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Abstract

A number of results are derived for analysing the robust fea-
sibility of a given Model Predictive Control (MPC) scheme
which ignores model mismatch and/or disturbances during
control input computation. The main contribution of this pa-
per is the development of computationally tractable tests for
determining the robust feasibility of an MPC controller for
linear or piecewise affine systems, where the constraints are
given by the union of convex polyhedra and the disturbance
acts additively on the state. Practical tests are also presented
which allow one to give robust feasibility guarantees for all
optimal and sub-optimal MPC control actions.

Keywords: nonlinear model predictive control, constraints,
robust feasibility, robust strong feasibility, robust set invari-
ance theory, piecewise affine systems.

1 Introduction

Over the last few decades Model Predictive Control (MPC)
has proven to be a very successful technique for the con-
trol of multivariable, constrained systems. However, most
industrially-implemented MPC schemes do not explicitly
take into account that there is a mismatch between the actual
plant and the model used in the synthesis of the controller.
In practice, it often happens that the MPC controller or a
disturbance drives the system to a state which is outside the
so-calledfeasible setof the associated finite horizon optimal
control problem. As a result, a control input cannot be com-
puted and the optimisation problem has to be redefined, e.g.
by softening the state constraints [8].

However, in order to guarantee robust constraint satisfaction
in safety-critical applications it is desirable that infeasibility
of the MPC optimisation problem is avoided at all costs. In
other words, once inside the feasible set the system evolution
should remain inside the feasible set for all time and for all
disturbance sequences. In this paper, if an MPC controller
is such that the closed-loop system has this property, it will
be calledrobustly feasible. Results are presented which al-
low one to determinea priori whether or not a given MPC
controller which ignores disturbances in the optimal control
problem, is robustly feasible.

The main concepts discussed here apply to general, nonlin-
ear systems and are directly related to well-established re-
sults in set invariance theory [4, 5]. One of the contributions

of this paper is explicitly linking some of these results with
the robustness analysis of MPC controllers. Another con-
tribution of this paper is the development of computation-
ally tractable robust feasibility tests for linear, time-invariant
(LTI) and piecewise affine (PWA) systems. Theorems 8
and 9 consider the case when the optimal solution is found
at each time step and Section 4 develops results which allow
one to test whether or not robust feasibility is guaranteed for
all optimal and sub-optimal solutions to the MPC problem.

Most previous robust invariance tests have been concerned
with LTI systems with LTI control laws, e.g. [7]. In this pa-
per test for checking robust invariance (which is equivalent to
robust feasibility) are developed for LTI and PWA systems,
where the control law is asingle-valued PWA map[1, 2] or
a non-convex, set-valued map. This paper is also similar in
emphasis to that of [10, 11] and the references contained in
the latter, in the sense that robustness analysis, rather than
robust synthesis, of MPC controllers is the main topic of the
paper. However, whereas [10, 11] contain sufficient condi-
tions only, this paper derives necessary and sufficient condi-
tions for guaranteeing robust feasibility.

Notation: In definitions := reads “is defined as” and=:
reads “defines”. Argminθ∈Θ f (θ) is the set of all min-
imisers of minθ∈Θ f (θ). If f : A → B, then f (A) :=
{ f (x) ∈ B : x∈ A} and hence f (A) =

⋃
x∈A f (x). The

Minkowski (vector) sumA⊕ B := {x+ y : x∈ A,y∈ B}.
Given a setA, the interior is denoted byA◦, the comple-
ment byAc and the set of all subsets ofA (power set) is
denoted by 2A. The set inclusionA ⊂ B holds iff A ⊆ B
andA 6= B. If f (·) := [ f1(·), f2(·), . . .]′ is a vector function
and v := [v1,v2, . . .]′ is a vector, thenv ≥ maxθ∈Θ f (θ) iff
∀i : vi ≥maxθ∈Θ fi(θ). The unit vector~1 := [1,1, . . . ,1]′.

2 Problem Description

The discrete-time plant dynamics are given by

xk+1 = fp(xk,uk,wk)

wherek ∈ Z is the time instant,xk ∈ Rn is the system state,
uk ∈ Rm is the control input andwk ∈ Rd is an unknown
disturbance. At each time instant the disturbance is randomly
selected from a closed and bounded setW ⊂ Rd.

Due to physical, safety and/or performance constraints, the
design requirement is that both the computed control input



and the state be constrained to closed and bounded1 setsU⊂
Rm andX ⊂ Rn, respectively.

