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Abstract

An understanding of invariant set theory is essential in the design
of controllers for constrained systems, since state and control con-
straints can be satisfied if and only if the initial state belongs to
a positively invariant set for the closed-loop system. The paper
briefly reviews some concepts in invariant set theory and shows
that the various sets can be computed using a single recursive algo-
rithm. The ideas presented in the first part of the paper are applied
to the fundamental design goal of guaranteeing feasibility in pre-
dictive control. New necessary and sufficient conditions based on
the control horizon, prediction horizon and terminal constraint set
are given in order to guarantee that the predictive control problem
will be feasible for all time, given any feasible initial state.

Keywords: invariant sets, positively invariant sets, control invari-
ant sets, stabilisable sets, controllable sets, predictive control, fea-
sibility.

1 Introduction

Most systems are subject to state and control constraints and
the design of controllers for such systems is a very active
area of research. In particular, invariant set theory [3] has
been shown to be crucial in understanding the behaviour of
constrained systems, since constraints can be satisfied if and
only if the initial state is contained in a set which is posi-
tively invariant for the closed-loop system. Section 2 pro-
vides a unified framework for capturing the most important
ideas in invariant set theory.

Invariant set theory has been very successful in providing
sufficient nominal and robust feasibility and stability condi-
tions in Model Predictive Control (MPC) [11]. One of the
primary reasons for MPC’s success is the ease with which
constraints on both the control inputs and states can be in-
corporated in the controller synthesis. However, there still
seems to be a few “missing links” in the understanding of
the effect of the various design parameters on the feasible
domain of an MPC scheme. The main aim of Section 3 is
to apply the invariant set framework of Section 2 to MPC,

generalise some existing results and present some new nec-

essary and sufficient conditions for the analysis and synthe-
sis of MPC controllers with guaranteed nominal feasibility.
It is hoped that the formal framework presented in this pa-
per will facilitate a better understanding of the most basic
problem in the design of MPC controllers.

Q is used to denote any arbitrary subseR8f GivenQ, Q°
denotes its interior. The sék B is the complement dB that

is contained inA, i.e. A\B= {x:x¢cAx¢B}=ANB".
The notationA C B is used to denote tha is a subset of
B and A C B denotes thaf is a proper subset d@. Z is
the set of integersy is the set of non-negative integers and

N, is the set of positive integers. A sequence of states or
control inputs is denoted b§x}5 £ {xo,x1,...,xp}. The
notation{xy € (2}{5> is used to indicate that each element of
the sequencéx}, is an element of.

2 Invariant Set Theory

Consider the following discrete-time, nonlinear, time-
invariant (NLTI) dynamic system:

(1)

wherek € Z, X is the system state ang is the control in-
put. It is assumed that(x, ux) is uniquely defined over
X x U with f(0,0) = 0. Full state measurement and no dis-
turbances or model uncertainty is assumed.

Xer1 = (X, Uk)

The system is subject to pointwise-in-time constraints on the
control inputs and/or the states:

uecUCR™
Xk €EXCR"

(2a)
(2b)

The setU is assumed to be compact and simply connected,
while X is assumed to be closed and simply connected. Itis
assumed thgD,0) € X° x U°. An admissible control input,
sequencer law is one that satisfies the input constraints.
From this point on, it is understood that the control law and
states are subject to the constraints in (2).

2.1 Invariant and Positively Invariant Sets

Definition 2.1 (Positively invariant set [3]). The non-
empty seQQ C R" is positively invarianfor the autonomous
systemxy1 = f(x) if and only if ¥xg € Q, the system
evolution satisfiesx € Q,Vk € N,.. The sefQ is invariant
if and only if xo € Q implies thatx, € Q,Vk € Z.

In general, a given sé® is not positively invariant. How-
ever, often one would like to determine the largest positively
invariant set contained iQ:

Definition 2.2 (Maximal positively invariant set [7]).

