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Abstract

Recently, it has been shown how model predictive control
(MPC) can adapt to faults in certain circumstances. This
paper describes how MPC was successfully implemented
as a fault-tolerant controller for a single engine/propeller
model of a ship propulsion system. It is shown that the
MPC controller can be tuned to be robust to internal
faults that develop in the ship propulsion system, even
in the absence of any fault detection and isolation (FDI)
information for the internal faults. For the case of sensor
faults, it is assumed that FDI information is available and
it is shown how the MPC controller, in combination with
a Kalman estimator, can drastically improve the tracking
response of the system in the presence of sensor faults.
The paper concludes that MPC is a very good candi-
date for a fault-tolerant controller for the ship propulsion
system, requiring re-configuration only at the supervisory
level, without the need for additional re-configuration in
the lower-level control systems.

1 Introduction

In practice all physical systems have some form of con-
straint, whether the constraint is due to a physical, eco-
nomic, safety or performance requirement. These con-
straints are typically enforced on control inputs, control
rates and/or system outputs. The ability of model predic-
tive control (MPC) to handle constraints systematically is
one of the primary advantages of MPC over alternate con-
trol schemes.

Lately, there have been proposals to apply MPC to ar-
eas outside the process industries, where it is the most

widely used advanced control technique. In particular,
its use for flight control, including the question of fault-
tolerance, has been investigated in [1, 2, 3]. It has also
been shown how MPC transparently adapts the controller
in the presence of actuator faults, even without fault de-
tection and isolation (FDI) information [4, 5, 6, 7].

In [8] a nonlinear model of a low speed marine vehicle
is described with the aim of it being used as a bench-
mark to test a control system’s fault-tolerant capabilities.
This paper describes the results from designing and im-
plementing an MPC controller for the non-linear single
engine/propeller model of the ship.

The benchmark describes requirements for FDI and re-
configuration. Only the re-configuration part is studied in
this paper and it is assumed that, where necessary, FDI
information is available without delay.

Based on the results presented in this paper, some con-
clusions are drawn and recommendations made as to fur-
ther work that needs to be undertaken.

2 Controller design

The requirement of the benchmark is that the remedial
actions should primarily use re-configuration at the coor-
dination level to accommodate a fault. The performance
in the re-configured mode is allowed to be lower than un-
der the no-fault conditions. Bump-less transfer is not re-
quired, but large transients should be avoided when re-
configuring the controller.

This section starts with a review of the principles behind
MPC. A description of the ship propulsion system is given,
before the control objectives and constraints are defined.
The effect of tuning the different MPC design parameters
will also briefly be discussed.



2.1 Review of MPC

The main idea behind MPC is to determine future values
of the control inputs by optimising a cost function which
expresses the control objectives. The sequence of Nu fu-
ture control signals u(k + i) is determined by optimising
a cost function that typically has the quadratic form

J(k) =
N2∑
i=N1

‖Mx̂(k + i|k)− r(k + i)‖2Q(i)

+
Nu−1∑
i=0

‖∆u(k + i)‖2R(i)

(1)

subject to the constraints

∆uj(k + i) ∈ [Vminj , Vmaxj ] (2)
uj(k + i) ∈ [Uminj , Umaxj ] (3)

(Mx̂)j(k + i|k) ∈ [Xminj , Xmaxj ] (4)

where the control increments are defined as ∆u(k) =
u(k+ 1)−u(k) and Mx(k) is the vector of variables to be
controlled; x(k) is the state of the plant. x̂(k + i|k) is a
prediction of x(k+ i) made at time k, and M is some ma-
trix (for example, M = C in the usual state-space model if
only outputs are to appear in J(k)). r(k) is some reference
trajectory for Mx(k).

The integersN1 andN2 are the minimum and maximum
output horizons, respectively. It is assumed that the con-
trol signals are constant after the end of the optimisation
horizon, namely that ∆u(k + i) = 0 for i ≥ Nu.

The norm ‖.‖2Q within the cost function is defined as
‖α‖2Q = αTQα.

In the inequalities uj(k) denotes the j’th component
of the vector u(k), etc, and Vminj , Vmaxj , Uminj , Umaxj ,
Xminj and Xmaxj are problem-dependent values.