For the design of the MPC controller, a nominal, discrete-
time model

xk+1 = fm(xk,uk)

is used and the disturbance isignored. It is assumed that both
fp : X×U×W→Rn and fm : X×U→Rn are single-valued
maps.

This paper is concerned with deriving results and tests which
allow one to determine whether or not the resulting state of
the plant in closed-loop with an MPC controller, where the
effect of the disturbance has been neglected during controller
design, robustly satisfies the constraintX.

At each time instant the current statex is measured and the
MPC control actionµN(x) := u∗0(x) is computed, whereu∗0(x)
is the first element of a solution to the following open-loop
optimal control problem:

Problem 1 (Finite Horizon Optimal Control). Find a

u∗(x) ∈ Argmin
u

F (xP) +
P−1

∑
k=0

`(xk,uk)

subject to

xk+1 = fm(xk,uk), xk ∈ X, uk ∈U, k = 0, . . . ,P−1 (1a)

uk = h(xk), k = N, . . . ,P−1 (1b)

x0 = x, xP ∈ T , (1c)

where

u := (u0, . . . ,uN−1) , u∗(x) :=
(
u∗0(x), . . . ,u∗N−1(x)

)
.

In the above,N is the control horizon andP is the prediction
horizon withP≥ N ≥ 1. As is common in MPC, a terminal
constraint2 T⊆X and terminal control law3 h : X→Rm may
also be used in defining the control problem. It is assumed
that the terminal costF : X→R and stage cost̀: X×U→R
attain their minima inside their respective domains.

As can be seen, the existence of a solution to the above prob-
lem is dependent on the current statex. For a givenx, the
constraints (1) define the set of allfeasible input sequences

CN(x) :=
{

u ∈ UN : (x,u)satisfies (1)
}
.

The feasible setKN of the above optimisation problem4 is
the set of states for which the resulting constraints define a

1In order to improve the numerical robustness of the controller, in prac-
tice it is a good idea to add upper and lower bounds for each state, even
though the original design requirements may not translate into a bounded
X.

2Note that for the results in this paper to hold, an invariance condition
on the terminal constraint does not have to be satisfied.

3If N = P, then a terminal control law is not included in the problem and
hence (1b) is removed. Note also that a stabilising condition on the terminal
control law or upper bound byF on the cost-to-go are not necessary for the
results in this paper to hold.

4If KN is the feasible set of the MPC problem with a control horizon of
N and a prediction horizon ofP, thenKN−1 is the feasible set of a problem
with a control horizon ofN−1 and a prediction horizon ofP−1.

non-emptyCN(x), i.e.

KN := {x∈ Rn : ∃u ∈ CN(x)}= {x∈ Rn : CN(x) 6= /0} .

If x∈KN, then a solution exists to the optimisation problem
and hence the MPC control input is defined for the given
state. For allx /∈KN, a control input cannot be computed.

Remark2. If fm andh are linear maps andX,U,W andT
are compact, convex polyhedra, thenKN is also a compact,
convex polyhedron and can be computed via projection or
Minkowski summation [5, Chap. 5]. Iffm andh are piece-
wise affine (PWA) maps, thenKN can still be computed. In
this case,KN is not necessarily convex but can still be de-
scribed by the union of convex polyhedra [5, Chap. 4].

Because of the presence of both state and input constraints5,
the feasible set is not necessarily equal to either ofRn or X,
but is only a subset ofX, i.e.KN ⊆X; in practice the feasible
set is often a strictly proper subset ofX, i.e. KN ⊂ X.

3 Optimal Solutions

Note that though the assumptions in Section 2 guarantee the
existence of a solution to the finite horizon optimal con-
trol problem for allx ∈ KN, the solution is not necessar-
ily unique. This section is concerned with robust feasibility
when the solution to the finite horizon optimal control prob-
lem is unique. For the case of guaranteeing robust feasibility
when the optimal solution is not unique, the development
follows similar lines of reasoning as in Section 4 and will
not be discussed here.

Assumption 3 (Uniqueness).For all x∈ KN, a unique so-
lution to Problem 1 exists.

The above assumption holds only in this section and is made
in order to guarantee that the MPC controllerµN : KN → U
is a single-valued map.

Definition 4 (Robust feasibility). The MPC controller is ro-
bustly feasible if and only if for all states inside the feasible
set and for all disturbances insideW, the state of the plant
at the next time instant lies inside the feasible set, i.e.µN

robustly feasible⇔∀x∈KN : fp(x,µN(x),W)⊆KN.

