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Abstract

Set invariance plays a fundamental role in the design of control systems for constrained systems since

the constraints can be satisfied for all time if and only if the initial state is contained inside an invariant

set. This thesis is concerned with robust set invariance theory and its application to guaranteeing

feasibility in model predictive control.

In the first part of this thesis, some of the main ideas in set invariance theory are brought together

and placed in a general, nonlinear setting. The key ingredients in computing robust controllable and

invariant sets are identified and discussed. Following this, linear systems with parametric uncertainty

and state disturbances are considered and algorithms for computing the respective robust controllable

and invariant sets are described. In addition to discussing linear systems, an algorithm for computing

the robust controllable sets for piecewise affine systems with state disturbances is described.

In the second part, the ideas from set invariance are applied to the problem of guaranteeing feasibility

and robust constraint satisfaction in Model Predictive Control (MPC). A new sufficient condition is

derived for guaranteeing feasibility of a given MPC scheme. The effect of the choice of horizons and

constraints on the feasible set of the MPC controller is also investigated. Following this, a necessary

and sufficient condition is derived for determining whether a given MPC controller is robustly feasible.

The use of a robustness constraint for designing robust MPC controllers is discussed and it is shown

how this proposed scheme can be used to guarantee robust constraint satisfaction for linear systems

with parametric uncertainty and state disturbances. A new necessary and sufficient condition as well

as some new sufficient conditions are derived for guaranteeing that the proposed MPC scheme is

robustly feasible.

The third part of this thesis is concerned with recovering from constraint violations. An algorithm is

presented for designing soft-constrained MPC controllers which guarantee constraint satisfaction, if

possible. Finally, a mixed-integer programming approach is described for finding a solution which

minimises the number of violations in a set of prioritised constraints.

Keywords: robust control, constrained systems, invariant sets, controllable sets, piecewise affine

systems, predictive control, feasibility, exact penalty functions, multi-objective optimisation
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Chapter 1

Introduction

1.1 Motivation

Engineering, biological and economic systems can often be described in terms of mathematical mod-

els. These models help one to understand the behaviour of the system and how one could control

the resources or inputs in order to affect the outputs of the system. However, real systems are highly

complex and it is not possible to model every detail exactly. There is always some mismatch between

the ideal mathematical description and the physical world.

The main aim of control theory is to exploit the phenomenon of feedback to allow for the uncertainty

present in the mathematical model. The outputs of the actual system are compared with the predicted

outputs of the mathematical system and the difference is fed back to a controller which changes the

inputs to the system in an appropriate fashion. An aeroplane auto-pilot is an example of a controller

which uses feedback to account for uncertainty. The flaps and elevators are used to compensate for

any atmospheric disturbances in order to maintain a level and comfortable flight.

Most physical systems are complex and the requirements on the performance of the controller are

usually quite demanding. It is the role of the engineer to design, within budget and available time,

a controller which is guaranteed to meet the client’s specifications during testing and commerciali-

sation. This motivates the need for an effective, systematic method whereby a designer can use an

approximate model of the system to design a controller which is guaranteed to work on the actual

physical system.

All physical systems have inputs and outputs which are limited in size due to the presence of safety

or physical constraints. Furthermore, an application might also require a certain level of performance,

which can be translated into additional constraints on the controlled system.

Omitting these constraints in the controller design phase may lead to a control action that could result

in the violation of these constraints. Depending on the criticality of the constraint this violation might

result in system failure, which in turn could possibly lead to loss of human life.

1



2 CHAPTER 1. INTRODUCTION

Similarly, if the effect of the uncertainty in the model is not taken into account, then the actual and

theoretical behaviour of the system will differ. It is possible that a controller which does not take

account of uncertainty would drive the system into an unsafe region. A small disturbance or fault

could then cause the system to break.

Given this need for designing safe controllers, this thesis concentrates on incorporating the effect of

uncertainty on control systems and how to design controllers which will guarantee that the constraints

will not be violated.

1.1.1 A Mathematical Framework and Computational Tools for Constrained Systems

The first part of this thesis is concerned with the development of a mathematical framework which

incorporates both constraints and uncertainty in controller design. This framework brings together

a number of ideas from the last thirty years and attempts to place them in a more general, modern

context.

The main concept behind the framework is that before a controller can be designed, one needs to

compute the largest ‘safe’ region in which the system should be kept. This region could be smaller

than the pre-specified region defined by the safety and performance constraints. The reason for this is

that the specified constraints do not necessarily take into account the actual physics of the process.

For example, the national speed limit for cars does not always take into account the conditions of the

road and if one encounters a very sharp bend in the road then this limit might not be safe. Factors

such as the age and technology used in the car, as well as the driver’s experience place a practical

limit on the speed and angle with which the car can approach the bend. A more experienced driver

can be thought of as a well-designed controller that incorporates both a knowledge of the physics of

the system and an understanding of the effects of disturbances on the system.

A theoretical framework is not very useful unless it can be implemented for practical systems. Various

algorithms have been proposed for computing the safe regions for uncertain linear systems subject to

disturbances. However, even though linear systems are quite simple, many of the proposed algorithms

require large amounts of computational power. This thesis is therefore also concerned with the presen-

tation of some slightly more efficient algorithms which might allow the computation of safe regions

for larger and more complex systems, such as hybrid systems.

Many real-life systems are hybrid in nature. The term ‘hybrid’ as used here is meant to describe

systems whose inputs and states can take on discrete and continuous values. An example of a system

which only takes on discrete values is a light switch, the state being either on or off. A bathtub is an

example of a system with a continuous state, where the water level can take on any value between

empty and full.

Strictly speaking, though, a bath could be thought of as a hybrid system if one includes the state of

the plug in the system description. If the plug has been removed then the water will drain, with the
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water level dropping continuously until empty. Replacing the plug will stop the bath from draining.

The bath can then be topped up at a desired rate by setting the position of the tap anywhere between

shut and fully open. Depending on the flow rate and the state of the plug, the bath will either drain,

remain at the same level or fill up.

The presence of discrete inputs and states complicates the computation of the safe regions of a con-

trolled system. However, it is possible to extend the algorithms developed for continuous systems to a

large class of hybrid systems. In this thesis it is shown how to compute the corresponding safe regions

for the class of hybrid systems which can be modelled as piecewise affine systems.

1.1.2 Feasibility in Model Predictive Control

Model Predictive Control (MPC) is one of the most popular advanced control techniques in industry,

mainly due to the ease with which constraints can be included in the controller formulation. Though

highly successful in practice, a large number of properties of MPC are not well understood. One of

the most fundamental problems in MPC is that of guaranteeing constraint satisfaction in the presence

of uncertainty.

Furthermore, current industrial implementations of MPC do not explicitly take into account the effect

of uncertainty or disturbances on the future evolution of the system. As a result, constraint satisfaction

cannot be guaranteed.

The mathematical framework and computational tools developed during the first part of this thesis

allow one to develop new theoretical conditions and tools for guaranteeing constraint satisfaction

in MPC. The framework allows one to develop design methods for implementing MPC controllers

which are robust to a pre-specified level of uncertainty. Constraint satisfaction can be guaranteed by

computing a safe region and including it in the design of the MPC controller. The controller then only

selects control inputs for which the predicted response will remain within this safe region.

1.1.3 Recovering From Constraint Violations

If the system constraints cannot be satisfied, then a control action has to be computed which ensures

that the least damaging course of action is taken. This is further complicated by the fact that it is often

possible to prioritise the constraints and objectives. For example, it is more important to satisfy a

safety constraint rather than a performance constraint. Consequently, a control action which satisfies

the safety constraint is preferred. The last part of this thesis focuses on methods for computing a

control action which satisfies as many of the constraints as possible, while taking the priorities into

account.
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1.2 Organisation and Highlights of this Dissertation

This dissertation is organised as follows:

Chapter 2: Robust Set Invariance Theory

Set invariance is a fundamental concept in the design of controllers for constrained systems. The

reason for this is because constraint satisfaction can be guaranteed for all time and for all disturbances

if and only if the initial state is contained inside a robust control invariant set. This chapter aims to

bring together some of the important ideas from set invariance theory that have been developed during

the course of modern control theory. The results in subsequent chapters are based on this set-theoretic

framework. The unifying concept in the chapter is that many of the described sets are special cases of

the so-called “robust controllable sets” and can be computed using Algorithm 2.1.

Chapter 3: Uncertain Linear Time-Invariant Systems

If the constraints on the system are given by convex polyhedra and the system is linear and time-

invariant, then it is possible to compute all of the sets defined in Chapter 2. One can compute the robust

controllable sets not only if there are state disturbances, but also if there is parametric uncertainty

present in the model. The idea of contractive sets are introduced in Section 3.2 and Theorem 3.1 gives

a guarantee that, for uncertain LTI systems, a robust control invariant set can be computed in a finite

number of iterations of Algorithm 2.1.

Standard algorithms for computing the robust one-step set such as projection and Minkowski summa-

tion are briefly described in Section 3.3. Section 3.4 presents a result that allows one to compute the

linear map of a polyhedron in polynomial time and derive an upper bound on the number of faces of

the resultant polyhedron.

Chapter 4: Robust Controllable Sets for Hybrid and Piecewise Affine Systems

One of the classes of systems that has recently been receiving a lot of interest in the control literature

is hybrid systems. The Mixed Logic Dynamical (MLD) modelling framework of [BM99a] is briefly

introduced in Section 4.2. The motivation for the introduction of MLD systems is that hybrid systems

which can be modelled using the MLD framework have been shown to be formally equivalent to

piecewise affine (PWA) systems [BFM00]. The main aim of this chapter is to describe how one would

proceed in computing the robust controllable sets for these PWA systems. The main building block for

the proposed algorithm is the development in Section 4.5.1 of a method for computing the Pontryagin

difference between a non-convex polygon and a convex polyhedron. Section 4.5.2 shows how the

results from Chapters 2 and 3 can be used to complete the computation of the robust controllable set

once the Pontryagin difference has been found.



