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Abstract

In [2] Johari and Tan consider an Internet type network with distributed
congestion control of the form proposed by Kellyet al in [3], and determine
a sufficient condition for local stability of the network under the condition
that all round trip times are equal. They conjecture that the same condition
will also guarantee local stability when the round trip times are disparate.
The continuous time version of this conjecture is true.

Notation

σ(Z) denotes the spectrum of a square matrixZ andρ(Z) its spectral radius. Sets
are always indexed byi , and{ fi } is used as an abbreviation for{ fi : i = 1, 2, . . . }.
In particular, Co{xi } denotes the convex hull of the set of points{x1, x2, . . . } and
diag{xi } denotes the matrix with the elementsx1, x2, . . . on the leading diagonal
and zeros elsewhere.

1 Introduction

In this section we review the material in [2], derive the necessary transfer function
matrices and the give the main stability result by appealing to Theorem 1. This
theorem is actually stated and proven in Section 2. Section 2 is self-contained, in
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an attempt to make clear which properties of the network are being exploited in
the proof.

Johari and Tan consider a network where the rate of marked packets received
back at the source of router is

zr (t) = xr (t − Tr )
∑
j ∈r

µ j
(
t − d2( j , r )

)
(1)

where the summation is taken over all resources used by router and

µ j (t) = pj


∑

q: j ∈q

xq
(
t − d1( j , q)

) (2)

denotes the marking rate at the resourcej . Here, the summation is taken over all
routes which are using this resource. It is assumed that

d1( j , r ) + d2( j , r ) = Tr ∀r

whered1( j , r ) denotes the forward delay from the source of router to the re-
source j andd2( j , r ) denotes the return delay via the recipient.Tr thus denotes
the total round trip delay on each route. The functionpj (·) is assumed to be con-
tinuous, differentiable and non-decreasing. The sending rate on each route is then
regulated according to the rule

ẋr = kr (wr − zr ). (3)

If we write xr (t) = x̂r + yr (t), then these equations may be linearized about the
equilibriumzr = wr = x̂r

∑
j ∈r pj to give

zr (t) = x̂r

∑
j ∈r

pj +
∑
j ∈r

pj yr (t − Tr ) +
∑
j ∈r

∑
q: j ∈q

x̂r p′
j yq
(
t − d1( j , q) − d2( j , r )

)

neglecting higher order terms, wherepj representspj

(∑
q: j ∈q x̂q

)
and p′

j the

derivative evaluated at this point.
Taking Laplace transforms, we obtainz̄(s) = G(s)ȳ(s) whereȳr (s) = Lyr (t)

andz̄r (s) = L(zr − x̂r
∑

j ∈r pj ). The transfer functionG(s) has the form

G(s) = diag{exp(−sTi )}
(
X M(s) + W X−1)

where
Mrq(s) =

∑
j ∈q∩r

p′
j exp

(
−s
(
d1( j , q) − d1( j , r )

))
,
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X = diag{x̂i } and W = diag
{

x̂i
∑

j ∈i pj

}
. Let P(s) = M(s) + X−2W, so

G(s) = diag{exp(−sTi )}X P(s) whereP(s) = PT (−s) andP( j ω) > 0∀ω. 1

We also definēwr (s) = L(wr − x̂r
∑

j ∈r pj ), to give

ȳr (s) = kr

s

(
w̄r (s) − z̄r (s)

)
.

As noted in [2],‖eT
r P( j ω)X‖1, ther th absolute row sum of the matrixP( j ω)X,

can be bounded as

‖eT
r P( j ω)X‖1 ≤

∑
j ∈r

pj +
∑
j ∈r

p′
j

∑
q: j ∈q

x̂q ∀ω.

Theorem 1 below thus shows that the network described by (1)–(3) is locally
stable if

kr


∑

j ∈r

pj +
∑
j ∈r

p′
j

∑
q: j ∈q

x̂q


 <

π

2Tr
∀r.

This is the continuous time version of the conjecture in [2].