The non-empty seD.,(Q) is the maximal positively in-
variant set contained inQ for the autonomous system
X1 = f(x¢) if and only if O (Q) is positively invariant
and contains all positively invariant sets containe@in.e.
W is positively invariant only it C 0.,(Q) C Q.

Definition 2.3. The maximal positively invariant set for
the closed-loopsystem x.1 = (X, 9(x)) is denoted by

1n this paper statements regarding autonomous systems also apply to
closed-loop systems. A superscript will denote that the associated system
is a closed-loop system and that the control law is required to satisfy the
input constraints.



03(Q) and is defined as the maximal positively invariant set
contained iQ9, where

Q92 {x € Q:g(x) € U} 3)

is theinput admissiblesubset of, i.e. the subset in which
the control law satisfies the input constraints.

2.2 Control Invariant Sets

Definition 2.4 (Control invariant set [3]). The non-empty
setQ c R" is acontrol invariantset for the systermmy.; =
f(x,ux) if and only if there exists a feedback control law
ux = g(xx) such thatQ is a positively invariant set for the
closed-loop systemc1 = f(x,9(xx)) and i € U, Vx, € Q.

In general, a given sé? is not control invariant. However,
often one would like to determine the largest control invari-
ant set contained if:

Definition 2.5 (Maximal control invariant set [2]). The
non-empty setC.(Q) is the maximal control invariant
set contained inQ for the systemxi;1 = f (X, ux) if and
only if C(Q) is control invariant and contains all control
invariant sets contained @, i.e. W is control invariant only
if W CCo(Q) CQ.

Theorem 2.1 ([3]). Given the NLTI systenfl), the con-
straints (2) can be satisfied for all time & N if and only
if the initial state ¥ € C.(X) C X.

Remark 2.1.A similar condition holds for autonomous sys-
tems and the corresponding maximal positively invariant set.

Definition 2.6 (The setQ (Q) [2, 6]). The non-empty set
Q (Q) is defined as the set of statesRfi for which an ad-
missible control input exists which will drive the system to
Qin one step, i.e.

Q(Q) £ {x« € R": Ju, € U such thatf (x, ux) € Q} . (4)

For autonomous/closed-loop systengs(Q) is the set of
states from which the system will evolve @ at the next
time instant, i.eQ (Q) = {x € R" : %11 = f(x) € Q}.

The following is a well-known geometric condition for a set
to be control invariant and is often used in the derivation of
properties of the various invariant sets:

Theorem 2.2 (Geometric condition for invariance [6]).
The setQ C R" is a control/positively invariant set if and
only if Q CQ (Q).

The setQ(Q) is the orthogonal projection of the set
{(% Uk) € R" X R™: f(x,Ux) € Q,ux € U} onto the first
coordinate. If one has an algorithm which can calculate
Q (Q) as well as a routine for testing set inclusion, one can
use this geometric condition to test whether a giver{sist
control/positively invariant. For LTI systems, with andU
given by linear inequalities, projection can be implemented
using Fourier elimination [8] ané C B is true if and only

if all the linear inequalities irB are redundant with respect
to the inequalities irA. Additionally, A= B if and only if
ACBandBC A. See [3, Sect. 4.2] for alternative invariance
and subset tests.

Proposition 2.1 ([14]). The setQ (Q) has the following
properties: (i) For allQ, Q (Q)NQ C Q; (i) For all Q1,Q;
with Q1 C Qp, Q(Q1) C Q(Qyp); (i) A set Q is con-
trol/positively invariant if and only if) (Q) N Q = Q.

2.3 Stabilisable Sets

Definition 2.7 (Stabilisable set [1]). The se€;(Q, T) is the
i-step stabilisable satontained inQ for the systenxy,1 =
f(x, ux) if and only if T is acontrol invariant subseof Q
andS;i(Q,T) contains all states i@ for which there exists
an admissible control sequence of lengtkhich will drive
the state of the system ®in i steps or less, while keeping
the evolution of the state inside, i.e.