1.2. ORGANISATION AND HIGHLIGHTS OF THIS DISSERTATION 5

Chapter 5: Nominal Feasibility in Model Predictive Control

Due to the finite horizon nature of Model Predictive Control (MPC), feasibility for all time cannot be

guaranteed in general, even if there are no disturbances present. This chapter is concerned only with

the nominal case where there are no disturbances and no model mismatch.

The concept of “strong feasibility” is introduced in Section 5.4. An MPC problem is said to be strongly

feasible if and only if it is feasible for all time, even if the computed solution is sub-optimal. One

way of guaranteeing that an MPC problem is strongly feasible is to add a control invariant terminal

constraint to the original problem. Theorem 5.2 gives a new sufficient condition on the feasible set

of the MPC problem such that strong feasibility is guaranteed, even if the terminal constraint is not

control invariant. The terminal constraint set condition can then be shown to be a special case of this

new condition.

Sections 5.7 and 5.8 bring together many of the results on the behaviour of the feasible set and the

feasibility of the MPC problem for different choices of horizons and terminal constraint set. In par-

ticular, Theorem 5.3 implies that if the terminal constraint is not used and the control and prediction

horizons are chosen to be equal to one another, then strong feasibility is possible if and only if there

exists a finite control horizon such that the feasible set is control invariant.

Chapter 6: Robust Feasibility in Model Predictive Control

This chapter introduces the notion of “robust strong feasibility” in MPC in order to guarantee a feasible

MPC problem for all time, despite the presence of disturbances. A new condition which is both

necessary and sufficient for an MPC scheme to be robust strongly feasible is given by Theorem 6.1.

If the MPC controller satisfies this condition, then no modifications need to be made to the original

scheme of Chapter 5 in order to guarantee strong robust feasibility.

However, sometimes the nominal MPC scheme is not robust strongly feasible for any size of distur-

bance and it is therefore necessary to modify the original scheme. Section 6.4 suggests the addition of

a “robustness constraint” to the nominal MPC problem, as proposed in [CZ99], in order to robustify

the original MPC controller against disturbances. Theorem 6.3 gives a new necessary and sufficient

condition and Theorem 6.4 contains a number of new sufficient conditions for the proposed scheme

to be robust strongly feasible. Section 6.5 shows that the robustness constraint approach can be used

to design robust strongly feasible MPC controllers for LTI systems with state disturbances and model

uncertainty.

Often the most economic setpoint for a process is on or close to the constraints. It is not always

desirable to regulate the system close to the constraints, since a disturbance could result in a violation

of a safety constraint. As a result, the setpoint is often chosen to be a safe distance away from the

constraints. Section 6.8 discusses how to compute a setpoint which is as close as possible to the

desired reference, while being compatible with the constraints and bearing in mind that there are
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unknown, but bounded disturbances on the state and output.

Chapter 7: Soft Constraints and Exact Penalty Functions

Often a disturbance comes along which makes the violation of the constraints unavoidable, resulting

in an infeasible MPC problem. The ability to recover from infeasibility is often implemented via

the use of soft constraints. In addition, it is desirable that the solution to the soft-constrained MPC

problem be equal to the solution of the original, hard-constrained MPC controller if the latter would

have been feasible.

The theory of exact penalty functions allows one to derive a condition on the weight used to penalise

the constraint violations in order to guarantee the equality of the solutions to the two problems. The

lower bound for this weight is related to the norm of the Lagrange multipliers of the solution to the

original, hard-constrained problem. The problem is complicated in MPC by the fact that the Lagrange

multipliers are dependent on the current state and the Lagrange multipliers need to be computed for

all states in the feasible set of the hard-constrained problem. Section 7.5 gives an algorithm based on

the explicit solution of the MPC control law for computing a lower bound on the penalty weight.

Chapter 8: Optimisation Subject to Prioritised Constraints

Often constraints can be prioritised and when constraint violation is inevitable, the control law has

to take this into account. A control action which results in the violation of the lower-prioritised

constraints is preferred. The recovery from constraint violation can therefore be interpreted as a

prioritised, multi-objective optimisation problem. The main result of this chapter is Theorem 8.1

which gives a condition on the cost function of a mixed-integer optimisation problem such that the

solution is guaranteed to be a prioritised-optimal solution to a multi-objective optimisation problem.

This result is then applied in Theorem 8.2 which shows how a single mixed-integer program can be set

up such that the number of constraint violations are minimised in a prioritised fashion. The same idea

is applied in Theorem 8.3 for the computation of a minimum-time, output-prioritised MPC control

law for hybrid systems which can be modelled in MLD form.

Chapter 9: Concluding Remarks

This chapter summarises the contributions made by this thesis and outlines directions for future re-

search.
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Appendices

Appendix A briefly describes how the ideas from Chapter 2 need to be adapted to compute robust

controllable sets for time-varying systems.

Appendix B describes a simple algorithm for the removal of redundant inequalities from the descrip-

tion of a convex polyhedron.

Appendix C outlines the idea behind the process of eliminating variables from a set of inequalities

using Fourier elimination. Fourier elimination can be used to compute the projection of a convex

polyhedron onto a subspace.

Appendix D describes the principles behind an algorithm for computing the complement of a set given

by the union of convex polyhedra.

Appendix E gives a list of the functions in a Matlab toolbox which has been developed for the com-

putation of the various sets described in this thesis.
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Set Invariance Theory for Discrete-time
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Chapter 2

Robust Set Invariance Theory

The concept of invariant and robust controllable sets and their role in the control of constrained sys-

tems are introduced. Some set-theoretic results are given which will be useful in developing algo-

rithms for computing such sets.

2.1 Introduction

A fundamental control problem is that of determining the subset of the state space which can be steered

via an admissible control sequence to any given target set, while guaranteeing that the state constraints

will be satisfied for all allowable disturbance sequences. This is a more general interpretation of the

classical reachability and controllability problems of linear, unconstrained systems.

The problem of steering a system to a target set in the presence of input constraints and a bounded

disturbance was considered relatively early in modern control literature. In [DM69], very general

results are given for determining whether it is possible to steer a system to a given target set, despite

the presence of disturbances. The target set was said to be “strongly reachable” from a given state if

such a control existed.

The problem of steering a time-varying nonlinear system of the form

xk+1 = fk(xk,uk)+ gk(wk)

with time-varying constraints on the input, state and disturbance to a target set in a finite number of

steps is discussed in [BR71]. The problems considered are described as the “reachability of a target

set” and the “reachability of a target tube”. The results are once again very general and some com-

pactness results are given for linear time-varying systems. The problem of imperfect state observation

is also discussed. Similar results as in [BR71] are reported in [GS71], where the results are applied to

the synthesis of controllers for linear time-varying systems with time-varying constraints.

One of the most influential recent papers is [Bla94]. The idea of contractive sets is introduced and the

11
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case of LTI systems with polytopic uncertainty and bounded disturbances on the state are considered.

A thorough discussion of LTI systems in closed-loop with a linear feedback control law and bounded

disturbances on the state is given in [KG98], where the work of [GT91] is extended for deriving

practical results on the computation of the “maximal output admissible set”.

A very comprehensive survey of papers on set invariance is given in [Bla99]. This chapter does not

attempt to duplicate the discussion in the survey, but aims to consolidate some of the generality of the

work of the early researchers with more recent ideas, terminology and notation.

2.1.1 Nonlinear Discrete-Time Systems Subject to State and Input Constraints

The discussion in this chapter assumes the following uncertain, discrete-time dynamic system:

xk+1 = f (xk,uk, wk) (2.1)

wherek ∈ Z, xk is the system state,uk is the control input and

wk ∈W ⊂ Rd

is an unknown disturbance. If the system does not have a control input or there is no disturbance, then

with a slight abuse of notationxk+1 = f (xk, wk) or xk+1 = f (xk,uk) will be used to denote this.

The system is subject to pointwise-in-time constraints on the control inputs and/or the states:

uk ∈ U ⊂ Rm (2.2a)

xk ∈ X ⊆ Rn (2.2b)

The setU is compact, whileX andW are closed. It is assumed that the system and constraints are time-

invariant1. The systemf (xk,uk, wk) is uniquely defined overX× U×W. Exact state measurement

is available.

An admissible control input, sequenceor law is one which satisfies the input constraintsU. The ele-

ments of anallowable disturbance sequenceare contained inW. From this point on, it is understood

that the control law and states are subject to the constraints in (2.2) and that the disturbance sequence

is allowable.

2.1.2 Distinguishing Between the Nominal and Robust Sets

If there is a disturbance present and the calculation of the resulting set took this fact into account, a

tilde and the word “robust” will be used to indicate this, e.g.C̃∞(X) is the maximal robust control

invariant set. If there is no disturbance or the disturbance is ignored in the calculation of the set,
1Appendix A gives a brief discussion on how the algorithms can be modified in order to account for a time-varying

system with time-varying constraints.
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i.e. xk+1 = f (xk,uk) was used as the system model, then the use of the tilde and “robust” will be

dropped, e.g.C∞(X) is the maximal control invariant set. The latter case with no disturbance will also

be referred to as thenominalcase.

This chapter is largely an extension of the definitions for invariant sets in [KM00a, Sect. 2] to the

more general case of including a disturbance in the system description. The notation and results in

this chapter are consistent with [KM00a].

