
Invariant Sets for Constrained Nonlinear Discrete-time Systems with
Application to Feasibility in Model Predictive Control

Eric C. Kerrigan and Jan M. Maciejowski
Control Group, Department of Engineering, University of Cambridge

Trumpington Street, Cambridge CB2 1PZ, United Kingdom, Tel: +44-1223-339222, Fax: +44-1223-332662
eck21,jmm@eng.cam.ac.uk, http://www-control.eng.cam.ac.uk/

Abstract

An understanding of invariant set theory is essential in the design
of controllers for constrained systems, since state and control con-
straints can be satisfied if and only if the initial state belongs to
a positively invariant set for the closed-loop system. The paper
briefly reviews some concepts in invariant set theory and shows
that the various sets can be computed using a single recursive algo-
rithm. The ideas presented in the first part of the paper are applied
to the fundamental design goal of guaranteeing feasibility in pre-
dictive control. New necessary and sufficient conditions based on
the control horizon, prediction horizon and terminal constraint set
are given in order to guarantee that the predictive control problem
will be feasible for all time, given any feasible initial state.

Keywords: invariant sets, positively invariant sets, control invari-
ant sets, stabilisable sets, controllable sets, predictive control, fea-
sibility.

1 Introduction

Most systems are subject to state and control constraints and
the design of controllers for such systems is a very active
area of research. In particular, invariant set theory [3] has
been shown to be crucial in understanding the behaviour of
constrained systems, since constraints can be satisfied if and
only if the initial state is contained in a set which is posi-
tively invariant for the closed-loop system. Section 2 pro-
vides a unified framework for capturing the most important
ideas in invariant set theory.

Invariant set theory has been very successful in providing
sufficient nominal and robust feasibility and stability condi-
tions in Model Predictive Control (MPC) [11]. One of the
primary reasons for MPC’s success is the ease with which
constraints on both the control inputs and states can be in-
corporated in the controller synthesis. However, there still
seems to be a few “missing links” in the understanding of
the effect of the various design parameters on the feasible
domain of an MPC scheme. The main aim of Section 3 is
to apply the invariant set framework of Section 2 to MPC,
generalise some existing results and present some new nec-
essary and sufficient conditions for the analysis and synthe-
sis of MPC controllers with guaranteed nominal feasibility.
It is hoped that the formal framework presented in this pa-
per will facilitate a better understanding of the most basic
problem in the design of MPC controllers.

Ω is used to denote any arbitrary subset ofRn. GivenΩ, Ω◦
denotes its interior. The setA\B is the complement ofB that
is contained inA, i.e. A\B, {x : x ∈ A,x /∈ B} = A∩Bc.
The notationA⊆ B is used to denote thatA is a subset of
B andA⊂ B denotes thatA is a proper subset ofB. Z is
the set of integers,N is the set of non-negative integers and

N+ is the set of positive integers. A sequence of states or
control inputs is denoted by{xk}P0 , {x0,x1, . . . ,xP}. The
notation{xk ∈ Ω}P0 is used to indicate that each element of
the sequence{xk}P0 is an element ofΩ.

2 Invariant Set Theory

Consider the following discrete-time, nonlinear, time-
invariant (NLTI) dynamic system:

xk+1 = f (xk,uk) (1)

wherek∈ Z, xk is the system state anduk is the control in-
put. It is assumed thatf (xk,uk) is uniquely defined over
X×U with f (0,0) = 0. Full state measurement and no dis-
turbances or model uncertainty is assumed.

The system is subject to pointwise-in-time constraints on the
control inputs and/or the states:

uk ∈ U⊂ Rm (2a)

xk ∈ X⊆ Rn (2b)

The setU is assumed to be compact and simply connected,
whileX is assumed to be closed and simply connected. It is
assumed that(0,0) ∈X◦×U◦. An admissible control input,
sequenceor law is one that satisfies the input constraints.
From this point on, it is understood that the control law and
states are subject to the constraints in (2).

2.1 Invariant and Positively Invariant Sets

Definition 2.1 (Positively invariant set [3]). The non-
empty setΩ⊂Rn is positively invariantfor the autonomous
systemxk+1 = f (xk) if and only if ∀x0 ∈ Ω, the system
evolution satisfiesxk ∈ Ω,∀k ∈ N+. The setΩ is invariant
if and only if x0 ∈Ω implies thatxk ∈Ω,∀k∈ Z.