SI(Q,T) 2 {xo€ Q:3{uce U}y L3N <isuch that
(e QN tand{x e TC Q}\, TCQ(T)}. (5)

Definition 2.8 (Maximal stabilisable set). S..(Q, T) is the
maximal stabilisable setontained inQ for the system
X1 = T (X, Ux) if and only if Se. (Q, T) is the union of all
i-step stabilisable sets containedn

Remark 2.2.In general, the maximal stabilisable set
S«(Q,T) is not equal to the maximal control invariant set
Coo (Q), even for linear systems.,(Q,T) C Cw(Q) for all
control invariantT. The setC(Q)\S.(Q,T) includes all
initial states from which it is not possible to drive the sys-
tem to the stabilisable regidii (Q, T) (and hence td). It
might only be possible to bound the norm of the stéjted

as in the case of a limit cycle or to drive the system to an
alternative stable equilibrium.

Remark 2.3.If Ty # T, are two control invariant sets, then
S0 (Q,T1) andS»(Q,T2) are not necessarily equal. Simi-
larly, Sw(Q,{0}) is not necessarily equal f,(Q, T), since

itis not always possible to drive some systems to the ofigin

2.4 Principles for Computing Invariant Sets

Definition 2.9 (Controllable set). The i-step controllable

setK;(Q,T) is the set of states i@ which can be driven
by an admissible input sequence of lengtb an arbitrary

terminal setT C R" in exactly isteps, while keeping the
evolution of the state insid@ for the firsti — 1 steps, i.e.

Ki(Q,T) 2 {x € Q: 3{u € U} L such that
{x e Q) tandx e TCR"}. (6a)

The limit, if it exists, defines thénfinite-time controllable
set

Ko(Q,T) £ lim Ki(Q,T).
| —o00
Remark 2.4.Note that if the notatioiS; (Q, T) is used,T is
a control invariant subset 6. If Ki(Q, T) is usedT can be
any arbitrary subset d".

(6b)

2The regionS«(R",{0}) can be seen to be the generalisation to nonlin-
ear systems of the ANCBI (asymptotically null-controllable with bounded
inputs) region for LTI systems with no state constraints [4]. The maximal
stabilisable sef«(X,{0}) is a generalisation to nonlinear systems of the
maximal admissible set defined in [8] and the feasible region of the predic-
tive control scheme defined in [12]. Care has to be taken not to confuse
definitions by other authors with those given in this paper.



Remark 2.5.The one-step controllable set Tis equal to
theintersectiorof Q (T) andQ.

Proposition 2.2. Some properties of controllable sets are:
(i) If Ki(Q,T) is control invariant, then so iKi+1(Q,T). In
general, the reverse statement does not hold;

(i) If the state x € Ki11(Q,T)\Ki(Q,T) # 0, then there
exists an admissible control input which will ensure that the
state at the next time instant is i (Q, T);

(iii) If the state % € Ki(Q,T)\Ki+1(Q,T) # 0, then there
does not exist an admissible control input which will ensure
that the state at the next time instant isn(Q, T);

(iv) If the state x € Ki11(Q,T)\ Uk_o Kk(Q,T) # 0, then
there does not exist an admissible control sequence which
will drive the system t@ in i steps or less.

Definition 2.10 (Finitely determined set [7]). The set
Ko(Q,T) is finitely determinedif and only if Ji € N
such thatKe.(Q,T) = K{(Q,T). The smallest element
i* € N such thatKe(Q,T) = Ki<(Q,T) is called the
determinedness index

In generalK«(Q, T) is not finitely determined, however:

Lemma 2.1. If Ji € N such thatK;(Q,T) = Ki11(Q,T)
thenK.,(Q, T) is finitely determined and control invariant.