2.2 Input and Output Admissible Sets

It is of interest to determine which subset of a given set is compatible with the input and output

constraints. This section defines the concept of the input and output admissible sets.

If the system is in closed-loop with the control law2

uk = h(xk) ,

then a superscript will be used to emphasise this fact. The input admissible set is the subset of a given

� in which the control law satisfies the input constraints.

Definition 2.1 (Input admissible set). Given a control lawuk = h(xk), the input admissiblesubset

of � ⊆ Rn is given by

�h , {xk ∈ � | h(xk) ∈ U} . (2.3)

The closed-loop system is then given by

xk+1 = f (xk,h(xk), wk)

and the constraints on the state can be replaced by

xk ∈ Xh , {xk ∈ X | h(xk) ∈ U} .

Statements about systemswithout control inputs will also apply to closed-loop systems, bearing in

mind that the state constraints should be replaced by the input admissible subset, where necessary.

If the disturbance acts directly on the input of the system it is usually possible to redefine the system

such that the disturbance acts directly on the state of the system. It is therefore assumed that the

disturbance does not act on the input.

2Note that if the constraints on the inputU are given as a hyper-rectangle and the control law is given by an appropriate

saturation functionuk = sat(·), as is often the case, then�h = � (provided the control law is defined over�). If the system

is LTI and uk = sat(K xk), whereK ∈ Rm×n, then the resulting closed-loop system can be treated as a piecewise affine

system, as in Chapter 4.
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In a similar fashion as with (2.3), if the output constraints of the system can be given by

yk = φ(xk, wk) ∈ Y ⊆ Rp , (2.4)

then one can define the output admissible subset3 of �.

Definition 2.2 (Output admissible set). If the output constraints on the system are given by (2.4),

then theoutput admissiblesubset of� ⊆ Rn is given by

�φ , {xk ∈ � | φ(xk, wk) ∈ Y,∀wk ∈W} . (2.5)

The subset of� which is both input- and output admissible is therefore given by

�h,φ , �h ∩�φ .

Note that the constraints (2.2) can be modified by replacingX with Xφ or Xh,φ in all calculations.

The case of a system with constraints on the output therefore reduces to a problem with modified

constraints on the state. Output constraints will not be considered as a separate case4.

2.3 Robust One-step Set and Reach Set

There are two sets which are used throughout the controllability and reachability analysis of systems.

The first set that will be introduced is the robust one-step set.

Definition 2.3 (The robust one-step setQ̃(�)). [Bla94] The setQ̃(�) is the set of states inRn for

which an admissible control input exists which will guarantee that the system will be driven to� in

one step, for all allowable disturbances, i.e.

Q̃(�) , {xk ∈ Rn | ∃uk ∈ U : f (xk,uk, wk) ∈ �,∀wk ∈W} . (2.6)

For closed-loop systems,̃Qh(�) is the set of states inRn from which the system is guaranteed to

evolve to� at the next time instant, given any allowable disturbance, i.e.

Q̃h(�) , {xk ∈ Rn | f (xk,h(xk), wk) ∈ �,∀wk ∈W} .

An alternative, equivalent definition of the robust one-step set is

Q̃(�) , {xk ∈ Rn | ∃uk ∈ U : f (xk,uk,W) ⊆ �} .
3Note that this definition of the output admissible set is different from the one given in [GT91, KG95, KG98]. The

definition of the latter includes the additional condition that the output admissible subset be a robust positively invariant set.
4If the output is of the formyk = φx(xk) + φw(wk), then it is possible to compute the output admissible subset of

X as the Pontryagin difference between{xk ∈ X | φx(xk) ∈ Y} andφw(W). The Pontryagin difference is discussed in

Section 2.10.1.
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Proposition 2.1. For all �1,�2,

�1 ⊆ �2⇒ Q̃(�1) ⊆ Q̃(�2) .

Proof. This proof is similar to the proof in [VSLS99, Prop. 2], where the operator Pre(�) = Q̃(�)∩�
is defined. The results follows from the fact that∀xk ∈ Q̃(�1), ∃uk ∈ U such thatxk+1 ∈ �1,∀wk ∈
W. Since�1 ⊆ �2 it follows that the sameuk results inxk+1 ∈ �2,∀wk ∈ W, thereforexk ∈
Q̃(�2).

The next set to be introduced is the reach set.

Definition 2.4 (The reach setR̃(�)). The setR̃(�) is the set of states inRn to which the system will

evolve at the next time step given anyxk ∈ �, admissible control input and allowable disturbance, i.e.

R̃(�) , {xk+1 ∈ Rn | ∃xk ∈ �,uk ∈ U, wk ∈W : xk+1 = f (xk,uk, wk)} . (2.7a)

For closed-loop systems̃Rh(�) is the set of states inRn to which the system will evolve at the next

time step given anyxk ∈ � and allowable disturbance, i.e.

R̃h(�) , {xk+1 ∈ Rn | ∃xk ∈ �,wk ∈W : xk+1 = f (xk,h(xk), wk)} . (2.7b)

An alternative, equivalent definition of the reach set is

R̃(�) , {xk+1 ∈ Rn | xk+1 ∈ f (�,U,W)} .

Remark 2.1.If no disturbance is present in the model, then

Q(�) , {xk ∈ Rn | ∃uk ∈ U : f (xk,uk) ∈ �}

and

R(�) , {xk+1 ∈ Rn | ∃xk ∈ �,uk ∈ U : xk+1 = f (xk,uk)} .

The reach set as defined in (2.7a) is not always practically useful. The reach set with no disturbances

R(�) or the reach set of a closed-loop systemR̃h(�) are used more often.

Proposition 2.2. If � is given by the union

� ,
⋃

i

�i , (2.8)

then

Q(�) =
⋃

i

Q(�i ) . (2.9)
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Proof. If xk ∈ Q(�), then there exists auk ∈ U such thatxk+1 ∈ �. But xk+1 ∈ �i for somei ,

therefore,xk ∈ Q(�i ) for somei , hencexk ∈⋃i Q(�i ). This proves thatQ(�) ⊆⋃i Q(�i ).

If xk ∈ ⋃i Q(�i ), then there exists auk ∈ U such thatxk+1 ∈ �i for somei . But�i ⊆ �, therefore

xk+1 ∈ � and hencexk ∈ Q(�). This proves thatQ(�) ⊇⋃i Q(�i ).

Remark 2.2.It is important to recognise that the one-step set and the reach set operate in different

directions. The one-step set is the set of statesfromwhich the system can be driven to a given set. The

reach set is the set of statesto which the system can be driven from a given set. No explicit relation

exists between the two sets.

2.4 Robust Positively Invariant Sets

Given a set� and an initial statex0 ∈ �, it is of interest to determine whether the evolution of the

system will remain inside the set for all time, despite the presence of disturbances.

Definition 2.5 (Robust positively invariant set). [Bla99] The set� ⊂ Rn is robust positively in-

variant for the systemxk+1 = f (xk, wk) if and only if ∀x0 ∈ � and∀wk ∈ W, the system evolution

satisfiesxk ∈ �,∀k ∈ N.

In other words,� is robust positively invariant if and only if

xk ∈ �⇒ xk+1 ∈ �,∀wk ∈W .

The following result follows immediately from the definition.

Proposition 2.3. The union of two robust positively invariant sets is robust positively invariant.

Remark 2.3.The same statement cannot be made about the intersection of two robust positively in-

variant sets, even in the absence of disturbances.

In general, a given set� is not robust positively invariant. However, often one would like to determine

the largest robust positively invariant set contained in�.

Definition 2.6 (Maximal robust positively invariant set). The setÕ∞(�) is themaximal robust po-

sitively invariant setcontained in� for the systemxk+1 = f (xk, wk) if and only if Õ∞(�) is robust

positively invariant and contains all the robust positively invariant sets contained in�.

Remark 2.4.It can be shown that the maximal robust positively invariant set is unique.

This definition implies that a set8 is robust positively invariant only if

8 ⊆ Õ∞(�) ⊆ � .
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Remark 2.5.Based on the discussion in Section 2.2, the maximal robust positively invariant set5 for

the closed-loopsystemxk+1 = f (xk,h(xk), wk) will be denoted byÕh∞(�) and is defined as the

maximal robust positively invariant set contained in the input admissible set�h, i.e. Õh∞(�) ,
Õ∞(�h) for the systemxk+1 = f (xk,h(xk), wk).

2.5 Robust Control Invariant Sets

In a similar fashion as with robust positively invariant sets, one would like to determine whether given

a set� and an initial statex0 ∈ �, it is possible to choose a control law such that the state evolution

remains in� for all time, despite the presence of disturbances.

Definition 2.7 (Robust control invariant set). [Bla99] The set� ⊂ Rn is arobust control invariant

set for the systemxk+1 = f (xk,uk, wk) if and only if there exists a feedback control lawuk = h(xk)

such that� is a robust positively invariant set for the closed-loop systemxk+1 = f (xk,h(xk), wk) and

uk ∈ U,∀xk ∈ �.

In other words, a set� is robust control invariant if and only if

xk ∈ �⇒ ∃uk ∈ U : xk+1 ∈ �,∀wk ∈W .

The following result is a direct consequence of the above definition.

Proposition 2.4. The union of two robust control invariant sets is robust control invariant.

Remark 2.6.The same statement cannot be made about the intersection of two robust control invariant

sets, even in the absence of disturbances.

In general, a given set� is not robust control invariant. However, often one would like to determine

the largest robust control invariant set6 contained in�.

Definition 2.8 (Maximal robust control invariant set). [Bla94] The setC̃∞(�) is themaximal ro-

bust control invariant setcontained in� for the systemxk+1 = f (xk,uk, wk) if and only if C̃∞(�) is

robust control invariant and contains all the robust control invariant sets contained in�.