In general, a given setΩ is not positively invariant. How-
ever, often one would like to determine the largest positively
invariant set contained inΩ:

Definition 2.2 (Maximal positively invariant set [7]).
The non-empty setO∞(Ω) is the maximal positively in-
variant set contained inΩ for the autonomous system
xk+1 = f (xk) if and only if O∞(Ω) is positively invariant
and contains all positively invariant sets contained inΩ, i.e.
Ψ is positively invariant only ifΨ⊆ O∞(Ω)⊆Ω.

Definition 2.3. The maximal positively invariant set for
the closed-loopsystem1 xk+1 = f (xk,g(xk)) is denoted by

1In this paper statements regarding autonomous systems also apply to
closed-loop systems. A superscript will denote that the associated system
is a closed-loop system and that the control law is required to satisfy the
input constraints.



Og
∞(Ω) and is defined as the maximal positively invariant set

contained inΩg, where

Ωg, {xk ∈Ω : g(xk) ∈ U} (3)

is theinput admissiblesubset ofΩ, i.e. the subset in which
the control law satisfies the input constraints.

2.2 Control Invariant Sets

Definition 2.4 (Control invariant set [3]). The non-empty
setΩ ⊂ Rn is acontrol invariantset for the systemxk+1 =
f (xk,uk) if and only if there exists a feedback control law
uk = g(xk) such thatΩ is a positively invariant set for the
closed-loop systemxk+1 = f (xk,g(xk)) and uk ∈U,∀xk ∈Ω.

In general, a given setΩ is not control invariant. However,
often one would like to determine the largest control invari-
ant set contained inΩ:

Definition 2.5 (Maximal control invariant set [2]). The
non-empty setC∞(Ω) is the maximal control invariant
set contained inΩ for the systemxk+1 = f (xk,uk) if and
only if C∞(Ω) is control invariant and contains all control
invariant sets contained inΩ, i.e. Ψ is control invariant only
if Ψ⊆ C∞(Ω)⊆Ω.

Theorem 2.1 ([3]). Given the NLTI system(1), the con-
straints (2) can be satisfied for all time k∈ N if and only
if the initial state x0 ∈ C∞(X)⊆ X.

Remark 2.1.A similar condition holds for autonomous sys-
tems and the corresponding maximal positively invariant set.

Definition 2.6 (The setQ (Ω) [2, 6]). The non-empty set
Q (Ω) is defined as the set of states inRn for which an ad-
missible control input exists which will drive the system to
Ω in one step, i.e.

Q (Ω), {xk ∈ Rn : ∃uk ∈U such thatf (xk,uk) ∈Ω} . (4)

For autonomous/closed-loop systems,Q (Ω) is the set of
states from which the system will evolve toΩ at the next
time instant, i.e.Q (Ω) = {xk ∈Rn : xk+1 = f (xk) ∈Ω}.

The following is a well-known geometric condition for a set
to be control invariant and is often used in the derivation of
properties of the various invariant sets:

Theorem 2.2 (Geometric condition for invariance [6]).
The setΩ ⊂ Rn is a control/positively invariant set if and
only if Ω⊆ Q (Ω).

The set Q (Ω) is the orthogonal projection of the set
{(xk,uk) ∈ Rn×Rm : f (xk,uk) ∈ Ω,uk ∈ U} onto the first
coordinate. If one has an algorithm which can calculate
Q (Ω) as well as a routine for testing set inclusion, one can
use this geometric condition to test whether a given setΩ is
control/positively invariant. For LTI systems, withΩ andU
given by linear inequalities, projection can be implemented
using Fourier elimination [8] andA⊆ B is true if and only
if all the linear inequalities inB are redundant with respect
to the inequalities inA. Additionally, A = B if and only if
A⊆B andB⊆A. See [3, Sect. 4.2] for alternative invariance
and subset tests.

Proposition 2.1 ([14]). The setQ (Ω) has the following
properties: (i) For allΩ, Q (Ω)∩Ω⊆Ω; (ii) For all Ω1,Ω2
with Ω1 ⊆ Ω2, Q (Ω1) ⊆ Q (Ω2); (iii) A set Ω is con-
trol/positively invariant if and only ifQ (Ω)∩Ω = Ω.