The first sum in (1) penalises the control error, while
the second sum penalises the control effort. The matrices
Q and R are used to weight the corresponding control
errors and control actions.

For each set of control increments, the predicted values
of the state vector are calculated from a (usually) linear
internal model. Once an optimal solution has been found,
only the first actuation signal is applied to the process. At
the next time instant k+1, the whole sequence is repeated
using the latest plant measurements.

For a detailed discussion of MPC, the reader is referred
to the literature [9, 10]

2.2 Description of the ship propulsion
system

The focus of this study has been limited to the design of
a controller for the single engine system. The propulsion
system can be treated as a “black box” with four inputs
and four outputs. The known inputs to the system are

propeller pitch angle set-point θref and shaft speed set-
point nref . Unknown inputs to the system are external
forces Text and friction torque Qf . The measured outputs
are propeller pitch angle θm, diesel engine shaft speed nm,
ship speed Um and fuel index Ym.

Inside the propulsion system there are two low-level con-
trol loops. The first loop controls the propeller pitch angle
θ and the second controls the shaft speed n.

This paper assumes that only the lookup table and over-
load control modules as described in [8] are implemented,
without any efficiency optimisation or ship speed control.
The lookup table converts a command lever position h
into two command signals θcom and ncom. The MPC con-
troller was placed in the coordinated control level, with
θcom and ncom as its inputs and its outputs θcom,MPC

and ncom,MPC as inputs to the overload control module
as can be seen in Figure 1. The outputs of the overload
control module are θref and nref .

The goal of the control system will therefore be for θm
and nm to track the command values θcom and ncom as
closely as possible. The values for θcom and ncom and
θref and nref might be the same, depending on whether
the engine is within its torque limits and no fault has
occurred. As will be seen later, the values for θref and
nref are adjusted by the MPC and overload controller in
order to accommodate a fault or overload condition.

2.3 Obtaining an internal model

For the design of the MPC controller, certain assump-
tions have to be made and parameters chosen before the
controller can be implemented on the non-linear model.
The first step in the design of the MPC controller was to
obtain a suitable internal linear model of the non-linear
plant. The choice of linearisation point is crucial to the
stability, performance and robustness of the controller.

In the benchmark, the command lever position h varies
from 3 to 10, and a value of h = 6.5 was chosen around
which to linearise the plant. The linear state-space model
was obtained using Matlab’s linmod command. Using the
look-up table for the economy mode, the resulting values
for pitch angle and shaft speed at which the model was
linearised are θ0 = 0.7397 and n0 = 10.866.

Because of problems encountered in the linearisation,
the “black-box” model was reduced to a two-input, three-
output system; the inputs being θref and nref and the
outputs being θm, nm and Um. As not all seven of the
plant states were available for feedback, a Kalman esti-
mator was used to estimate the current state that would
be used for prediction in the MPC cost function (1). Fu-
ture work will involve updating the software to enable the
use of the full four-input, four-output system as the MPC
controller’s internal model.
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Figure 1: Placement of MPC controller in the coordinated level.

2.4 Defining the constraints

The benchmark gives hard limits on the inputs and out-
puts. One of the strengths of MPC is its ability to include
constraints on the inputs and outputs in the problem for-
mulation. The resulting constraints on the input and out-
put variables are:

θcom, θm ∈ [−0.7, 1] (5)
ncom, nm ∈ [0, 13] (6)

Um ∈ [0, 9.7] (7)

Since the engine dynamics are sensitive to abrupt
changes in the reference signal, a low-pass filtered ver-
sion of θcom and ncom should be used as described in [8].
Since MPC allows one to limit the control input rate, the
input rate limit was chosen to be the maximum rate as
implemented by the filter. The control input rate limits
used in the controller are:

∆θcom ≤ 0.1 (8)
∆ncom ≤ 1.3 (9)

2.5 Tuning of MPC parameters

Though theories exist about the choice of prediction hori-
zons and weighting matrices to guarantee certain stability
and robustness properties, most of the tuning of these
parameters are usually done by iteration and simulation.
The parameters that need to be tuned are the sampling
time Ts, the control and prediction horizons Nu and N2

and the output and input weighting matrices Q and R.