It follows thatK;(Q, T) = K (Q,T), Vi > i*.
Algorithm 2.1 (Controllable sets). The controllable sets

of a system can be computed via the following iterative pro-
cedure:

Ko(Q,T)=T (7a)
KIJrl(QaT) :Q(KI(QvT))mQ (7b)
If Ki(Q,T) = Ki;1(Q, T), then terminate the algorithm.

The basic procedure for implementing Algorithm 2.1 is:

(i) compute Q (+); (ii) compute Q ()N Q and (iii) test

for set equality. These three operations are easily imple-
mented for LTI systems subject to linear inequality con-

straints [2, 6, 7, 8, 10, 14]. Though the algorithms presented
in this paper are difficult to implement for general nonlin-

Proposition 2.3. Some properties of admissible sets are:

(i) Each seCi11(Q) C Ci(Q);

(i) Each setCi(Q) = Nio Ck(Q);

(iii) If the state x € Q\Ci(Q) # 0 then there does not exist

a control sequence which will ensure that the state evolution
remains withinQ for i steps;

(iv) If the state x € Ci(Q)\Cw(Q) # 0 then there does not
exist a control input which will ensure that the state at the
next time instant is i€ (Q).

A necessary and sufficient condition for the finite-
determinedness of the maximal control invariant set is:

Theorem 2.3. C(Q) is finitely determined if and only if
di € Nsuch thalCi(Q) = CH_]_(Q).

The following sets are defined for closed-loop systems:

Definition 2.12 (The setK 0%(Q, T)). The setk 0(Q,T)
for the systenxi1 = f (X, Uk), in closed-loop with the con-
trol law ux = g(x«), is defined a 0%(Q,T) £ K;(Q9,T)
for the autonomous systex, 1 = f (X, 9(X«)).

Definition 2.13 (The set0?(Q)). Thei-step admissible set
for the systenxi1 = f (X, Uk), in closed-loop with the con-
trol law ux = g(x«), is denoted a®?(Q) £ C;(Q9) for the
autonomous system.1 = f (X, g(X))-

Remark 2.6.All the properties of controllable and admissi-
ble sets hold true for the corresponding sets of autonomous
systems. Note thadd?(Q) = Ki(Q9,Q9) = KOZ(Q,Q9).
These sets can be computed using Algorithms 2.1 and 2.2.

2.4.2 Computing the Maximal Stabilisable Set:

Algorithm 2.3 (Maximal stabilisable set). Algorithm 2.1
can be used to compute the i-step stabilisableSged, T)
contained inQ by noting that

If Si(QﬂI‘) = Si+1(Q7T), thenSm(QT) = Si(Q,T).

ear systems, there exist some classes of nonlinear systems

for which the building blocks already are in place, such as

piecewise affine systems and some classes of hybrid sys-

tems [1]. Some work on developing algorithms for comput-
ing robust control invariant sets for hybrid systems has also
been carried out by the authors of [14].

2.4.1 Computing the Maximal Control Invariant
Set:

Definition 2.11 (Admissible set [6]). Thei-step admissible
setCi(Q) contained inQ is the set of states for which an
admissible control sequence of leng#xists while keeping
the evolution of the state inside for i steps, i.e.

CiQ) 2 {xeQ: HueUlgt: (xeQli}.

Algorithm 2.2 (Maximal control invariant set). The
i-step admissible setCi(Q) can be computed using
Algorithm 2.1 by noting that

Ci(Q) = Ki(Q,Q).
If Ci(Q) = Ci11(Q), thenCw(Q) = Ci(Q).

8

9)

Proposition 2.4. Some properties of stabilisable sets are:
(i) Each set5;(Q, T) is control invariant;

(i) Each set5i11(Q,T) 2 Si(Q,T);

(iii) Each setS;(Q,T) = Ui_oSk(Q,T);

(iv) If the state x € Si+1(Q, T)\Si(Q, T) # 0, then there ex-
ists a control input which will drive the state f(Q,T) at
the next time instant;

(v) If the state k€ Si+1(Q, T)\Si(Q, T) # 0, then there does
not exist a sequence which will drive the systenTtm i
steps or less.