2.3 Stabilisable Sets

Definition 2.7 (Stabilisable set [1]).The setSi(Ω,T) is the
i-step stabilisable setcontained inΩ for the systemxk+1 =
f (xk,uk) if and only if T is acontrol invariant subsetof Ω
andSi(Ω,T) contains all states inΩ for which there exists
an admissible control sequence of lengthi which will drive
the state of the system toT in i steps or less, while keeping
the evolution of the state insideΩ, i.e.

Si(Ω,T), {x0 ∈Ω : ∃{uk ∈ U}i−1
0 ,∃N≤ i such that

{xk ∈Ω}N−1
1 and{xi ∈ T⊆Ω}iN,T⊆ Q (T)} . (5)

Definition 2.8 (Maximal stabilisable set). S∞(Ω,T) is the
maximal stabilisable setcontained inΩ for the system
xk+1 = f (xk,uk) if and only if S∞(Ω,T) is the union of all
i-step stabilisable sets contained inΩ.

Remark 2.2.In general, the maximal stabilisable set
S∞(Ω,T) is not equal to the maximal control invariant set
C∞(Ω), even for linear systems:S∞(Ω,T) ⊆ C∞(Ω) for all
control invariantT. The setC∞(Ω)\S∞(Ω,T) includes all
initial states from which it is not possible to drive the sys-
tem to the stabilisable regionS∞(Ω,T) (and hence toT). It
might only be possible to bound the norm of the states‖xk‖
as in the case of a limit cycle or to drive the system to an
alternative stable equilibrium.

Remark 2.3.If T1 6= T2 are two control invariant sets, then
S∞(Ω,T1) andS∞(Ω,T2) are not necessarily equal. Simi-
larly, S∞(Ω,{0}) is not necessarily equal toS∞(Ω,T), since
it is not always possible to drive some systems to the origin2.

2.4 Principles for Computing Invariant Sets

Definition 2.9 (Controllable set). The i-step controllable
set Ki(Ω,T) is the set of states inΩ which can be driven
by an admissible input sequence of lengthi to an arbitrary
terminal setT ⊂ Rn in exactly i steps, while keeping the
evolution of the state insideΩ for the firsti−1 steps, i.e.

Ki(Ω,T), {x0 ∈Ω : ∃{uk ∈U}i−1
0 such that

{xk ∈Ω}i−1
1 andxi ∈ T⊂ Rn} . (6a)

The limit, if it exists, defines theinfinite-time controllable
set:

K∞(Ω,T), lim
i→∞

Ki(Ω,T) . (6b)

Remark 2.4.Note that if the notationSi(Ω,T) is used,T is
a control invariant subset ofΩ. If Ki(Ω,T) is used,T can be
any arbitrary subset ofRn.

2The regionS∞(Rn,{0}) can be seen to be the generalisation to nonlin-
ear systems of the ANCBI (asymptotically null-controllable with bounded
inputs) region for LTI systems with no state constraints [4]. The maximal
stabilisable setS∞(X,{0}) is a generalisation to nonlinear systems of the
maximal admissible set defined in [8] and the feasible region of the predic-
tive control scheme defined in [12]. Care has to be taken not to confuse
definitions by other authors with those given in this paper.



Remark 2.5.The one-step controllable set toT is equal to
the intersectionof Q (T) andΩ.

Proposition 2.2. Some properties of controllable sets are:
(i) If Ki(Ω,T) is control invariant, then so isKi+1(Ω,T). In
general, the reverse statement does not hold;
(ii) If the state xk ∈ Ki+1(Ω,T)\Ki(Ω,T) 6= /0, then there
exists an admissible control input which will ensure that the
state at the next time instant is inKi(Ω,T);
(iii) If the state xk ∈ Ki(Ω,T)\Ki+1(Ω,T) 6= /0, then there
does not exist an admissible control input which will ensure
that the state at the next time instant is inKi(Ω,T);
(iv) If the state xk ∈ Ki+1(Ω,T)\⋃i

k=0 Kk(Ω,T) 6= /0, then
there does not exist an admissible control sequence which
will drive the system toT in i steps or less.

Definition 2.10 (Finitely determined set [7]). The set
K∞(Ω,T) is finitely determinedif and only if ∃i ∈ N
such thatK∞(Ω,T) = Ki(Ω,T). The smallest element
i∗ ∈ N such that K∞(Ω,T) = Ki∗(Ω,T) is called the
determinedness index.

In general,K∞(Ω,T) is not finitely determined, however:

Lemma 2.1. If ∃i ∈ N such thatKi(Ω,T) = Ki+1(Ω,T)
thenK∞(Ω,T) is finitely determined and control invariant.