2.5.1 Selection of Prediction and Control Hori-
zons

The control and prediction horizons mainly affect the per-
formance of the controlled system, but may also influence

the robustness. A long prediction horizon, results in bet-
ter performance of the control system. In general, a short
control horizon makes the system more robust to uncer-
tainties such as parameter variations.

A long prediction horizon is necessary for systems with
slow dynamics. A long horizon will result in an unneces-
sarily long computation time for each control input and
should therefore be kept as short as possible, without sac-
rificing performance too much. The prediction horizon
must contain at least the non-minimum phase behaviour
of the system.

2.5.2 Selection of Weighting Matrices

The output performance weighting matrix Q and the con-
trol increment weighting matrix R are two very important
design parameters. They play an important role in deter-
mining the stability and performance of the system.

TheR matrix penalises the control increments and helps
to keep the control inputs within bounds, making sure that
smooth control actions result. The Q matrix, in addition
to helping ensure that no output constraints are violated,
penalises the tracking errors and therefore improves the
servo performance of the control system.

2.5.3 Tuning Parameters used in the MPC Con-
troller

The tuning of the control parameters was done using the
linear and non-linear model. The results from adjusting
the various parameters are given in [11].

The minimum output horizon was set to N1 = 1. The
sampling time has been fixed by the benchmark to Ts =
1.0s. This is the sampling time that was used for the
MPC controller. After several iterations, the final values
for the implemented controller were chosen to be N2 = 10,
Nu = 5, Q = diag(10, 1, 0) and R = diag(20, 2).



Event Severity Start time End time
∆θhigh High 180s 210s
∆θ̇inc Medium 800s 1700s
∆θlow Very high 1890s 1920s
∆nhigh High 680s 710s
∆nlow Very High 2640s 2670s
∆ky Medium 3000s 3500s

Table 1: Test sequence for different fault events.

3 Fault simulation

Once satisfied that the controller was stable and that it
performed well over the operating range, faults were in-
troduced one at a time.

In the benchmark six faults and their effect on the sys-
tem and degree of severity are discussed. The faults are
related to propeller pitch, shaft speed measurement and
the diesel engine. The faults can be divided into two cat-
egories:

Internal faults There are two internal faults defined in
the benchmark. The first one, represented as ∆θ̇inc,
is due to a leak in the hydraulic system and is an
additive error inside the pitch control module. The
second fault is interpreted as a gain change in the
diesel engine, represented as ∆ky.

Sensor faults Sensor faults occur on two of the mea-
sured outputs, namely nm and θm. The sensors satu-
rate either at their maximum or minimum output lev-
els. These faults are represented as ∆nhigh, ∆nlow,
∆θhigh and ∆θlow for the shaft speed and propeller
pitch sensors.

The test sequence for the system and time intervals for
different fault events are shown in Table 1. The total
simulation time, as defined by the benchmark, is 3500s.

If the effects of the internal faults are sufficiently small,
then they are accommodated by the inherent robustness of
the feedback system. More serious faults can be dealt with
by updating the internal model used by the controller, if
FDI information is available [3, 5, 6].

Sensor faults are potentially the most difficult to deal
with from the point of view of MPC. It might be necessary
to adjust the MPC formulation by abandoning the control
of the corresponding variable, estimating it from other
measurements, replacing the cost function or re-tuning the
parameters of the MPC controller.

3.1 Internal faults

In the case of the internal faults, e.g. the hydraulic leak
∆θ̇inc and engine gain change ∆ky, no FDI information
was assumed. The same MPC controller as in Section 2
was used without modifications.

The simulation results for all the internal and sensor
faults are shown in Figure 2. The fault events can clearly

be seen as those cases where the original output, without
MPC, deviates quite significantly from the set-point.

Compared to the case without MPC, it can be seen that
the MPC controller handles the hydraulic leak by appro-
priately increasing the propeller pitch command θcom,MPC

from t = 800s to t = 1700s. Without MPC the propeller
pitch θm drifts away from the set-point, resulting in a
slowing down of the ship as can be seen in Figure 3(a),
but with MPC it can be seen that this has been corrected.
This is due to the inherent integral action of the MPC con-
troller; the MPC controller treats the hydraulic leak as an
output disturbance on θm that will continue at the same
rate into the future.