Theorem 2.4. S.,(Q, T) is finitely determined if and only if
3i € N such thatS;(Q, T) = Si,1(Q,T).

3 Model Predictive Control

This section briefly introduces Nonlinear Model Predictive

Control (NMPC) and proceeds to address some feasibility
issues related with solving the NMPC problem. The proofs
for the results are given in [9].



Problem 3.1 (NMPC Regulation Problem). Solve
P-1

n:[{;nF(f(p‘k)+ i; L (%ijk, Giji) (11)

subject to
Kk = F (R Gik)s k=X  (12a)
XkeX, Grel, |=0,...,P-1 (12b)
l',\l”k:h()A(”k), =N,...,P-1 (12¢)
%oy €T C X (12d)

The decision variable in the NMPC problem is the control
sequencet = {lgj, Uyjk,-- . ,On_1k }- The variabledN and

P are the control and prediction horizons, respectively, and
it is assumed thd® > N > 0. Note that ifP = N, then con-
straint (12c) is removed is the terminal constraint set.

Since the optimisation is over a finite horizon, in the de-
sign of the terminal cost function&(Xp) and the stage
cost functional (%, Gjj), itis (usually) assumed that =
h(X k) is a locally stabilising control law defined b that
will be applied on the infinite horizon fdr> P. It is as-
sumed that_(-,-) is a non-negative functional defined on
X x U andF(-) is a non-negative functional defined &n

At each time instank, the current statg, of the system is
measured. The new control input to the system is the first el-
ement of the (not necessarily optimal) solutidﬁ to Prob-

lem 3.1, i.e.K(x) = k- Herek(x) implicitly defines the
NMPC control law, the closed-loop system being given by
Xk+1 = f(X,K(Xc)). State measurement and control input
calculation is repeated at the next time instant. It is assumed
thatN, P, F, L, handT are the design variables and that
f, X andU are fixed. The aim of the control action is to
regulate the states and control input$@c0).

3.1 Nominal Feasibility

It is assumed that the set of ordered pdits T§Y), which
satisfy the constraints in (12), is non-empty. The feasible
setXg is the set of stateg, for which a feasible control
sequencen{z‘ to the NMPC problem exists, i.eXg is the
orthogonal projection of (12) onto the first coordinate:

Xe (T,N,P) £ {x¢: I s.t.(x, T}y ) satisfies (12) . (13)

The NMPC regulation problem is said to be feasible at time
k if and only if xx € Xg # 0. Note thatX* = Xg by defini-
tion.

Theorem 3.1. The feasible seKg(T,N,P) of the NMPC
regulation problem is given by:

Xe(T,N,P) = Kn(X,KOp_N(X,T)).  (14)
Proof. From the constraints (12), the solution to the NMPC
problem has to satisfy; x € X anduj, = h(Xx) € U,vl =
N,...,P—1, thereforexj, € X"Vl =N,... ,P—1. Ad-
ditionally, it is required thatxp € T, thereforexyy €
KOB_\(X,T). Furthermorexx € X and tj € U for

all | =0,...,N—1. From the definition of controllable
sets, these constraints can be satisfied if onkg i Xox €

Kn(X,KOB (X, T)). O

Due to the finite-horizon nature of NMPC, it is possible that
a bad choice of design variables could result in a solution
with X3, € X\Xg. This will result in an infeasible prob-
lem at the next time instant, even in the absence of distur-
bances. Additionally, ifXp\Cs(X) # 0 it is possible that
Xk € Xr\Co(X), which will result inxg1 ¢ Co(X). Since
there does not exist a control sequence which will satisfy the
constraints if the state is outside the maximal control invari-
ant set, the NMPC problem will become infeasible at some
future time.