Guaranteeing robust feasibility is very strongly linked with
ideas in set invariance [5]. The concept of thereach setof
the closed-loop system is particularly useful in this context.
For the closed-loop system, the reach set from an arbitrary
set of statesΩ⊂ Rn is defined as

RµN (Ω) :=
{

fp(x,µN(x),w) ∈ Rn : x∈Ω,w∈W
}

and it follows thatRµN (Ω) =
⋃

x∈Ω fp(x,µN(x),W).

Given this, the following result follows trivially from the def-
inition of a robustly feasible MPC controller:

5If there are no state or terminal constraints (X = T =Rn) thenKN =Rn

and hence feasibility is never a problem and a control input can always be
computed.



Proposition 5 (Unique solution). The MPC controller µN is
robustly feasible if and only ifRµN (KN)⊆KN.

Remark6. This result is not surprising since, by definition,
the MPC controller is robustly feasible if and only ifKN is a
robustly positively invariant set for the closed-loop system6.
It is well-known that a given set is robustly positively invari-
ant if and only if the set of states reachable from the given
set is contained within itself [4, Sect. 3.2].

Remark7. It is important to note that in order for the MPC
controller to be robustly feasible it is necessary thatKN is
control invariant7; if the feasible set is not control invariant,
thenRµN (KN) * KN. However, it should be stressed that,
depending on the model dynamics and choice of parameters
in (1), KN might already be control invariant without requir-
ing any modification; it is recommended that the designer
check for control invariance before modifying the MPC con-
troller. A control invariant feasible set can be guaranteed in
a number of ways, e.g. by setting the control and prediction
horizons sufficiently large or by choosing a control invariant
T [5, 6].

In order to derive a test or algorithm which implements the
above condition some structure regarding the problem has
to be assumed. An explicit expression for the MPC control
law also needs to be derived. Fortunately this is possible for
some classes of systems.

Recent results have shown how to compute an explicit ex-
pression of the receding horizon control law, which is im-
plicitly defined by the MPC control problem, for LTI or PWA
with polyhedral constraints [1, 2]. In both these papers, with
the choice of an appropriate cost function, the resulting con-
trol law was shown to be PWA, i.e.

µN(x) =: Kix+ gi, for x∈ Xi , i = 1, . . . ,s, (2)

where each(Ki ,gi) is such thatKi ∈ Rm×n, gi ∈ Rm. All the
Xi are closed8, convex polyhedra such that their interiorsX◦i
are pairwise disjoint, i.e.i 6= j⇔X◦i ∩X◦j = /0, and the union
of all Xi is equal to the feasible set

KN =
⋃
i∈I

Xi , I := {1,2, . . . ,s} .

Theorem 8 (Robust feasibility test: LTI). If fp(x,u,w) =
fm(x,u) + Ew = Ax + Bu + Ew, where A∈ Rn×n,B ∈
Rn×m,E ∈ Rn×d, the MPC control law is given by(2) and
the feasible set

KN =:
{

x∈ Rn : Gx≤ v,G∈Rq×n,v∈ Rq}
has been computed, then the MPC controller is robustly fea-
sible if and only if

v≥max
i,x,w
{G((A+ BKi)x+ Bgi + Ew) : w∈W,x∈Xi , i ∈ I} .

6Ω is robustly positively invariant⇔ ∀x∈Ω : fp(x,µN(x),W) ⊆Ω.
7Ω is control invariant⇔∀x∈Ω, ∃u∈ U such thatfm(x,u) ∈Ω.
8Strictly speaking, eachXi is not guaranteed to be closed, but a closed

approximation of eachXi is used when computing the explicit control law.

It can be seen that ifW is a closed, convex polyhedron, then
the above test can be implemented by solvingq× s linear
programs, whereq is the number of linear inequalities de-
scribing the feasible set ands is the number of convex poly-
hedral partitions in the MPC control law.

If both the plant and model are PWA, then a similar test
can also be derived, since an MPC control law can be com-
puted as described in [1] such that the closed-loop system
is PWA. Let the plant dynamics be PWA, i.e.fp(x,u,w) =
Aix+Biu+Eiw+ci for (x,u) ∈ Ci and the MPC control law
also be PWA. The closed-loop system is now given by the
PWA dynamics

fp(x,µN(x),w) = Φix+ Eiw+ bi, for x∈ Xi, i = 1, . . . ,s,
(3)

where eachΦi ∈ Rn×n,Ei ∈ Rn×d,bi ∈ Rn and all theXi are
closed, convex polyhedra. The feasible setKN =

⋃
i∈I Xi can

be computed as described in [5, Chaps 4–5], is not necessar-
ily convex, but is given by the union of the convex polyhedra
Xi .