Remark 2.7.As with the maximal robust positively invariant set, it can be shown that the maximal

robust control invariant set is unique.

It is obvious that8 is robust control invariant only if

8 ⊆ C̃∞(�) ⊆ � .
5This definition for the maximal robust positively invariant set is analogous to the definition of the “maximal d-invariant

set” for LTI systems with no control input as given in [KG95, KG98]. The maximal d-invariant set is the extension of the

“maximal output admissible set” of [GT91] to the case with bounded state disturbances.
6A conceptual algorithm for computing the maximal robust control invariant set is given by Algorithm 2.3.
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The following result follows immediately from the definitions and is the reason why invariant set

theory plays a fundamental role in the study of constrained systems.

Proposition 2.5. Given the uncertain system(2.1), there exists an admissible control law such that

the state constraints(2.2b) can be satisfied for all time k∈ N and for all allowable disturbance

sequences if and only if the initial state x0 ∈ C̃∞(X) ⊆ X.

Remark 2.8.An equivalent statement regarding closed-loop systems and the corresponding maximal

robust positively invariant set̃Oh∞(X) can be made.

The following is an important, well-known geometric condition for a set to be control invariant and is

used throughout the thesis in the derivation of many of the results.

Theorem 2.1 (Geometric condition for invariance). [DH99] The set� ⊂ Rn is a robust control

invariant set7 if and only if� ⊆ Q̃(�).

Proof. Proving the contrapositive for both the necessary and sufficient parts: (⇒) If � * Q̃(�) then

∃xk ∈ � which is not an element of̃Q(�), i.e. ∀xk ∈ �\Q̃(�),@uk ∈ U such thatxk+1 ∈ �,∀wk ∈
W, hence� is not a robust control invariant set. (⇐) If � is not a robust control invariant set then

∃xk ∈ � for which @uk ∈ U such thatxk+1 ∈ �,∀wk ∈ W, i.e. ∃xk ∈ � which is not an element of

Q̃(�), hence� * Q̃(�).

It follows immediately that the set� is robust control invariant if and only if̃Q(�) ∩� = �, since

Q̃(�) ∩� = �⇔ � ⊆ Q̃(�) .

Most algorithms which test whether a given set� is robust control invariant is based directly or

indirectly on Theorem 2.1. Testing for invariance can be summarised as follows:

1. ComputeQ̃(�);

2. Test whether� ⊆ Q̃(�);
3. If � ⊆ Q̃(�), then� is robust control invariant. If� * Q̃(�), then� is not robust control

invariant.

2.6 Robust Controllable Sets

The problem of finding a control law such that a target set is reached in a finite number of steps, despite

disturbances on the state, is fundamentally linked with the problem of finding therobust controllable

sets8.
7The same statement holds for robust positively invariant sets.
8The concept of a robust controllable set is equivalent to the “reachability of a target tube” of [BR71, GS71]. However,

in this paper the wordcontrollable is used to define these sets and distinguish them from thereachablesets as defined

in [Las93]. The use ofcontrollableandreachableas used in this thesis is more consistent with modern control literature.
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Definition 2.9 (Robust controllable set).The i -step robust controllable set̃Ki (�,T) is the largest

set of states in� for which there exists an admissibletime-varyingstate feedback control law such

that an arbitrary terminal setT ⊂ Rn is reached inexactly isteps, while keeping the evolution of the

state inside� for the firsti − 1 steps, for all allowable disturbance sequences, i.e.

K̃i (�,T) , {x0 ∈ Rn | ∃ {uk = hk(xk) ∈ U}i−1
0 : {xk ∈ �}i−1

0 , xi ∈ T,∀ {wk ∈W}i−1
0 } . (2.10a)

Given a suitable topology such as the Hausdorff topology, the limit, if it exists, defines theinfinite-time

robust controllable set:

K̃∞(�,T) , lim
i→∞
K̃i (�,T) . (2.10b)

Remark 2.9.The definition here is very subtle and should not be misinterpreted. One is interested in

finding the largest set of initial states for which there exists atime-varying feedback lawwhich will

ensure that the states of the closed-loop system reach the target set for all allowable disturbance se-

quences. This definition includes the more conservative problem of finding the set of states for which

the sameopen-loop sequencewill drive the system to the target set irrespective of which disturbance

sequence occurs. The latter problem would have the definition

K̃ol
i (�,T) ,

{
x0 ∈ Rn | ∃ {uk ∈ U}i−1

0 : {xk ∈ �}i−1
0 , xi ∈ T,∀ {wk ∈W}i−1

0

}
.

By including the constraint that the control input be dependent on the state as well as time, a funda-

mentally different set results. A better understanding of this problem can be gained in studying the dif-

ference between “open-loop” and “feedback” robust MPC, as discussed in Section 6.3 and [MRRS00,

Sect. 4].

Remark 2.10.It is interesting to observe that if there are no disturbances present, then

Ki (�,T) = Kol
i (�,T) .

Remark 2.11.It can be shown that ifT is robust control invariant, then atime-invariant feedback

control law will also ensure that the state is inT after exactlyi steps. This follows from the fact that

by definition a time-invariant control law can be chosen such thatT is robust positively invariant for

the resulting closed-loop system. A time-invariant control law can then be chosen such that the system

entersT in the minimum amount of time.

By noting that

K̃1(�,T) = Q̃(T) ∩�
one can proceed to develop a conceptual algorithm for computing robust controllable sets.

Algorithm 2.1 (Robust controllable sets). [BR71] The robust controllable sets of a system can be

computed via the following iterative procedure:

K̃0(�,T) = T (2.11a)

K̃i+1(�,T) = Q̃
(
K̃i (�,T)

)
∩� . (2.11b)
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If K̃i+1(�,T) = K̃i (�,T), then terminate the algorithm and setK̃∞(�,T) = K̃i (�,T).

The main procedures required to implement Algorithm 2.1 are:

1. Computation of the robust one-step setQ̃(·);
2. Computation of the intersectioñQ(·) ∩�;

3. Testing for the set equalitỹKi+1(�,T) = K̃i (�,T).

These three operations are easily implemented for LTI systems subject to linear inequality con-

straints [Bla94, DH99, GT91, KG87, KG98] and will be discussed in more detail in Chapter 3.

In [VSLS99] quantifier elimination is proposed to compute the robust one-step set. Quantifier elimi-

nation can also be used, for example, when the constraints are defined by polynomials.

Though the conceptual algorithm presented here is difficult to implement for general nonlinear sys-

tems, there exist some classes of nonlinear systems for which the building blocks already are in place,

such as piecewise affine systems and some classes of hybrid systems [BTM00a]. Some work on devel-

oping algorithms for computing robust control invariant sets for hybrid systems has also been carried

out by the authors of [VSLS99]. A routine for computing the robust controllable sets for piecewise

affine systems is described in Chapter 4.

The following definition is adapted from [GT91] and is the basis of the termination criterion in Algo-

rithm 2.1.

Definition 2.10 (Finitely determined set). The setK̃∞(�,T) is finitely determinedif and only if

∃i ∈ N such thatK̃∞(�,T) = K̃i (�,T). The smallest elementi ∗ ∈ N such thatK̃∞(�,T) =
K̃i ∗(�,T) is called thedeterminedness index.

This definition will play an important role in Chapter 5 in obtaining results on the size and invariance

properties of the feasible set of an MPC controller.

In general,K̃∞(�,T) is not finitely determined. However, a sufficient condition for the finite-deter-

minedness of the infinite-time robust controllable set is:

Lemma 2.1. If ∃i ∈ N such thatK̃i (�,T) = K̃i+1(�,T) then K̃∞(�,T) is finitely determined.

Furthermore,K̃∞(�,T) is robust control invariant.

Proof. If K̃i (�,T) = K̃i+1(�,T), then by constructionK̃i+2(�,T) = Q̃(K̃i+1(�,T)) ∩ � =
Q̃(K̃i (�,T)) ∩ �. However,K̃i+1(�,T) = Q̃(K̃i (�,T)) ∩ �, henceK̃i+2(�,T) = K̃i (�,T).
This continuesad infinitum, henceK̃∞(�,T) = K̃i (�,T).

The robust control invariant property follows by noting thatK̃i+1(�,T) = Q̃(K̃i (�,T)) ∩ � ⊆
Q̃(K̃i (�,T)). If K̃i (�,T) = K̃i+1(�,T), thenQ̃(K̃i (�,T)) = Q̃(K̃i+1(�,T)). These two facts

combine to giveK̃i+1(�,T) ⊆ Q̃(K̃i+1(�,T)).
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It follows that if K̃i ∗(�,T) = K̃i ∗+1(�,T), then

K̃i (�,T) = K̃∞(�,T),∀i ≥ i ∗ .

Some properties of robust controllable sets are as follows:

Proposition 2.6.

1. For i > 0, if K̃i (�,T) is robust control invariant, then so is̃Ki+1(�,T). In general, the reverse

statement does not hold.

2. If xk ∈ K̃i+1(�,T)\K̃i (�,T) 6= ∅, then there exists an admissible control input which will

ensure that for all allowable disturbances the state at the next time instant is inK̃i (�,T);

3. If xk ∈ K̃i (�,T)\K̃i+1(�,T) 6= ∅, then there does not exist an admissible control input which

will ensure that for all allowable disturbances the state at the next time instant is inK̃i (�,T);

4. There does not exist an admissible control law which will ensure that the system reachesT in i

steps or less for all allowable disturbance sequences if and only if

xk /∈
i⋃

j=0

K̃ j (�,T) .

Proof. The proof of the first property is given here. The other properties are a consequence of the

definition of robust controllable sets.