The use of soft constraints is one way of solving the infea-
sibility problem [13]. However, this is not necessarily the
best approach. State constraints will be violated at some fu-
ture time, even in the absence of disturbances, if the solution
to the soft-constrained problem resultsxif < X\ Co (X).

This section addresses the nominal feasibility issue by pro-
viding conditions orN, P andT under which feasibility (and
hence state constraint satisfaction) can be guaranteed for all
time, without the need for soft constraints.

Definition 3.1 (Feasible for all time). The NMPC prob-
lem is feasible for all time ke N if and only if the initial
statexp belongs to the feasible set and all future evolutions
of the state belong to the feasible set, kec Xg,Vk e N

The first result follows from the discussion above and is a
necessary and sufficient condition for guaranteeing that the
NMPC problem is feasible for all time:

Theorem 3.2. The NMPC problem is feasible for all time
if and only if % € Xg NCw(X) and¥xx € Xp NCw(X) the
solution to the NMPC problem resultsfy, € X¢ N Co (X).

Definition 3.2 (Strongly feasible). The NMPC problem is
strongly feasibldf and only if for all xo € Xg the NMPC
problem is feasible for all time.

Theorem 3.3. (i) The NMPC problem is strongly feasible if
and only if the feasible set is positively invariantset for
the closed-loop systemx = f (X, K(X«)); (i) The NMPC
problem is strongly feasible only if the feasible set oa-
trol invariantset for the systemxg = f (X, Uk).

Remark 3.1.Xf is a control invariant set only iKg is a
subset of the maximal control invariant §&#(X).

Note that control invariance is only a necessary condition
for a strongly feasible NMPC problem. The design vari-
ables that determine whethEg is control invariant aré\,

P, h(x) andT. However, all the design variables, including
the cost functional& (xc) andL(xk,uk), determine whether
Xg is positively invariant for the closed-loop system. The
following new sufficient condition is a weaker result than
the well-known “control invariant terminal set” condition:

Theorem 3.4. If Xg(T,N,P) is control invariant, then the
NMPC problem with a control horizon ™ > N+ 1 and a
prediction horizon oP = P+ N — N is strongly feasible.

Remark 3.2.This result implies that by increasing the con-
trol and prediction horizons by the same amount will result
in a strongly feasible NMPC problem. This result holds even
if Xg(T,N—1,P— 1) and/orT are not control invariant.



3.2 Equal Control and Prediction Horizons 3.3 Different Control and Prediction Horizons

Note that the terminal controlldr(xc) does not affect the When the prediction horizon is larger than the control hori-
feasible set if the control and prediction horizons are equal. zon, feasibility analysis of the NMPC problem is slightly
The only design variables that determine the feasible set are more involved.

the control horizorN = P and the terminal constraint sgt Corollary 3.2. Assume that the maximal control invariant

3.2.1 Terminal SetT =X: The following new result set is finitely determined with determinedness indeanid
on the feasibility of the NMPC problem considers the case that P> N. If T is any subset oK and P> i*, then
when the terminal state is equal to the state constraints. Xg(T,N,P) C Co(X).

Theorem 3.5. Let P=N andT = X: Note that since Corollary 3.2 does not assume any invariance

(i) The feasible set is equal to the N-step admissible set, i.e. condition onT, the result does notimply that the feasible set
Xr(X,N,N) = Cn(X). The feasible set contains the maxi- is control invariant. Even ifl is control invariant, ifP > N

mal control invariant set, i.eCo(X) C Xg(X,N,N). The one cannot guarantee in general that the NMPC problem is
feasible set is control invariant if and only if the maximal ~ strongly feasible or even control invariant.
control invariant set is finitely determined and the control 3.3.1 Terminal SetT =X: The following lemma is

horizon is equal to or greater than its determinedness index yseful in understanding Theorem 3.7:

I__’ e = _ o Lemma 3.1. If T = XM, thenKOMX,T) = ON'(X) for all
(ii) _The NMPC problem is strongly feaS|bIe_|f the control > 0. If T2 X" and the maximal positively invariant set
horizon is larger than the determ|_nednes§*|nd‘§>oﬁ the ON(X) is finitely determined with determinedness index i
maximal control invariant sef., (X), i.e. N> i* 4 1; thenK ON(X, T) = ON(X) for alli > i* + 1.