It follows thatKi(Ω,T) = K∞(Ω,T),∀i ≥ i∗.

Algorithm 2.1 (Controllable sets). The controllable sets
of a system can be computed via the following iterative pro-
cedure:

K0(Ω,T) = T (7a)

Ki+1(Ω,T) = Q (Ki(Ω,T))∩Ω (7b)

If Ki(Ω,T) = Ki+1(Ω,T), then terminate the algorithm.

The basic procedure for implementing Algorithm 2.1 is:
(i) compute Q (·); (ii) compute Q (·) ∩ Ω and (iii) test
for set equality. These three operations are easily imple-
mented for LTI systems subject to linear inequality con-
straints [2, 6, 7, 8, 10, 14]. Though the algorithms presented
in this paper are difficult to implement for general nonlin-
ear systems, there exist some classes of nonlinear systems
for which the building blocks already are in place, such as
piecewise affine systems and some classes of hybrid sys-
tems [1]. Some work on developing algorithms for comput-
ing robust control invariant sets for hybrid systems has also
been carried out by the authors of [14].

2.4.1 Computing the Maximal Control Invariant
Set:

Definition 2.11 (Admissible set [6]).Thei-step admissible
set Ci(Ω) contained inΩ is the set of states for which an
admissible control sequence of lengthi exists while keeping
the evolution of the state insideΩ for i steps, i.e.

Ci(Ω),
{

x0 ∈Ω : ∃{uk ∈ U}i−1
0 : {xk ∈Ω}i1

}
. (8)

Algorithm 2.2 (Maximal control invariant set). The
i-step admissible setCi(Ω) can be computed using
Algorithm 2.1 by noting that

Ci(Ω) = Ki(Ω,Ω) . (9)

If Ci(Ω) = Ci+1(Ω), thenC∞(Ω) = Ci(Ω).

Proposition 2.3. Some properties of admissible sets are:
(i) Each setCi+1(Ω)⊆ Ci(Ω);
(ii) Each setCi(Ω) =

⋂i
k=0 Ck(Ω);

(iii) If the state xk ∈ Ω\Ci(Ω) 6= /0 then there does not exist
a control sequence which will ensure that the state evolution
remains withinΩ for i steps;
(iv) If the state xk ∈ Ci(Ω)\C∞(Ω) 6= /0 then there does not
exist a control input which will ensure that the state at the
next time instant is inCi(Ω).

A necessary and sufficient condition for the finite-
determinedness of the maximal control invariant set is:

Theorem 2.3. C∞(Ω) is finitely determined if and only if
∃i ∈ N such thatCi(Ω) = Ci+1(Ω).

The following sets are defined for closed-loop systems:

Definition 2.12 (The setK Og
i (Ω,T)). The setK Og

i (Ω,T)
for the systemxk+1 = f (xk,uk), in closed-loop with the con-
trol law uk = g(xk), is defined asK Og

i (Ω,T) , Ki(Ωg,T)
for the autonomous systemxk+1 = f (xk,g(xk)).

Definition 2.13 (The setOg
i (Ω)). The i-step admissible set

for the systemxk+1 = f (xk,uk), in closed-loop with the con-
trol law uk = g(xk), is denoted asOg

i (Ω) , Ci(Ωg) for the
autonomous systemxk+1 = f (xk,g(xk)).

Remark 2.6.All the properties of controllable and admissi-
ble sets hold true for the corresponding sets of autonomous
systems. Note thatOg

i (Ω) = Ki(Ωg,Ωg) = K Og
i (Ω,Ωg).

These sets can be computed using Algorithms 2.1 and 2.2.

2.4.2 Computing the Maximal Stabilisable Set:

Algorithm 2.3 (Maximal stabilisable set). Algorithm 2.1
can be used to compute the i-step stabilisable setSi(Ω,T)
contained inΩ by noting that

Si(Ω,T) = Ki(Ω,T) . (10)

If Si(Ω,T) = Si+1(Ω,T), thenS∞(Ω,T) = Si(Ω,T).