Because of the non-convexity of the feasible set, in order to
implement a robust feasibility test, it is easiest if the com-
plement of the feasible setKc

N is computed. OnceKN is
available, computing the complement is straightforward [5,
App. D]. The complement is given by the union oft open,
convex polyhedraQ j , i.e.

Kc
N =

⋃
j∈J

Q j , J := {1,2, . . . ,t} .

Theorem 9 (Robust feasibility test: PWA). If the closed-
loop system is given by(3) and the complement of the feasi-
ble setKc

N =
⋃

j∈J Q j has been computed, where each

Q j =:
{

x∈Rn : Hjx< zj ,Hj ∈ Rqj×n,zj ∈ Rqj
}
,

then the MPC controller is robustly feasible if and only if for
all (i, j) ∈ I×J,

0<min
ε,x,w

{
ε : Hj (Φi x+ Eiw+ bi)< zj +~1ε,w∈W,x∈ Xi

}
.

As before, if W is a closed, convex polyhedron then the
above test can be implemented by solving a finite number
of linear programs.

Once the receding horizon control law, the feasible set and
its complement have been computed, robust feasibility tests
for LTI and PWA systems can also be derived using tech-
niques based on those described in [3]. However, it is felt
that perhaps Theorems 8 and 9 are easier to understand and
implement, since the results presented here need not be im-
plemented by setting up and solvingmixed-integerlinear
programs, as is required for the (more general) problem for-
mulated in [3], but only require solving standard linear pro-
grams.

4 All Optimal and Sub-optimal Solutions

In practice, especially when the system is nonlinear, one can-
not guarantee that the solution is unique nor can one guaran-



tee that the solver will return the optimal solution to Prob-
lem 1 at each time step [9, Sect. 3]. It would therefore be
useful if a result could be derived which allowed one to guar-
antee that the MPC controller is feasible for all time and for
all disturbance sequences, even if a sub-optimal control input
is computed at each time step. This section is concerned with
deriving such a result which guarantees robust feasibility for
all optimal and sub-optimal solutions.

By ignoring the cost function in Problem 1 and treating the
MPC controller as an agent which, for a given statex∈KN,
randomly selects an admissible control input from the so-
called set offeasible inputs, the robust feasibility problem
can be addressed relatively easily on the abstract level.

Definition 10 (Feasible inputs). For a givenx ∈ KN, the
set of feasible inputs MN(x) is the set of first elements of
feasible input sequences, i.e.

MN(x) := {u0 ∈ Rm : u ∈CN(x)} .

Remark11. Note that the feasible inputs MN(x) differ from
the set ofadmissibleinputsU; in general MN(x) ⊆ U,∀x∈
KN. The set of feasible inputs is the subset of admissible
inputs which are compatible with the constraints defining the
MPC controller (1).

This definition allows one to treat the MPC controller as a
set-valuedmap MN, rather than as a single-valued map, i.e.

MN : KN→ 2U .

The MPC control action is now anyµN(x) ∈MN(x) and the
closed-loop system is described by thedifference inclusion
xk+1 ∈ fp(xk,MN(xk),W).

If the MPC controller is robustly feasible for all optimal
and sub-optimal control inputs, it will be said to be robustly
stronglyfeasible in order to distinguish this more conserva-
tive condition from the one in Section 3.

Definition 12 (Robust strong feasibility). The MPC con-
troller is robustly strongly feasible if and only if∀x ∈
KN,w∈W : fp(x,MN(x),w)⊆KN.

For the closed-loop system, the reach set from an arbitrary
set of statesΩ⊂ Rn is defined as

RMN (Ω) :=
{

fp(x,MN(x),w) ⊆Rn : x∈Ω,w∈W
}
.

It follows thatRMN (Ω) =
⋃

x∈Ω fp(x,MN(x),W) and hence
one can derive a similar feasibility result as in Section 3.

Proposition 13 (All optimal and sub-optimal solutions).
The MPC controllerMN is robustly strongly feasible if and
only if RMN (KN)⊆KN.