(ii) A largercontrol horizon results in amallerfeasible set. Theorem 3.7. Let P> N andT = X:

The size of the feasible set stops decreasing if and only if the , ,

maximal control invariant set is finitely determined and the () The fe?smle set is equal to the N-stepntrollable
control horizon is larger than its determinedness index, i.e. S€t 10 KOp_y(X,X) for the closed-loop systemcx =

i* > Ng > Ny if and only if Xg (X, Nz, Np ) € Xg (X, Nz, No). (%)), i.e. Xr(X,N,P) = Ky(X,KOp (X, X)).
Furthermore Xg (X, N,N) = Co(X) = Ci+(X), VYN > i*. Hence, the feasible set is not necessarily control invariant;

Remark 3.3For T = X andN = P, Theorem 3.5 implies (ii) The NMPC problem is strongly feasible if tdéference
that one cannot choose the design variables such that the Petween the prediction and control horizons is larger than
NMPC problem is strongly feasible if and only if the maxi- the dﬁterml_nedness mde_x of the maximal p(_)smvely invariant
mal control invariant set is not finitely determined. Thisisa SetOa(X), i.e. P*hN > 1"+ 1. The condition relaxes to
problem, since in general one cannot guarantee finite deter- P—N>i"if T =XY

minedness or that the determinedness index will be small (jiii) Assume that N is fixed. A larg@redictionhorizon re-
enough for the controller to be implementable. It might sults in asmallerfeasible set. The size of the feasible set
be possible that a redesign of the state and/or control con- stops decreasing if and only if the maximal positively in-
straints or the system might solve the determinedness prob- variant setO} (X) is finitely determined and theifference
lem. between the prediction and control horizons is larger than
its determinedness index, i.e. N*+1>P; > P> > N

if and only if Xp (X,N,P1) C Xp(X,N,P2). Furthermore,

XE (X,N,P) = Sn(X,00(X)),VP > N +i* 4 1;

i i (iv) Assume that P> N +i* 4+ 1. A larger control horizon
Theorem 3.6. Let P= N and the terminal constraint setbe  oqits in alargerfeasible set. The size of the feasible set
acontrol invariansubset o, i.e.Q (T)NT =T C X: stops increasing if and only if the maximal stabilisable set
(i) The feasible set is equal to the N-step stabilisable set, i.e. S«(X,0{ (X)) is finitely determined and the control horizon
X (T,N,N) = SN(X,T). Hence. the feasible set is control s larger than its determinedness indéexije. j* > Ny > N
invariant and contained within the maximal control invari-  if and only if X (X,N1,P) D Xr(X,Nz,P). Furthermore,
ant set, i.eXg (T,N,N) C Co(X); Xe (X,N,P) = Se(X,00(X)),¥N > j* P> N+i*+ 1.

(ii) The NMPC problem is strongly feasible;

3.2.2 Control Invariant Terminal Set: The follow-
ing theorem contains the well-known control invariant ter-
minal constraint condition, as discussed in [11]:

Note that ifP — N < i*, then one cannot guarantee that the

(iii) A largercontrol horizon results in dargerfeasible set. feasible set is control invariant, except that there exists a
The size of the feasible set stops increasing if and only if the subset of the feasible set which is control invariant. It is also
maximal stabilisable set is finitely determined and the con- difficult to say anything useful about the size of the feasible

trol horizon is larger than its determinedness indéxiie. set w.r.t. the length of the horizons.