Proposition 2.4. Some properties of stabilisable sets are:
(i) Each setSi(Ω,T) is control invariant;
(ii) Each setSi+1(Ω,T) ⊇ Si(Ω,T);
(iii) Each setSi(Ω,T) =

⋃i
k=0 Sk(Ω,T);

(iv) If the state xk ∈ Si+1(Ω,T)\Si(Ω,T) 6= /0, then there ex-
ists a control input which will drive the state toSi(Ω,T) at
the next time instant;
(v) If the state xk ∈ Si+1(Ω,T)\Si(Ω,T) 6= /0, then there does
not exist a sequence which will drive the system toT in i
steps or less.

Theorem 2.4. S∞(Ω,T) is finitely determined if and only if
∃i ∈ N such thatSi(Ω,T) = Si+1(Ω,T).

3 Model Predictive Control

This section briefly introduces Nonlinear Model Predictive
Control (NMPC) and proceeds to address some feasibility
issues related with solving the NMPC problem. The proofs
for the results are given in [9].



Problem 3.1 (NMPC Regulation Problem).Solve

min
πN

k

F(x̂P|k) +
P−1

∑
i=0

L(x̂i|k, ûi|k) (11)

subject to

x̂l+1|k = f (x̂l |k, ûl |k), x̂0|k = xk (12a)

x̂l |k ∈ X, ûl |k ∈ U, l = 0, . . . ,P−1 (12b)

ûl |k = h(x̂l |k), l = N, . . . ,P−1 (12c)

x̂P|k ∈ T⊆ X (12d)

The decision variable in the NMPC problem is the control
sequenceπN

k =
{

û0|k, û1|k, . . . , ûN−1|k
}

. The variablesN and
P are the control and prediction horizons, respectively, and
it is assumed thatP≥ N≥ 0. Note that ifP = N, then con-
straint (12c) is removed.T is the terminal constraint set.

Since the optimisation is over a finite horizon, in the de-
sign of the terminal cost functionalF(x̂P|k) and the stage
cost functionalL(x̂i|k, ûi|k), it is (usually) assumed that ˆul |k =
h(x̂l |k) is a locally stabilising control law defined onX that
will be applied on the infinite horizon forl ≥ P. It is as-
sumed thatL(·, ·) is a non-negative functional defined on
X×U andF(·) is a non-negative functional defined onX.

At each time instantk, the current statexk of the system is
measured. The new control input to the system is the first el-
ement of the (not necessarily optimal) solutionπN

k
∗ to Prob-

lem 3.1, i.e.κ(xk) , û∗0|k. Hereκ(x) implicitly defines the
NMPC control law, the closed-loop system being given by
xk+1 = f (xk,κ(xk)). State measurement and control input
calculation is repeated at the next time instant. It is assumed
that N, P, F, L, h andT are the design variables and that
f , X andU are fixed. The aim of the control action is to
regulate the states and control inputs to(0,0).

3.1 Nominal Feasibility
It is assumed that the set of ordered pairs(xk,πN

k ), which
satisfy the constraints in (12), is non-empty. The feasible
setXF is the set of statesxk for which a feasible control
sequenceπN

k to the NMPC problem exists, i.e.XF is the
orthogonal projection of (12) onto the first coordinate:

XF(T,N,P),
{

xk : ∃πN
k s.t.(xk,πN

k ) satisfies (12)
}
. (13)

The NMPC regulation problem is said to be feasible at time
k if and only if xk ∈ XF 6= /0. Note thatXκ = XF by defini-
tion.

Theorem 3.1. The feasible setXF(T,N,P) of the NMPC
regulation problem is given by:

XF(T,N,P) = KN(X,K Oh
P−N(X,T)) . (14)

Proof. From the constraints (12), the solution to the NMPC
problem has to satisfy ˆxl |k ∈ X andûl |k = h(x̂l |k) ∈ U,∀l =
N, . . . ,P− 1, therefore ˆxl |k ∈ Xh,∀l = N, . . . ,P− 1. Ad-
ditionally, it is required that ˆxP|k ∈ T, therefore ˆxN|k ∈
K Oh

P−N(X,T). Furthermore, ˆxl |k ∈ X and ûl |k ∈ U for
all l = 0, . . . ,N− 1. From the definition of controllable
sets, these constraints can be satisfied if only ifxk = x̂0|k ∈
KN(X,K Oh

P−N(X,T)).