Again, some assumptions regarding the system structure
need to be made before one can extract a practical feasibility
test.

Theorem 14 (Robust strong feasibility test: LTI). If
fp(x,u,w) = fm(x,u) + Ew = Ax+ Bu+ Ew and the feasi-
ble set

KN =:
{

x∈Rn : Gx≤ v,G∈ Rq×n,v∈ Rq}
has been computed, then the MPC controller is robustly
strongly feasible if and only if

v≥max
x,u,w
{G(Ax+ Bu0+ Ew) : w∈W,u ∈ CN(x)} .

If W and (1) are given by closed, convex polyhedra, then the
above test can be implemented by solvingq linear programs,
whereq is the number of constraints describingKN. A sim-
ilar test can be derived for piecewise affine systems, but it
requires solving a number of mixed-integer linear programs.

For more complicated systems like piecewise affine systems,
it might be easier to exploit the structure of the system and
adopt a geometric approach. If the disturbance acts addi-
tively on the state, then the following result holds:

Theorem 15 (Additive state disturbances).If fp(x,u,w) =
fm(x,u) + fw(w), then the MPC controller is robustly
strongly feasible if and only if

Rm(KN)⊕ fw(W)⊆KN ,

where
Rm(KN) = fm(KN,U)∩KN−1 .

Proof. See [5, Sect. 6.2].

It may be possible to exploit the structure when com-
puting fm(KN,U), e.g. if fm(x,u) = fx(x) + fu(u), then
fm(KN,U) = fx(KN)⊕ fu(U).

Corollary 16 (LTI and PWA systems).

1. If fp(x,u,w) = fm(x,u) + Ew = Ax+ Bu+ Ew, then
the MPC controller is robustly strongly feasible if and
only if

((AKN⊕BU)∩KN−1)⊕EW ⊆KN .

2. If fp(x,u,w) = fm(x,u)+Ew= Aix+Biu+Ew+ci for
x ∈ Xi , then the MPC controller is robustly strongly
feasible if and only if for all i∈ I,

((Ai (Xi ∩KN)⊕BiU⊕ci)∩KN−1)⊕EW ⊆KN .

3. If fp(x,u,w) = fm(x,u) + Eiw = Aix+ Biu+ Eiw+ ci

for x∈Xi , then the MPC controller is robustly strongly
feasible if and only if for all(i, j) ∈ I× I,

((Ai(Xi ∩KN)⊕BiU⊕ci)∩X j∩KN−1)⊕EjW⊆KN.

Remark17. Note that in the above corollary, it is not re-
quired thath is linear nor is it required that the constraints are
compact, convex polyhedra. However, iffp andh are linear
and the constraints are given by compact, convex polyhedra,
then Theorem 14 results in a simpler test.
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Figure 1: Plots of sets used in Example 18.

5 Examples

This section demonstrates the use of the robust feasibility
and robust strong feasibility tests on simple LTI systems.
The disturbance set is given byW :=

{
w∈Rd : ‖w‖∞ ≤ γ

}
and the aim is to determineγrf andγrsf, which are the largest
values ofγ for which the conditions in Theorems 8 and 14
hold, respectively. These optimised values ofγ can be
thought of as the robust feasibility margin and robust strong
feasibility margin of the MPC controller. As is standard in
robust control these values ofγ can be determined iteratively
by using the bisection algorithm. The explicit expressions
for the MPC control laws were computed using the algo-
rithm of [2] and the feasible sets were computed as discussed
in [5].

In each example,fp(x,u,w) = fm(x,u) + w = Ax+ Bu+ w,
F(x) := 0, `(x,u) := x′x+ u′u, the input constraintsU are
given by ‖u‖∞ ≤ 1 and the state constraintsX are given
by ‖x‖∞ ≤ 5. No terminal control law is used. The
feasible setKN as well asKN−1 and fm(KN,U) have
been plotted for some of the examples. In all the figures
the shaded region represents the reach set of the closed-
loop systemfp(x,µN(x),w) with W = {0} and is given by⋃

x∈KN
fp(x,µN(x),0) =

⋃
x∈KN

fm(x,µN(x)).

Example 18. An open-loop stable LTI system is given by

xk+1 =
[
−0.2739 −0.6415
0.6415 −0.2739

]
xk +

[
1.9574
0.5045

]
uk + wk .

The horizons areP = N = 2 and the terminal constraint is
given byT =

{
x∈ R2 : ‖x‖∞ ≤ 1

}
. After applying the re-

sults of Theorems 8 and 14, it was found that

γrf = 0.9272, γrsf = 0.6317.