K̃i (�,T) is robust control invariant if and only if̃Ki (�,T) ⊆ Q̃(K̃i (�,T)). In addition, ifK̃i (�,T)
is robust control invariant, theñKi (�,T) ⊆ �. This implies thatK̃i (�,T) ⊆ Q̃(K̃i (�,T)) ∩�.

By construction,K̃i+1(�,T) = Q̃(K̃i (�,T)) ∩ �. As a result,K̃i (�,T) ⊆ K̃i+1(�,T) and by

Proposition 2.1,Q̃(K̃i (�,T)) ⊆ Q̃(K̃i+1(�,T)).

Combining this withK̃i+1(�,T) ⊆ Q̃(K̃i (�,T)), it follows thatK̃i+1(�,T) ⊆ Q̃(K̃i+1(�,T)) and

henceK̃i+1(�,T) is robust control invariant.

Example 5.1 includes a counter-example for the reverse statement.

2.7 Robust Stabilisable Sets

If the target set is a robust control invariant set, then the robust controllable sets take on special

geometric properties. To emphasise this special case, the following definition is given9.

9The use of a robust control invariant target set in the calculation of robust controllable sets for LTI systems is also

described in [MS97].
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Definition 2.11 (Robust stabilisable set).The setS̃i (�,T) is thei -step robust stabilisable setcon-

tained in� for the systemxk+1 = f (xk,uk, wk) if and only if T is a robust control invariantsubset

of � andS̃i (�,T) contains all states in� for which there exists an admissible time-varying feedback

law which will drive the state of the system toT in i steps or less, while keeping the evolution of the

state inside� for all allowable disturbance sequences, i.e.

S̃i (�,T) , {x0 ∈ Rn | ∃{uk = hk(xk) ∈ U}i−1
0 , N ≤ i : {xk ∈ �}N−1

0 ,

{xi ∈ T ⊆ �}iN,T ⊆ Q̃(T)} . (2.12)

Remark 2.12.If the notationS̃i (�,T) is used,T is a robust control invariant subset of�. If K̃i (�,T)
is used,T can be any arbitrary subset ofRn.

The reason for the choice of the wordstabilisableto distinguish it fromcontrollablesets is because

in most practical applications the target set is either a bounded robust control invariant set or a robust

positively invariant set for a Lyapunov-stable closed-loop system. If the initial state is contained inside

a robust stabilisable set, then one can design a control law which guarantees that the target set will be

reached in a finite number of steps. Once inside the target set one can switch to the Lyapunov-stable

controller10. This results in “ultimately bounding” the states of the closed-loop system.

In light of this discussion, the largest possible region of attraction to the target set is equal to the

maximal robust stabilisable set.

Definition 2.12 (Maximal robust stabilisable set).The setS̃∞(�,T) is themaximal robust stabil-

isable setcontained in� for the systemxk+1 = f (xk,uk, wk) if and only if S̃∞(�,T) is the union of

all i -step robust stabilisable sets contained in�.

In general, the maximal robust stabilisable setS̃∞(�,T) is not equal to the maximal robust control

invariant setC̃∞(�), even for linear systems.̃S∞(�,T) ⊆ C̃∞(�) for all robust control invariantT.

The setC̃∞(�)\S̃∞(�,T) includes all initial states from which it is not possible to robustly steer the

system to the stabilisable regioñS∞(�,T) (and hence toT). It might only be possible to bound the

norm of the states‖xk‖ as in the case of a limit cycle or to drive the system to an alternative stable

equilibrium.

If T1 6= T2 are two robust control invariant sets, thenS̃∞(�,T1) andS̃∞(�,T2) are not necessarily

equal. Similarly,S̃∞(�, {0}) is not necessarily equal tõS∞(�,T) if 0 ∈ T, since it is not always

possible to drive some systems to the origin11.

Some properties of robust stabilisable sets are:

10For the reader familiar with model predictive control, this is the same idea as used in dual-mode MPC [MM93].
11The regionS∞(Rn, {0}) can be seen to be the generalisation to nonlinear systems of the ANCBI (asymptotically null-

controllable with bounded inputs) region for controllable LTI systems with no state constraints and no disturbances [Las93].

The maximal stabilisable setS∞(X, {0}) is a generalisation to nonlinear systems of the “maximal admissible set” defined

in [KG87] and the feasible region of the predictive control scheme defined in [PN00a].
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Proposition 2.7. [MS97, Thm. 2]

1. Each setS̃i (�,T) is robust control invariant;

2. Each set contains all previous sets:

S̃i+1(�,T) ⊇ S̃i (�,T) ;

3. For each set

S̃i (�,T) =
i⋃

j=0

S̃ j (�,T) ;

4. If xk ∈ S̃i+1(�,T), then there exists a control input which will drive the state toS̃i (�,T) at the

next time instant for all allowable disturbances;

5. There does not exist a control law which ensures that the system reachesT in i steps or less for

all allowable disturbance sequences if and only if xk /∈ S̃i (�,T).

Since robust stabilisable sets are special cases of controllable sets, the same procedure as in Algo-

rithm 2.1 can be followed to compute the respective sets.

Algorithm 2.2 (Robust stabilisable sets).Algorithm 2.1 can be used to compute the i-step robust

stabilisable sets̃Si (�,T) contained in� by noting that

S̃i (�,T) = K̃i (�,T) . (2.13)

If S̃i+1(�,T) = S̃i (�,T), then terminate and set̃S∞(�,T) = S̃i (�,T).

The notion of a finitely determined maximal stabilisable set once again carries through as with the

infinite-time robust controllable set. However, in this case, the condition is both necessary and suffi-

cient.

Theorem 2.2. The setS̃∞(�,T) is finitely determined if and only if∃i ∈ N such thatS̃i (�,T) =
S̃i+1(�,T).

Proof. (Only if) By Proposition 2.7,S̃∞(�,T) ⊇ . . . ⊇ S̃i+1(�,T) ⊇ S̃i (�,T) ⊇ . . . ⊇ T.

If S̃∞(�,T) = S̃i (�,T), then S̃i+1(�,T) = S̃i (�,T) must follow, otherwise there would be a

contradiction. The reverse follows from Lemma 2.1.
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2.8 Robust Admissible Sets and the Computation of the Maximal Ro-

bust Control Invariant Set

Given a set, it is also of interest to determine the set of states for which one can find a control law

to keep one inside the set for a specified number of steps. The resulting sets are a special case of the

robust controllable sets with the target set equal to the given set� and the following definition is given

to distinguish this from the general robust controllable sets.

Definition 2.13 (Robust admissible set).The i -step robust admissible set̃Ci (�) contained in� is

the set of states for which an admissible time-varying feedback control law exists such that the evolu-

tion of the state remains inside� for i steps, for all allowable disturbance sequences, i.e.

C̃i (�) ,
{
x0 ∈ Rn | ∃ {uk = hk(xk) ∈ U}i−1

0 : {xk ∈ �}i0 ,∀ {wk ∈W}i−1
0

}
. (2.14)

From the definition of robust admissible sets, it is easy to show the following:

Proposition 2.8. [Ber72]

1. The(i + 1)-step robust admissible set is contained in all previous sets:

C̃i+1(�) ⊆ C̃i (�) ;

2. For each set

C̃i (�) =
i⋂

j=0

C̃ j (�) ;

3. There does not exist an admissible control law which will ensure that the state evolution remains

within� for i steps for all allowable disturbance sequences if and only if the state xk /∈ C̃i (�);

4. If the state xk ∈ C̃i (�)\C̃∞(�) 6= ∅ then there does not exist an admissible control input which

will ensure that the state at the next time instant is inC̃i (�) for all allowable disturbances.

The following result is used in developing an algorithm for computing the maximal robust control

invariant set. It is an immediate consequence of the definitions of the robust admissible sets and the

maximal robust control invariant set.

Proposition 2.9. If there exists an i∈ N such thatC̃i+1(�) = C̃i (�), thenC̃∞(�) = C̃i (�).

Proof. See the proof of [VSLS99, Thm. 2].

As with robust controllable sets, the problem of determining the robust admissible sets is equivalent

to the “reachability of a target tube” of [BR71], with the target setT = �:
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Algorithm 2.3 (Robust admissible sets).The i-step robust admissible setC̃i (�) and maximal robust

admissible set̃C∞(�) can be computed using Algorithm 2.1 by noting that

C̃i (�) = K̃i (�,�) . (2.15)

If C̃i (�) = ∅, then terminate and set̃C∞(�) = ∅.
If C̃i+1(�) = C̃i (�), then terminate and set̃C∞(�) = C̃i (�).

This method for computing the maximal robust control invariant set was first described in [Ber72].

[Ber72] applies the ideas of [BR71] to the problem of computing a “strongly reachable” subset of a

given set. Convergence questions are addressed and it is shown that certain compactness and conti-

nuity conditions are sufficient in order to guarantee convergence of the sequence of robust admissible

sets to the maximal robust control invariant set. Relatively weak assumptions on the system and

constraints guarantee convergence of the sequenceC̃i (�) to the maximal robust control invariant set.

Proposition 2.10 (Convergence to the maximal robust control invariant set).[Ber72]

Assuming the system is of the form xk+1 = fxu(xk,uk)+wk and thatC̃∞(�) is non-empty. If� andU
are compact and the function fxu(xk,uk) is continuous, then given any bounded open set8 such that

C̃∞(�) ⊂ 8, there exists a positive integer i<∞ such thatC̃∞(�) ⊆ C̃i (�) ⊂ 8.

A necessary and sufficient condition for the finite-determinedness of the maximal robust control in-

variant set can be derived.

Theorem 2.3. C̃∞(�) is finitely determined if and only if∃i ∈ N such thatC̃i (�) = C̃i+1(�).