Due to the finite-horizon nature of NMPC, it is possible that
a bad choice of design variables could result in a solution
with x̂∗1|k ∈ X\XF . This will result in an infeasible prob-
lem at the next time instant, even in the absence of distur-
bances. Additionally, ifXF\C∞(X) 6= /0 it is possible that
x̂∗1|k ∈ XF\C∞(X), which will result inxk+1 /∈ C∞(X). Since
there does not exist a control sequence which will satisfy the
constraints if the state is outside the maximal control invari-
ant set, the NMPC problem will become infeasible at some
future time.

The use of soft constraints is one way of solving the infea-
sibility problem [13]. However, this is not necessarily the
best approach. State constraints will be violated at some fu-
ture time, even in the absence of disturbances, if the solution
to the soft-constrained problem results in ˆx∗1|k ∈ X\C∞(X).
This section addresses the nominal feasibility issue by pro-
viding conditions onN, P andT under which feasibility (and
hence state constraint satisfaction) can be guaranteed for all
time, without the need for soft constraints.

Definition 3.1 (Feasible for all time). The NMPC prob-
lem is feasible for all time k∈ N if and only if the initial
statex0 belongs to the feasible set and all future evolutions
of the state belong to the feasible set, i.e.xk ∈ XF ,∀k∈ N

The first result follows from the discussion above and is a
necessary and sufficient condition for guaranteeing that the
NMPC problem is feasible for all time:

Theorem 3.2. The NMPC problem is feasible for all time
if and only if x0 ∈ XF ∩C∞(X) and∀xk ∈ XF ∩C∞(X) the
solution to the NMPC problem results inx̂∗1|k ∈XF ∩C∞(X).

Definition 3.2 (Strongly feasible). The NMPC problem is
strongly feasibleif and only if for all x0 ∈ XF the NMPC
problem is feasible for all time.

Theorem 3.3. (i) The NMPC problem is strongly feasible if
and only if the feasible set is apositively invariantset for
the closed-loop system xk+1 = f (xk,κ(xk)); (ii) The NMPC
problem is strongly feasible only if the feasible set is acon-
trol invariantset for the system xk+1 = f (xk,uk).

Remark 3.1.XF is a control invariant set only ifXF is a
subset of the maximal control invariant setC∞(X).

Note that control invariance is only a necessary condition
for a strongly feasible NMPC problem. The design vari-
ables that determine whetherXF is control invariant areN,
P, h(xk) andT. However, all the design variables, including
the cost functionalsF(xk) andL(xk,uk), determine whether
XF is positively invariant for the closed-loop system. The
following new sufficient condition is a weaker result than
the well-known “control invariant terminal set” condition:

Theorem 3.4. If XF(T,N,P) is control invariant, then the
NMPC problem with a control horizon of̃N ≥ N + 1 and a
prediction horizon ofP̃ = P+ Ñ−N is strongly feasible.

Remark 3.2.This result implies that by increasing the con-
trol and prediction horizons by the same amount will result
in a strongly feasible NMPC problem. This result holds even
if XF(T,N−1,P−1) and/orT are not control invariant.



3.2 Equal Control and Prediction Horizons
Note that the terminal controllerh(xk) does not affect the
feasible set if the control and prediction horizons are equal.
The only design variables that determine the feasible set are
the control horizonN = P and the terminal constraint setT.

3.2.1 Terminal SetT=X: The following new result
on the feasibility of the NMPC problem considers the case
when the terminal state is equal to the state constraints.

Theorem 3.5. Let P= N andT= X:

(i) The feasible set is equal to the N-step admissible set, i.e.
XF(X,N,N) = CN(X). The feasible set contains the maxi-
mal control invariant set, i.e.C∞(X) ⊆ XF(X,N,N). The
feasible set is control invariant if and only if the maximal
control invariant set is finitely determined and the control
horizon is equal to or greater than its determinedness index
i∗, i.e. N≥ i∗;

(ii) The NMPC problem is strongly feasible if the control
horizon is larger than the determinedness index i∗ of the
maximal control invariant setC∞(X), i.e. N≥ i∗+ 1;

(iii) A largercontrol horizon results in asmallerfeasible set.
The size of the feasible set stops decreasing if and only if the
maximal control invariant set is finitely determined and the
control horizon is larger than its determinedness index, i.e.
i∗ ≥ N1 > N2 if and only ifXF(X,N1,N1)⊂ XF(X,N2,N2).
Furthermore,XF(X,N,N) = C∞(X) = Ci∗(X),∀N ≥ i∗.