2 Main result

Consider a delay system2 with transfer function

G(s) = diag
{
exp(−sTi )

}
X P(s) (4)

whereP(s) = PT (−s), P( j ω) > 0∀ω, X = diag{xi }, xi ∈ R+ andTi ∈ R+. A
controller is given by

K (s) = diag

{
ki

s

}
(5)

whereki ∈ R+, and these are connected as

z̄(s) = G(s)ȳ(s), ȳ(s) = K (s)
(
w̄(s) − z̄(s)

)
. (6)

The following theorem gives a sufficient condition for stability of this intercon-
nection.

1This elegant decomposition into the product of a diagonal and a Hermitian matrix is crucial
to the solution of the problem and is taken directly from [2].

2by which we meanL−1G(s) = ∑
i Zi δ(t − τi ), τi ≥ 0, Zi ∈ Rn×n ∀i
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Theorem 1. The closed loop system described by(4), (5) and (6) is asymptoti-
cally stable if

ki ‖eT
i P( j ω)X‖1 <

π

2Ti
∀i, ω.

Proof. Fix ω ∈ R+ and put

Q = 2

π
diag

{√
ki Ti xi

}
P( j ω) diag

{√
ki Ti xi

}
, L = diag

{
π

2

exp(− j ωTi )

j ωTi

}
.

By assumption,

ρ(Q) = ρ

(
diag

{
2Ti ki

π

}
P X

)
< 1

(since the spectral radius of any matrix is bounded by its maximum absolute row
sum) and so Lemma 1 states that

σ
(
K ( j ω)G( j ω)

) = σ(QL) ⊂ ρ(Q) Co

(
0 ∪

{
π

2

exp(− j ωTi )

j ωTi

})
.

Now, the convex hull of all pointsπ2
exp(− j x)

j x , x ∈ R+, includes the point−1 on its
boundary (atx = π/2) and also includes the origin (see Fig. 1). Sinceρ(Q) < 1,
it follows that

−1 6∈ ρ(Q) Co

(
0 ∪

{
π

2

exp(− j ωTi )

j ωTi

})
.

and hence that the eigenloci ofK ( j ω)G( j ω) cannot enclose the point−1. Con-
sequently, by the generalized Nyquist criterion ([1]), the closed loop system is
asymptotically stable.

Lemma 1. Let Q = Q∗ > 0 and L = diag{l i }, li ∈ C, ∀i be given. Then

σ(QL) ⊂ ρ(Q) Co(0 ∪ { l i }).
Proof. Let v be a normalized eigenvector ofQL, corresponding to an eigenvalue
λ then

QLv = λv

and so

Lv = λQ−1v H⇒ λ = v∗Lv

v∗Q−1v
= ρ(Q)

(∑
i

|vi |2
k

li + (1 − 1

k
) · 0

)

wherek = ρ(Q)(v∗Q−1v) ≥ 1.

4



−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

Figure 1:π
2 exp(− j x)/( j x) and its convex hull

3 Notes

A slightly weaker form of the conjecture, with 1 replacingπ/2 has recently been
shown in [4]. In the present framework, this corresponds to bounding the eigenloci
to the right of a vertical line through−1, which requires a reduction in gain by a
factor 2/π .

In the original discrete time conjecture, the controller has the form

xr (t + 1) = xr (t) + kr (wr − zr )

and local stability is conjectured to be guaranteed providedkr < 2 sin
(

π
2(2Tr +1)

)
.

Taking z-transforms and proceeding as in the proof of Theorem 1 would lead to
conclusion that the eigenloci lie in the convex hull of thefamilyof curves

2 sin

(
π

2(2Tr + 1)

)
exp(− j θTr )

exp( j θ) − 1
, θ ∈ [0, π ]

which now vary withTr . Whilst −1 lies on the boundary of each of these curves,
and they each enjoy the appropriate local convexity, the convex hull in fact con-
tains the point−1 in its interior. This does not necessarily mean that a counter-
example exists, but does mean that any proof would need to be more sophisti-
cated. Calculations indicate that the convex hull cuts the negative real axis at
around−1.0005, so a very slightly weaker version of the discrete time conjecture
is certainly true.

I would like to thank Frank Kelly for bringing this problem to my attention.
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