Note that the duration of the fault in the benchmark
is, fortunately, short enough that the control input does
not saturate. If saturation occurs the controller will not
be able to correct for the fault. However, this might be
accounted for by reformulating the control objectives at
a higher level. For example, at a higher level it might be
more important to control the ship speed than track the
propeller pitch correctly. The controller would then try
to find a combination of propeller pitch and shaft speed
that would track the ship speed, while minimising some
efficiency criteria.

The fault related to the diesel engine has the effect of
overloading the engine, resulting in engine wear and slow-
down. In Figure 2 it can be seen that the fault had very
little effect on the tracking of θm and nm, the MPC con-
troller making very little difference. The only effect that
the fault had on nm, was a slight undershoot then over-
shoot as the sudden change in engine dynamics was “de-
tected” and corrected. However, Figure 3(b) shows how
the diesel fault causes a jump in the fuel index at time
t = 3000s.

This has the effect of decreasing the fuel or propeller
efficiency. Including the control of the fuel index explicitly
would be necessary in order to accommodate this fault.
Based on the results in this section, it is likely that MPC
could be a good candidate for such a scheme.

3.2 Sensor Faults

As mentioned above, sensor faults are potentially the most
difficult to deal with from the point of view of MPC. Ini-
tially no FDI information was assumed and the original
controller was applied to the ship model, but with little
success. This was due to the sensor faults directly af-
fecting the lower-level control loops. This has the result
of moving the actual system further away from the MPC
controller’s internal model. Therefore, FDI information
was assumed in order to deal with this type of fault. It
was assumed that the FDI information became available
before the next sampling instant and that the nature and
magnitude of the sensor fault was available.

The approach implemented, used a Kalman estimator
with the two reference signals θref and nref as inputs
and the three correct output measurements to estimate
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Figure 2: Performance of controller, simulating the internal and sensor faults.

the actual value of the faulty measurement. In the MPC
controller, the estimated value was then substituted for
the faulty output.

The benchmark desired that only re-configuration at the
coordinated level take place, without changing any of the
lower-level control blocks. Since the faulty measurement
is subtracted from the reference signal in the lower-level
control loop, the reference signal needs to be adjusted in
order to accommodate for this. As the FDI information
provides the control system with the nature, and hence
the magnitude of the fault, this was exploited and imple-
mented in the coordinated control level. When a sensor
fault is detected, the faulty measurement is added to the
reference signal. The estimated value of the output is
subtracted from the new reference signal and this signal
is then fed to the lower-level control loop, resulting in a
better control action.

In Figures 2 and 3, it can be seen that the controller
drastically improved the performance of the system during
the sensor faults. The ship speed and fuel index profiles
are also much smoother under MPC control.

One of the key factors involved in implementing MPC
on a physical system, is the time required to compute
the desired control action, as this could be longer than

the sampling time of the system. The actual MPC con-
troller and Simulink model simulation time ranged from
3000–4000s on a Pentium II processor, compared to the
“real-world” time of 3500s in the benchmark. This sug-
gests that MPC could be implemented real-time on an
actual ship propulsion system, using currently available
computing power.

4 Conclusions

The successful implementation of an MPC controller for
the single engine/propeller model of the ship propulsion
benchmark has been presented. This paper showed that
the MPC controller could be tuned to be robust to the
internal faults as described by the benchmark, thereby
giving improved performance over the original low-level
controllers.

In order to accommodate the sensor faults, FDI infor-
mation was assumed and a Kalman estimator was used to
estimate the faulty outputs. Only re-configuration at the
coordinated level was necessary, by appropriately adding
the faulty measurement and subtracting the estimated
output from the reference signal.

Despite using a single, simplified internal model for the



MPC controller, the controller proved to be robust over
the operating range as implemented in the benchmark.
Measurement noise, friction torque and external forces
were added and the controller still performed well, ac-
commodating all the internal and sensor faults. Due to
space restrictions, these results have not been presented
here, but can be found in [11].

Future work should investigate the ability of MPC to
handle the higher level control objectives during failures,
such as speed control and efficiency optimisation.
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Figure 3: Plots of ship speed and fuel index, simulating
the internal and sensor faults.