" > Ny > Ny if and only if Xg (T, Ny, N1) 5 X (TvNZ’N?z' The following result is useful when the determinedness in-
Furthermore Xg (T,N,N) = Su (X, T) = 5 (X, T), N > i". dex of OR(X) is known, butO[}(X) does not have a simple
Corollary 3.1. If N = P, then the feasible set of an NMPC  expression:

problem with acontrol invarianterminal constraint set C Corollary 3.3. If OR(X) is finitely determined with deter-
X, is aIWaYS Contained within the feasible set of an NMPC minedness inde)f,i then the feasible set of an NMPC prob_
problem withT =X, i.e. X¢(T,N,N) € X (X,N,N). lem with terminal constrair = O"(X) and N= P is equal



to the feasible set of an NMPC problem with= X and
P>N+i*+1,i.e Xpg(08(X),N,N) = Xg (X,N,P) for all
P> N+i*+ 1. Both problems are strongly feasible.

3.3.2 Control Invariant Terminal Set: In general,
if T is any control invariant subset & andP > N, it is
difficult to say anything about the feasibility of the NMPC
problem. However, the following theorem is usefuDf (X)

is complex and it is easy to obtain a simple expression for a

positively invariant subset @ (X):

Theorem 3.8. Let P> N and the terminal constraint set
T be a positively invariant set for the closed-loop system
xk+1 = f(x,h(X)), hence it is also a control invariant set
for the systemy 1 = (X, Ux), i.e. O (T) = T C O (X):

(i) The feasible set is equal to the N-stefabilisableset
to KOP_ (X, T), i.e. Xg (T,N,P) = SN (X, KOB_ (X, T)).
Furthermore, the feasible set is control invariant;

(ii) The NMPC problem is strongly feasible;

(iii) Assume that N is fixed. A larggpredictionhorizon
results in alargerfeasible set. The size of the feasible set
stops increasing if and only K Of} (X, T) is finitely deter-
mined and thalifferencebetween the prediction and the
control horizon is equal to or greater than its determined-
ness index*, i.e. N+i* > Pp > P, > N if and only if
Xr(T,N,P1) D Xp(T,N,P). Furthermore Xg(T,N,P) =
SN(X,KOR(X,T)), VP — N > i*;

(iv) Assume that P N is fixed. A largercontrol hori-
zon results in dargerfeasible set. The size of the feasi-
ble set stops increasing if and onlyS& (X, K08 _ (X, T))

is finitely determined and the control horizon is larger
than its determinedness index, ji.e. | > N;i > Np

if and only if Xg (T,N1,P) D Xg(T,Np,P); Furthermore,
Xg(T,N,P) = Se(X,KO0B5 (X, T)),¥N > j*. Addition-
ally, Xg(T,N,P) = Se(X,KOR(X,T)) for all N > s if

S (X, KOR(X,T)) = Ss (X,K O (X, T) and P— N > i*.

The conclusion that increasing the difference between the

control and prediction horizon results in a larger feasible
set, providedr is positively invariant for the systemy, 1 =
f (%, h(x)), is also reported in [5]. The idea of using differ-

ent control and prediction horizons to reduce the computa-

tional burden in NMPC, is discussed in [15].
4 Conclusions and Further Remarks

The main contribution of this paper is the development of a
formal framework for the analysis and synthesis of NMPC
controllers with guaranteed nominal feasibility. The effect
of the terminal constraint set and horizons on the invari-

ance properties and size of the feasible set was discussed.
Though some of the results presented are reasonably well-

known and can be applied immediately to linear systems

with output feedback, set-point tracking, time-varying sys-
tems and time-varying constraints can also be addressed us-
ing this framework [9]. As control systems become more
complex and performance requirements more demanding,
the application of invariant set theory will inevitably become
a standard procedure in the design and implementation of
constrained control schemes such as MPC.
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