Proof. (Only if) By Proposition 2.8,C̃∞(�) ⊆ . . . ⊆ C̃i+1(�) ⊆ C̃i (�) ⊆ . . . ⊆ �. If C̃∞(�) =
C̃i (�), thenC̃i+1(�) = C̃i (�)must follow, or else there would be a contradiction. The reverse follows

from Lemma 2.1.

In general, the maximal robust control invariant set is not finitely determined. However, for LTI

systems it is possible to guarantee finite determinedness for some very simple cases where the control

is unbounded [VSLS99].

An interesting class of systems for which finite determinedness is guaranteed, is the class of finite

state machines with bounded constraints12. Since the number of possible states are finite, termination

of Algorithm 2.3 is guaranteed.

2.9 Sets for Closed-loop Systems and Systems without Control Inputs

All the definitions and properties regarding robust controllable, stabilisable and admissible sets also

apply to closed-loop systems, but with “robust control invariant” substituted with “robust positively
12The framework in this chapter needs to be extended slightly to deal with the class of hybrid systems, where some of the

state variables can only take on values from a countable set [VSLS99].
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invariant”. As mentioned in Section 2.2 care has to be taken in calculating the sets by replacing the

original state constraints with the input admissible set. To further distinguish the fact that the system

is in closed-loop with a control lawuk = h(xk) or does not have a control input, the notationÕh and

Õ will be used, respectively.

Obviously, the use of the wordcontrollabledoes not make sense for systems with no available input.

However, the following two definitions are given.

Definition 2.14 (The setK̃Oh
i (�,T)). The setK̃Oh

i (�,T) for the systemxk+1 = f (xk,uk, wk) in

closed-loop with the control lawuk = h(xk) is defined as

K̃Oh
i (�,T) , K̃i (�

h,T)

for the systemxk+1 = f (xk,h(xk), wk).

Remark 2.13.If T is robust positively invariant for the closed-loop system, thenK̃Oh
i (�,T) is robust

positively invariant as well.

Note that the input admissible subset of the target set is not included in the above definition. This is

to allow one to develop general results without introducing too much additional notation, as will be

seen in Chapter 5.

If the target set is equal to the input admissible subset of�, then the following definition applies.

Definition 2.15 (The robust admissible setÕh
i (�)). The i -step robust admissible set for the system

xk+1 = f (xk,uk, wk) in closed-loop with the control lawuk = h(xk) is defined as

Õh
i (�) , C̃i (�

h)

for the systemxk+1 = f (xk,h(xk), wk).

Remark 2.14.Note that

Õh
i (�) = K̃i (�

h,�h) = K̃Oh
i (�,�

h) .

The sets introduced in this section can be computed using Algorithm 2.1.

Though most of the sets defined in this chapter is not guaranteed to be finitely determined, it is possible

to obtain a determinedness result for autonomous LTI systems where� is given by linear inequalities.

Proposition 2.11. [KG98] Assume the system is given by xk+1 = Axk + Ewk, yk = φ(xk) = Cxk,

Y andW are convex, compact polyhedra containing the origin and0 ∈ Õ∞(Xφ) 6= ∅. If the eigen-

values of A are all contained inside the unit disk and(C, A) is observable, theñO∞(Xφ) is finitely

determined.

This result allows one to guarantee that if the output constraints for an observable LTI system are

bounded and one has designed an asymptotically stabilising state feedback controller, then the max-

imal robust positively invariant set contained inside the input-output admissible set is finitely deter-

mined, assuming it exists.
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2.10 Some Set-theoretic Concepts

For practical implementation, it is necessary to develop a procedure for computing the robust one-

step set. Two set-theoretic concepts which will be useful in developing such an algorithm are the

Pontryagin difference and the Minkowski sum. The support function is another tool which helps one

to develop a number of algorithms for working with sets. The application of these ideas to specific

classes of systems will be illustrated in Chapters 3 and 4.

2.10.1 The Pontryagin Difference

On close investigation of the literature on robust invariant set theory, it will be noted that before the

robust one-step set̃Q(�) can be computed, an intermediate set has to be computed if there is an

additive state disturbance present. This set is the Pontryagin difference.

Definition 2.16 (The Pontryagin Difference). Given the sets� ⊂ Rn and8 ⊂ Rn, the Pontryagin

difference between� and8 is defined as

� ∼ 8 , {ω ∈ Rn | ω + ψ ∈ �,∀ψ ∈ 8} . (2.16)

The Pontryagin difference, sometimes referred to as the Minkowski difference [MS97], is useful in

various aspects of geometry and control theory. A detailed discussion of the properties of the Pon-

tryagin difference is given in [KG98].

Remark 2.15.Note that

0n ∈ 8⇒ � ∼ 8 ⊆ � .

A result which allows one to compute the Pontryagin difference if� is a convex polyhedron, is given

in Section 3.3.3.

Disturbance Acting on the State and the System Structure

Often the system (2.1) can be written as

xk+1 = f1(xk,uk, w
1
k )+ fs(w

s
k) , (2.17)

where the disturbance consists of a componentw1k which acts on the system structure and a component

ws
k which acts additively on the state:

wk = (w1k , ws
k) ∈W1 ×Ws . (2.18)

If one defines

D , fs(Ws) (2.19)
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and provided� ∼ D 6= ∅,

Q1(� ∼ D) ,
{
xk ∈ Rn | ∃uk ∈ U : f1(xk,uk, w

1
k ) ∈ � ∼ D,∀w1k ∈W1

}
(2.20)

is equal to the robust one-step set that one is interested in computing, i.e.

Q̃(�) = Q1(� ∼ D) . (2.21)

Algorithm 2.1 is now modified by substituting (2.11) with

K̃0(�,T) = T (2.22a)

K̃i+1(�,T) = Q1(K̃i (�,T) ∼ D) ∩� . (2.22b)

A procedure for computingQ1(� ∼ D) for LTI systems with parametric uncertainty is briefly de-

scribed in Section 3.3.3.

Disturbance Acting on the State

Often the system dynamics (2.1) can be split into two parts, with the disturbance acting only on the

state:

xk+1 = fxu(xk,uk)+ fw(wk) . (2.23)

If this is the case, then the computation of the one-step set can be done as before, by first calculating

the intermediate set� ∼ D, where

D , fw(W) .

Once the Pontryagin difference� ∼ D has been computed, the robust one-step set can be found by

calculating thenominalone-step setQ(� ∼ D):

Q̃(�) = Q(� ∼ D) , {xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ � ∼ D : xk+1 = fxu(xk,uk)
}
. (2.24)

Algorithm 2.1 can now be modified by substituting (2.11) with

K̃0(�,T) = T (2.25a)

K̃i+1(�,T) = Q(K̃i (�,T) ∼ D) ∩� (2.25b)

To complete the computation of the robust one-step set, one needs to develop an algorithm which

eliminates the existential quantifier in (2.24). One way of achieving this is by noting thatQ̃(�) is the

orthogonal projection of the set

9 ,
{
[x′k u′k]′ ∈ Rn+m | fxu(xk,uk) ∈ � ∼ D,uk ∈ U

}
(2.26)
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onto the subspace spanned by the firstn coordinates, i.e.

Q̃(�) = 5Rn9 ,

where5Rn is the projection operator.

An alternative way of computing the robust one-step set, provided the system has a special structure,

is as the inverse map of a Minkowski sum.

2.10.2 The Minkowski Sum

In many cases (2.23) can be split further into three distinct parts:

xk+1 = fx(xk)+ fu(uk)+ fw(wk) . (2.27)

The Minkowski sum can then be used to get an alternative expression for the robust one-step set.

Definition 2.17 (Minkowski sum). [GS93] Given two sets� ⊂ Rn and8 ⊂ Rn, the Minkowski

sum (vector sum) of� and8 is defined as

�⊕8 , {x ∈ Rn | ∃ω ∈ �,φ ∈ 8 : x = ω + φ} . (2.28)

Remark 2.16.Note that if 0∈ 8, then the set inclusion

(� ∼ 8)⊕8 ⊆ �
always holds, but

0 ∈ D ; (� ∼ 8)⊕8 = � .

By defining

V , − fu(U),

from (2.24) it follows that

Q(� ∼ D) = {xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ � ∼ D : xk+1 = fx(xk)+ fu(uk)
}

= {xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ � ∼ D : fx(xk) = xk+1 − fu(uk)
}

= {xk ∈ Rn | fx(xk) ∈ (� ∼ D)⊕ (− fu(U))
}

= {xk ∈ Rn | fx(xk) ∈ (� ∼ D)⊕ V
}

and hence

Q̃(�) = {xk ∈ Rn | fx(xk) ∈ (� ∼ D)⊕ V
}
. (2.29)

In other words, the robust one-step set can be computed as the inverse mapf −1
x (xk) of the Minkowski

sum of� ∼ D andV.
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2.10.3 The Support Function

The support function[Grü67] is another concept which has proven itself to be useful when using

a set-theoretic framework in control and information theory [Sch73, Wit80, KG98]. The support

function will be used in Chapter 3 in developing algorithms for computing the Pontryagin difference

and Minkowski sum of two convex polyhedra.

Definition 2.18 (Support function). Thesupport functionof the set�, evaluated atη ∈ Rn, is de-

fined as

h�(η) , sup
ω∈�

η′ω . (2.30)

The domain on which the support function is defined is allη for whichη′ω is bounded from above on

�. If � is bounded, then the domain isRn.

From this point on, it is assumed that the support function is always defined and that the supremum is

a maximum.

Geometrically, ifη′η = 1, thenh�(η) is the distance from the origin to a support hyperplane of�

with a normal in the directionη.