Remark 3.3.For T = X andN = P, Theorem 3.5 implies
that one cannot choose the design variables such that the
NMPC problem is strongly feasible if and only if the maxi-
mal control invariant set is not finitely determined. This is a
problem, since in general one cannot guarantee finite deter-
minedness or that the determinedness index will be small
enough for the controller to be implementable. It might
be possible that a redesign of the state and/or control con-
straints or the system might solve the determinedness prob-
lem.

3.2.2 Control Invariant Terminal Set: The follow-
ing theorem contains the well-known control invariant ter-
minal constraint condition, as discussed in [11]:

Theorem 3.6. Let P= N and the terminal constraint set be
a control invariantsubset ofX, i.e. Q (T)∩T= T⊆ X:

(i) The feasible set is equal to the N-step stabilisable set, i.e.
XF(T,N,N) = SN(X,T). Hence. the feasible set is control
invariant and contained within the maximal control invari-
ant set, i.e.XF(T,N,N) ⊆ C∞(X);

(ii) The NMPC problem is strongly feasible;

(iii) A largercontrol horizon results in alargerfeasible set.
The size of the feasible set stops increasing if and only if the
maximal stabilisable set is finitely determined and the con-
trol horizon is larger than its determinedness index i∗, i.e.
i∗ ≥ N1 > N2 if and only ifXF(T,N1,N1) ⊃ XF(T,N2,N2).
Furthermore,XF(T,N,N) = S∞(X,T) = Si∗(X,T),∀N≥ i∗.

Corollary 3.1. If N = P, then the feasible set of an NMPC
problem with acontrol invariantterminal constraint setT⊆
X, is always contained within the feasible set of an NMPC
problem withT= X, i.e.XF(T,N,N) ⊆ XF(X,N,N).

3.3 Different Control and Prediction Horizons
When the prediction horizon is larger than the control hori-
zon, feasibility analysis of the NMPC problem is slightly
more involved.

Corollary 3.2. Assume that the maximal control invariant
set is finitely determined with determinedness index i∗ and
that P> N. If T is any subset ofX and P≥ i∗, then
XF(T,N,P) ⊆ C∞(X).

Note that since Corollary 3.2 does not assume any invariance
condition onT, the result does not imply that the feasible set
is control invariant. Even ifT is control invariant, ifP> N
one cannot guarantee in general that the NMPC problem is
strongly feasible or even control invariant.

3.3.1 Terminal SetT = X: The following lemma is
useful in understanding Theorem 3.7:

Lemma 3.1. If T = Xh, thenK Oh
i (X,T) = Oh

i (X) for all
i ≥ 0. If T ⊇ Xh and the maximal positively invariant set
Oh

∞(X) is finitely determined with determinedness index i∗,
thenK Oh

i (X,T) = Oh
∞(X) for all i ≥ i∗+ 1.

Theorem 3.7. Let P> N andT= X:

(i) The feasible set is equal to the N-stepcontrollable
set to K Oh

P−N(X,X) for the closed-loop system xk+1 =
f (xk,h(xk)), i.e. XF(X,N,P) = KN(X,K Oh

P−N(X,X)).
Hence, the feasible set is not necessarily control invariant;

(ii) The NMPC problem is strongly feasible if thedifference
between the prediction and control horizons is larger than
the determinedness index of the maximal positively invariant
set Oh

∞(X), i.e. P−N ≥ i∗+ 1. The condition relaxes to
P−N≥ i∗ if T= Xh;

(iii) Assume that N is fixed. A largerpredictionhorizon re-
sults in asmallerfeasible set. The size of the feasible set
stops decreasing if and only if the maximal positively in-
variant setOh

∞(X) is finitely determined and thedifference
between the prediction and control horizons is larger than
its determinedness index, i.e. N+ i∗ + 1 ≥ P1 > P2 > N
if and only ifXF(X,N,P1) ⊂ XF(X,N,P2). Furthermore,
XF(X,N,P) = SN(X,Oh

∞(X)),∀P≥ N+ i∗+ 1;

(iv) Assume that P≥ N + i∗+ 1. A larger control horizon
results in alarger feasible set. The size of the feasible set
stops increasing if and only if the maximal stabilisable set
S∞(X,Oh

∞(X)) is finitely determined and the control horizon
is larger than its determinedness index j∗, i.e. j∗ ≥N1 >N2
if and only ifXF(X,N1,P) ⊃ XF(X,N2,P). Furthermore,
XF(X,N,P) = S∞(X,Oh

∞(X)),∀N≥ j∗,P≥ N + i∗+ 1.