These results can be interpreted graphically by referring to
Figure 1, Proposition 5 and Theorem 15. It can be seen that
both

⋃
x∈K2

fp(x,µN(x),0) and fm(K2,U) ∩K1 are proper
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Figure 2: Plots of sets used in Example 19.

subsets of the feasible set and that neither of the sets intersect
the boundary ofK2, which explains the fact that the MPC
controller is both robustly feasible and robustly strongly fea-
sible against non-zero disturbances. Also, the fact that the
boundary of

⋃
x∈K2

fp(x,µN(x),0) is further away from the
boundary ofK2 than the boundary offm(K2,U)∩K1 is, ex-
plains whyγrf > γrsf.

Example 19. The same plant as in Example 18 is used, but
with T = X. The MPC controller was found to be robustly
feasible and robustly strongly feasible with

γrf = 0.9272, γrsf = 0,

thereby illustrating that the robust strong feasibility condi-
tion could be considerably more conservative than the robust
feasibility condition.

The reason for this large difference can be seen in Figure 2,
where the feasible setK2 = K1 = X. The setfm(K2,U)∩
K1 intersects the boundary ofK2, implying that the MPC
controller is robustly strongly feasible if and only ifW =
{0}; if the predicted statefm(x,u) is such that it lies on the
boundary ofK2, then a non-zero disturbance exists which
could drive the plant state outside the feasible set.

Example 20. The LTI system is given by

xk+1 =
[

1 0
0.1 1

]
xk +

[
1 0.5
0 0.5

]
uk + wk .

The horizons areP = N = 2 and the terminal constraint is
given byT =

{
x∈R2 : ‖x‖∞ ≤ 1

}
.

On investigation of the relevant sets9 it was found that⋃
x∈K2

fp(x,µN(x),0) = fm(K2,U)∩K1 = K1, K1⊂K2 and
thatK1 does not intersect the boundary ofK2. As a result,
the MPC controller was found to be both robustly feasible
and robustly strongly feasible for the same size of non-zero

9These sets are not shown due to space restrictions.
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Figure 3: Plot of sets used in Example 21.

disturbance, with

γrf = γrsf = 0.333.

Example 21. The LTI system is given by

xk+1 =
[
1 1
0 1

]
xk +

[
0.5
1

]
uk + wk .

The horizons areP = N = 10 and the terminal constraint is
given byT =

{
x∈ R2 : ‖x‖∞ ≤ 0.5

}
. After applying the re-

sults of Theorems 8 and 14, it was found that

γrf = γrsf = 0.

This result can again be interpreted graphically by refer-
ring to Figure 3, whereK10 = K9 ⊂ X. In this case,⋃

x∈K10
fp(x,µN(x),0) intersects the boundary of the feasi-

ble setK10. The system is therefore robustly feasible (and
robustly strongly feasible) if and only ifW = {0}. This anal-
ysis is therefore extremely useful in this case by showing that
the MPC controller definitely needs to be modified in order
to guarantee any kind of robust feasibility against non-zero
disturbances.

6 Conclusions

This paper showed how set invariance theory could be used
in understanding the robust feasibility of MPC controllers.
These ideas were also applied to a more conservative feasi-
bility condition, namely robust strong feasibility. The latter
condition assures robust feasibility for all optimal and sub-
optimal solutions to the MPC problem.

The test for robust feasibility requires the off-line computa-
tion of the explicit solution to the MPC problem, whereas
the test for strong robust feasibility requires only the compu-
tation of the feasible set of the MPC controller. As always,
there is a trade-off between computational complexity and
conservativeness of the test.

Several examples showed that there exist systems for which
the MPC controller has robust strong feasibility as well as
systems for which the MPC controller is neither robustly fea-
sible nor robustly strongly feasible. It still remains to be seen
exactly how many combinations of plant and MPC controller
are robustly feasible or robustly strongly feasible without ex-
plicitly having to take the disturbance into account during the
computation of the control input.

The discussion in this paper concentrated on analysing the
robust feasibility of MPC controllers which were designed
without taking the uncertainty into account. Robust stability
and performance have not been addressed in this paper. Fur-
ther research effort could involve developing methods, based
on the ideas presented in this paper, for synthesising robustly
stable MPC controllers with a robust strong feasibility mar-
gin which is close or equal to the robust feasibility margin.
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