Remark 2.17.Note that if� is a closed, convex polyhedron, then the support function can be com-

puted by noting that the optimisation in (2.30) is a linear program.

It can be shown [Hny69] that an equivalent expression�̆ for the polyhedron

� , {ω ∈ Rn | Qω � q}
in terms of its support function is given by

�̆ , {ω ∈ Rn | Qω � H (Q,�)} , (2.31)

where thei ’th component ofH (Q,�) is given by the value of the support function of�, evaluated at

Q′i , the transpose of thei ’th row of Q:

Hi (Q,�) , h�(Q
′
i ) . (2.32)

Note also that

H (Q, �̆) = H (Q,�) � q .

It follows immediately that if the polyhedron isirredundant13, then

q = H (Q,�) .

For a more detailed discussion on how the support function can be used to obtain an equivalent ex-

pression of a polyhedron, see [Gr¨u67, Hny69] and [Sch73, App. G].
13An inequality representation of a polyhedron is irredundant if and only if none of the inequalities describing the poly-

hedron are redundant [Gr¨u67, GS93].
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2.11 Summary

This section brought together a number of ideas, definitions and results from set invariance theory.

The concept of invariant sets were introduced and it was shown that a set is control invariant if and

only if it is contained inside its robust one-step set. This condition forms the basis of a test for set

invariance and is often used in the derivation of results on invariance.

Robust stabilisable and admissible sets were introduced and these were shown to be special cases

of the robust controllable sets with different target sets. These sets and the maximal robust control

invariant and maximal robust stabilisable sets can be computed using the iterative procedure of Algo-

rithm 2.1. The key ingredients for implementing this algorithm are procedures for computing

• the robust one-step set̃Q(·),
• the intersectionQ̃(·) ∩� and

• whether the equalitỹKi+1(�,T) = K̃i (�,T) holds.

Some set-theoretic concepts were introduced which will be useful in implementing the above algo-

rithm. It was shown that the Pontryagin difference could be used to compute an intermediate set if

there are state disturbances present. If the disturbance does not act on the system structure then the

robust one-step set can be computed by computing the nominal one-step set to the computed Pontrya-

gin difference. If the system is of the form (2.27), then the Minkowski sum can be used to complete

the computation of the nominal one-step set to the Pontryagin difference. Finally, the support function

was introduced and it was shown that a polyhedron has an equivalent expression in terms of its support

function.





Chapter 3

Uncertain Linear Time-Invariant

Systems

This chapter deals with linear, time-invariant systems subject to linear inequality constraints. Para-

metric uncertainty and state disturbances are assumed. Results are given which allow the development

of algorithms for computing invariant sets for such systems.

3.1 Introduction

Consider the uncertain, discrete-time, linear time-invariant (LTI) system:

xk+1 = A
(
w1k
)

xk + B
(
w1k
)

uk + Ews
k (3.1)

with k ∈ Z, xk is the system state,uk is the control input andwk = (w1k , w
s
k) ∈ W1 ×Ws is an

unknown disturbance withws
k acting linearly on the state via the matrixE ∈ Rn×qs, similar to the

discussion in Section 2.10.1. The state is assumed to be measured. If there is no disturbance, then

xk+1 = Axk + Buk. If there is no control input, thenxk+1 = A(w1k )xk + Ews
k.

The system is subject to linear inequality constraints on the control inputs and/or the states over the

whole time horizonk ∈ N:

U , {u ∈ Rm | Gu� g} (3.2a)

X , {x ∈ Rn | Hx � h} (3.2b)

whereh ∈ Rnh+ and g ∈ Rng
+ define the constraints, withnh andng denoting the number of state

and input constraints respectively;H ∈ Rnh×n and G ∈ Rng×m are the state and input constraint

distribution matrices. Since the sets in (3.2) are given as the intersection of a finite number of half-

33
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spaces andh andg are positive,U andX are closed, convex polyhedra1 containing the origin in their

interior. Additionally, it is assumed thatU is compact.

For the case of the disturbances that act linearly on the state, it is assumed thatWs is a compact

set given by linear inequalities, as with (3.2), with the origin contained in the interior2. No further

assumptions regarding the state disturbances are made.

It is assumed that there are parametric uncertainties [Bla94, De 94, De 97, KBM96] in the mathemat-

ical model of the system. More specifically, it is assumed that the actual system matricesA ∈ Rn×n

andB ∈ Rn×m are contained in the convex hull of a set ofp matrix pairs, i.e.

(A, B) ∈ 1, (3.3)

where

1 , conv
{
(A1, B1) , . . . ,

(
Ap, Bp

)}
. (3.4)

This means thatA
(
w1k
)
, B

(
w1k
)

andw1k satisfy

(
A
(
w1k
)
, B

(
w1k
)) = p∑

j=1

(
w1k
)

j

(
Aj , Bj

)
,

p∑
j=1

(
w1k
)

j
= 1,

(
w1k
)

j
≥ 0 .

(3.5)

This relation defines the setW1. Note that ifp = 1, then there is no uncertainty inA andB.

3.2 Contractive Sets

Contractive sets are related to robust control invariant sets. The main idea behind contractive sets is

that one is interested in computing a set for which an admissible control exists which will guarantee

that the state at the next point in time is inside a subset of the original set.

One of the more useful results from contractive set theory and the reason for including the discussion

on contractive sets in this chapter, is given by Theorem 3.1. The result allows one to compute an

arbitrarily close inner approximation of the robust control invariant set if the latter is not finitely

determined.

Definition 3.1 (C-set). [Bla94] A C-Set is a convex and compact set containing the origin.

Given a C-set, one would like to know whether there exists a control that will allow one to drive the

system to a specified subset of the given set:
1In order to distinguish between bounded and unbounded constraints, a polytope is defined to be a bounded polyhedron,

while a polyhedron can be bounded or unbounded.
2It is not assumed thatW1 contains the origin in its interior.
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Definition 3.2 (Contractive set). [Bla94, Bla99] AC-set� ⊂ Rn is contractivefor a discrete-time

system of the form (3.1) if and only if there exists anonlinearfeedback lawuk = h(xk) and a positive

λ ≤ 1 such that ifxk ∈ �, thenxk+1 = A
(
w1k
)

xk + B
(
w1k
)

h(xk) + Ews
k ∈ λ� for all allowable

disturbances(w1k , w
s
k) ∈W1 ×Ws.

The fact that a given C-set is contractive, allows one to construct a controller with a given rate of

convergence. See [Bla94, FG97] for more details on how to construct such a controller.

Remark 3.1.It is important to note that if a set is contractive, then it is also robust control/positively

invariant. Hence, from this point on statements regarding robust control/positively invariant sets also

apply to contractive sets. The properties of the robust “admissible”, “stabilisable” and “control invari-

ant” sets can also be applied to contractive sets. A superscriptλ will be used to denote that a given set

is contractive.

One can define theλ-contractive controllable sets̃Kλi (�,T) as in Chapter 2. The following algorithm

can be used to construct these sets.

Algorithm 3.1. For a givenλ, the maximalλ-contractive controllable set̃Kλ∞(�,T) contained in�

can be computed via the iteration:

K̃λ0(�,T) = T (3.6a)

K̃λi+1(�,T) = Q̃
(
λK̃λi (�,T)

)
∩� . (3.6b)

If K̃λi (�,T) = ∅, then terminate and set̃Kλ∞(�,T) = ∅.
If 0 /∈ K̃λi (�,T), then terminate and set̃Kλ∞(�,T) = ∅.
If K̃λi+1(�,T) = K̃λi (�,T), then terminate and set̃Kλ∞(�,T) = K̃λi (�,T).

As can be seen above, the only difference with respect to Algorithm 2.1 is that the setλK̃λi (�,T) is

used instead of̃Kλi (�,T) in the calculation of the new set.

Proposition 3.1. If K̃λ∞(�,T) is finitely determined, theñKλ∞(�,T) is a convex polyhedron.

As in Chapter 2 with the maximal robust control invariant set, one might also be interested in deter-

mining themaximalλ-contractiveset. It can be computed in a fashion similar to the maximal robust

control invariant set, using Algorithm 3.1 and noting that

C̃λi (�) = K̃λi (�,�) .

Similarly, one can start with aλ-contractive target setT and compute themaximalλ-contractive

stabilisablesetS̃λ∞(�,T) by noting that

S̃λi (�,T) = K̃λi (�,T) .
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Remark 3.2.Note that in general̃Kλ∞(�,T), S̃λ∞(�,T) and C̃λ∞(�) are not polyhedra, nor are they

guaranteed to be finitely determined. It is not clear whether the converse of Proposition 3.1 holds,

even ifX andU are both compact3.

Together with the next result which allows one to compute a contractive setT, by computing the

stabilisable sets one can approximate the maximalλ-contractive set arbitrarily closely.

Theorem 3.1. [Bla94] Assume that� is compact,C̃λ∞(�) is a C-set and0 ≤ λ < 1. For everyλ∗

such thatλ < λ∗ ≤ 1, there exists an i∗ <∞ such thatC̃λi (�) is λ∗-contractive for all i≥ i ∗.

In general, the maximal robust control invariant and maximalλ-contractive sets are not finitely deter-

mined. Theorem 3.1 is useful since it gives a guarantee that the algorithm will terminate after a finite

number of iterations. Once aλ∗-contractive set has been foundT , C̃λ∗i (�), then one can compute a

number of theS̃λ∗i (�,T) in order to find a largerλ∗-contractive set. Hence one can approximate the

corresponding maximalλ∗-contractive set arbitrarily closely.

Theorem 2.1 provides the basis for a test to determine whether a given set is contractive.

