 1
1+0.9q−1 with σ2 = 1. Let

the class of controllers be C(q, ρ) = ρ1

1+ρ2q−1 and set λ = 0.6 in (1). Let the current stabilizing

controller be given by: ρ0 = [−1.25 0.83]. We assume that the constraint on the reference

signal r(t) of the special experiment is that this signal must have the same energy as the

output of the plant in normal operating conditions. In the following, we quantify the accuracy

improvement on the parameter vector update ρ1, when the optimal prefilter Kopt(q), given by
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(6), is used instead of the trivial constant prefilter Kin(q), both of which having a maximum

gain satisfying the energy constraint on E [r(t)2].

We consider the IFT update (2) with step size γ = 1 and R = I. By using Proposition 2.1

and results from [3] we can find the numerical value of P̄ = limN→∞ NCov [ρ1].

For the constant prefilter Kin(q) we obtain

P̄in = 104 ×









0.0524 −0.3019

−0.3019 2.2765









= S̄ + Ēin

in which the K(q)-dependent component is given by

Ēin = 104 ×









0.0472 −0.3053

−0.3053 2.2735









.

For the optimal prefilter Kopt(q) we have

P̄opt = 103 ×









0.1245 −0.4309

−0.4309 3.4975









= S̄ + Ēopt

where Ēopt = κoptĒin with κopt = 0.15. The difference in the total covariance for the two cases

is then

∆̄ = P̄in − P̄opt = 104 ×









0.0399 −0.2588

−0.2588 1.9267









> 0 .

Thus, whatever scalar measure of the covariance matrix one might use to evaluate the spread

of ρ1, the use of Kopt(q) leads to a strict improvement.

The above theoretical values can be verified by a Monte-Carlo simulation. The parameter

vector ρ1 has been extracted 2048 times, by performing 2048 times the parameter vector update

(2) with a different noise realization for the two batches of data, each batch being of length
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N = 1024. The 2048 parameter vectors obtained in this way are shown in Fig. 3 for the case

of the constant prefilter. The corresponding sampled estimate of NCov[ρ1] is given by

P̂in = 104 ×









0.0523 −0.3003

−0.3003 2.2338









.

The 2048 parameter vectors obtained for the case of the optimal prefilter are shown in Fig.

4. Note that the optimal prefilter Kopt is identical for all 2048 runs, since it only depends

on the statistics of the output process during normal operation, and not on individual signal

realizations. In this case, the corresponding sampled estimate of NCov[ρ1] is given by

P̂opt = 103 ×









0.1270 −0.4344

−0.4344 3.5599









.

We observe that the results of the Monte-Carlo simulation are remarkably close to the theoret-

ical results.

5 Conclusions

In this contribution we have exploited the possibility to prefilter the reference input in the

special experiment of the IFT procedure in order to enhance the robustness of the algorithm.

Based on the relationship between the prefilter and the covariance of the parameter update, we

have formulated a design criterion for the prefilter which, in each IFT iteration, replaces the

covariance of the parameter update obtained with standard IFT by a strictly smaller covariance.

The problem of optimizing the prefilter with respect to this criterion amounts to a convex

optimization problem with LMI constraints.
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Figure 1: The control system under normal
operating conditions.
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Figure 2: Representation of the optimization
problem.
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Figure 3: The 2048 parameters ρ1 obtained
using the constant prefilter Kin(q).
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Figure 4: The 2048 parameters ρ1 obtained
using the optimal prefilter Kopt(q).
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