Note that ifP−N ≤ i∗, then one cannot guarantee that the
feasible set is control invariant, except that there exists a
subset of the feasible set which is control invariant. It is also
difficult to say anything useful about the size of the feasible
set w.r.t. the length of the horizons.

The following result is useful when the determinedness in-
dex ofOh

∞(X) is known, butOh
∞(X) does not have a simple

expression:

Corollary 3.3. If Oh
∞(X) is finitely determined with deter-

minedness index i∗, then the feasible set of an NMPC prob-
lem with terminal constraintT= Oh

∞(X) and N= P is equal



to the feasible set of an NMPC problem withT = X and
P≥ N + i∗+ 1, i.e.XF(Oh

∞(X),N,N) = XF(X,N,P) for all
P≥ N + i∗+ 1. Both problems are strongly feasible.

3.3.2 Control Invariant Terminal Set: In general,
if T is any control invariant subset ofX and P > N, it is
difficult to say anything about the feasibility of the NMPC
problem. However, the following theorem is useful ifOh

∞(X)
is complex and it is easy to obtain a simple expression for a
positively invariant subset ofOh

∞(X):

Theorem 3.8. Let P> N and the terminal constraint set
T be a positively invariant set for the closed-loop system
xk+1 = f (xk,h(xk)), hence it is also a control invariant set
for the system xk+1 = f (xk,uk), i.e. Oh

∞(T) = T⊆ Oh
∞(X):

(i) The feasible set is equal to the N-stepstabilisableset
to K Oh

P−N(X,T), i.e.XF(T,N,P) = SN(X,K Oh
P−N(X,T)).

Furthermore, the feasible set is control invariant;

(ii) The NMPC problem is strongly feasible;

(iii) Assume that N is fixed. A largerpredictionhorizon
results in alarger feasible set. The size of the feasible set
stops increasing if and only ifK Oh

∞(X,T) is finitely deter-
mined and thedifferencebetween the prediction and the
control horizon is equal to or greater than its determined-
ness index i∗, i.e. N+ i∗ ≥ P1 > P2 > N if and only if
XF(T,N,P1) ⊃ XF(T,N,P2). Furthermore,XF(T,N,P) =
SN(X,K Oh

∞(X,T)),∀P−N≥ i∗;

(iv) Assume that P− N is fixed. A largercontrol hori-
zon results in alarger feasible set. The size of the feasi-
ble set stops increasing if and only ifS∞(X,K Oh

P−N(X,T))
is finitely determined and the control horizon is larger
than its determinedness index j∗, i.e. j∗ ≥ N1 > N2
if and only if XF(T,N1,P) ⊃ XF(T,N2,P); Furthermore,
XF(T,N,P) = S∞(X,K Oh

P−N(X,T)),∀N ≥ j∗. Addition-
ally, XF(T,N,P) = S∞(X,K Oh

∞(X,T)) for all N ≥ s∗ if
S∞(X,K Oh

∞(X,T)) = Ss∗(X,K Oh
∞(X,T) and P−N≥ i∗.

The conclusion that increasing the difference between the
control and prediction horizon results in a larger feasible
set, providedT is positively invariant for the systemxk+1 =
f (xk,h(xk)), is also reported in [5]. The idea of using differ-
ent control and prediction horizons to reduce the computa-
tional burden in NMPC, is discussed in [15].

4 Conclusions and Further Remarks

The main contribution of this paper is the development of a
formal framework for the analysis and synthesis of NMPC
controllers with guaranteed nominal feasibility. The effect
of the terminal constraint set and horizons on the invari-
ance properties and size of the feasible set was discussed.
Though some of the results presented are reasonably well-
known and can be applied immediately to linear systems,
this paper showed that these ideas can easily be extended
to nonlinear systems. Though the computation of the var-
ious sets are difficult for general nonlinear systems, some
algorithms for piecewise affine and hybrid systems are be-
ing developed [1, 9, 14].

Extensions of this work include conditions for guaranteeing
robustfeasibility [9]. Issues such as guaranteeing feasibility

with output feedback, set-point tracking, time-varying sys-
tems and time-varying constraints can also be addressed us-
ing this framework [9]. As control systems become more
complex and performance requirements more demanding,
the application of invariant set theory will inevitably become
a standard procedure in the design and implementation of
constrained control schemes such as MPC.
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