Corollary 3.1 (Geometric condition for contractiveness). The C-set� ⊂ Rn is λ-contractive if

and only if� ⊆ Q̃(λ�).

If a given set isλ-contractive, then the following result also holds:

Corollary 3.2. If a C-set� is λ-contractive, withλ < 1, then it is alsoλ̃-contractive for allλ̃ with

λ < λ̃ ≤ 1.

Proof. If λ < λ̃, thenλ� ⊆ λ̃�. By Proposition 2.1,Q̃(λ�) ⊆ Q̃(λ̃�). Since� ⊆ Q̃(λ�), it

follows that� ⊆ Q̃(λ̃�) and by Corollary 3.1,� is λ̃-contractive.

For uncertain LTI systems, it is possible to say something more specific regarding the topological

properties of the robust one-step setQ̃(�).

Proposition 3.2.

1. If� is compact, then the set̃Q(�) is closed;

2. If� is convex, then the set̃Q(�) is convex;

3. If� is a polyhedron, then the set̃Q(�) is also a polyhedron;

4. If p= 1, A is non-singular and� is compact, then the set̃Q(�) is compact.

Proof. The proofs are standard. See [Bla94] for the first three results. See [BR71, Sect. 4] for the last

result. The last result follows because the image of a compact set under the continuous mappingA−1

is compact.

3The author is not entirely convinced by the argument presented in the proof of [KG87, Thm 4.2(ii)] forS∞(X, {0}) of

controllable systems.
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3.3 Computing the Invariant and Contractive Sets

The practical feasibility of computing the various sets and applying the theory described in Chapter 2

and Section 3.2 to controller design is dependent on algorithms existing for the calculation of the set

Q̃(�), the intersection of two sets and testing for equality or whether a set is a subset of another.

The invariance and contractiveness tests can be implemented by recalling the inclusion conditions of

Theorem 2.1 and Corollary 3.1.

These procedures are relatively straightforward and routine for uncertain LTI systems subject to poly-

hedral constraints on the states and control inputs. This section describes some well-known results,

while Section 3.4 describes some less well-known results.

The presentation of this chapter is more along the lines of a description of the results that allow one

to develop algorithms, rather than a detailed description of the algorithms themselves. In many cases,

the algorithmic details follow immediately from the theoretical result and writing out the individual

steps does not contribute significantly to the discussion.

A more abstract approach to algorithm development is adopted here and the practical implementation

is not discussed. Appendix E contains a brief description of the functions in a Matlab toolbox that has

been developed for the computation of the various sets discussed in this chapter.

3.3.1 Intersection of Two Polyhedra

The computation of the intersection of two polyhedral sets which are described by linear inequalities

is trivial. Given the two sets� , {x ∈ Rn | Qx � q} and8 , {x ∈ Rn | Sx� s}, the intersection of

the sets is found by appendingQ andq to Sands, respectively. The intersection is then given by

� ∩8 =
{

x ∈ Rn

∣∣∣∣∣
[

Q

S

]
x �

[
q

s

]}
. (3.7)

Often some of the inequalities in (3.7) are redundant and could be removed, if required.

Proposition 3.3. The intersection of two convex polyhedra is a convex polyhedron.

Furthermore, the support function of the intersection of two polyhedra [BR71, App. 1] is given by

h�∩8(η) = min{h�(η),h8(η)} .

3.3.2 Equality and Subset Testing

An equality test is used in all the algorithms to determine whether the iterations should continue. In

principle, given polyhedral descriptions of the two sets� , {x ∈ Rn | Qx � q} and8 , {x ∈ Rn |
Sx� s} one can compare the elements ofQ andq with S ands. However, the sizes of the matrices
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and vectors might be different and two differently scaled matrices and vectors can describe the same

set. A different approach is therefore needed.

Provided all elements ofq ands are non-zero and all redundant constraints have been removed, one

can obtain equivalent descriptions of the sets in the normalised formQ0x � 1 andS0x � 1. One can

test for equality by individually comparing the rows ofQ0 with all the rows ofS0 and removing the

matching rows until the sets of rows are empty.

Depending on the numerical robustness of the method used to generate eachK̃λi (�,T) this approach

may work. The author has found that the above two approaches are good enough in many cases.

Normalisation is seldom needed, since the matrices and vectors which describe the old and new sets

often correspond exactly.

Another equality test can be derived by noting that two sets are equal if and only if each set is a subset

of the other, i.e.

8 = �⇔ 8 ⊆ � and� ⊆ 8 . (3.8)

Using the support function as defined in Section 2.10.3, testing for inclusion is easy if the sets are

convex polyhedra.

Proposition 3.4 (Subset test).[KG98] If � is given by the M linear inequalities

� ,
{
x ∈ Rn | Qx � q

}
,

and8 is any subset ofRn then

8 ⊆ �⇔ h8(Q
′
i ) ≤ qi , ∀i = 1 . . .M ,

where Qi is the i ’th row of Q and qi is the i ’th component of q.

Remark 3.3.If 8 is also a convex polyhedron, then this condition can be checked by solving a se-

quence ofM linear programming problems, since the support function of8 can be computed by

solving a linear program.

Remark 3.4.Testing whether a polyhedron8 is a subset of another polyhedron� is equivalent to

testing whether all the constraints in� are redundant with respect to the constraints in8.

Remark 3.5.The idea of checking whether all the new constraints are redundant is also used in [GT91,

KG98, VSLS99] to test whether the computation of the maximal invariant set should terminate. It

follows from Proposition 2.8 that̃Cλi+1(X) ⊆ C̃λi (X). When calculating the maximalλ-contractive set,

one therefore only needs to test whetherC̃λi (X) ⊆ C̃λi+1(X) to check whether̃Cλi (X) = C̃λi+1(X).

An elegant method for determining when to terminate the computation of themaximal stabilisable

set is to fix some tolerance parameter and terminate when the new set is “close” to the true maximal

stabilisable set. The authors of [GC87] show, via a compactness argument, that when computing the



3.3. COMPUTING THE INVARIANT AND CONTRACTIVE SETS 39

maximal stabilisable setS∞(X, {0}) for controllable LTI systems with� andU compact, for any

givenε > 0 there exists aτ = τ(ε) such that for alli > τ ,

Si (�, {0}) ⊆ S∞(�, {0}) ⊆ (1+ ε)Si (�, {0}) . (3.9)

An algorithm for computingτ is given in [CG86]. Algorithm 2.2 is modified to terminate wheni is

larger thanτ .

It is possible that a similar argument can be made if the terminal setT is a control invariant set

containing the origin and the system is stabilisable. However, it is not clear how to proceed. In

addition,X is not necessarily bounded, thereby violating the assumptions made in [GC87]. It would

be interesting to determine whether it is possible to derive a similar result if there are disturbances

present.

Approximations for Equality and Subset Testing

Sometimes, due to numerical errors, problems can be experienced when testing for set inclusion. The

following definitions can be used to test whether a given subset is a subset of another within a given

tolerance:

Definition 3.3. The set8 ⊂ Rn is a subset of the set� ⊂ Rn within a given toleranceε > 0 if and

only if 8 ⊆ (1+ ε)�.

Based on the approximate subset test, the following definition is given to allow one to determine

whether two sets are equal within a given tolerance:

Definition 3.4. The set8 ⊂ Rn is equal to the set� ⊂ Rn within a given toleranceε > 0 if and only

if 8 ⊆ (1+ ε)� and� ⊆ (1+ ε)8.

Remark 3.6.These definitions can be loosely interpreted as a relaxation of the Hausdorff metric de-

fined for two sets. The computation of the Hausdorff metric is computationally difficult to implement,

whereas the conditions defined here are very quick and easy to check.

It is arguable as to whether these are good measures for set equality and subset testing and whether

some other metric should not be used to define how “close” one set is to another. However, the

definition above is intuitive and easy to implement in computing both the maximal robust control

invariant set and maximal robust stabilisable sets. An inner approximation ofS̃λ∞(�,T) and an outer

approximation ofC̃λ∞(�) will result if these methods are used for termination.

However, it is not desirable to obtain anouter approximation ofC̃λ∞(�), since one cannot guarantee

that the resulting set is at least 1-contractive. The most elegant, known way to obtain an approxima-

tion of C̃λ∞(�) was discussed earlier and is given by Theorem 3.1. This approach has the benefit of

guaranteeing that the algorithm will terminate after a finite number of iterations when aλ∗-contractive
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inner approximation ofC̃λ∞(�) has been found, whereλ < λ∗ ≤ 1. An arbitrarily close approxima-

tion to C̃λ∞(�) can be found by choosingλ 6= 1, but sufficiently close to 1 and terminating when the

computed set isλ∗-contractive for anyλ < λ∗ ≤ 1.

3.3.3 The Robust One-step Set

Before proceeding, it is useful to recall the discussion and definitions from Section 2.10. It was shown

that if part of the disturbance acts directly on the state, then an intermediate set needs to be calculated

in order to obtainQ̃(λ�), namely the Pontryagin difference. If one defines

D ,
{
xs

k ∈ Rn | ∃ws
k ∈Ws : xs

k = Ews
k

}
and the modified one-step set as

Q1(λ� ∼ D) ,
{
xk ∈ Rn | ∃uk ∈ U : A

(
w1k
)

xk + B
(
w1k
)

uk ∈ λ� ∼ D,∀w1k ∈W1
}
, (3.10)

then

Q̃(λ�) = Q1(λ� ∼ D) . (3.11)

The next section describes how one can compute the Pontryagin difference. Given this set, one can

then use a projection method or the Minkowski sum method to complete the computation of the robust

one-step set.

The Pontryagin Difference

If the two sets under consideration are given by linear inequalities, then the Pontryagin difference can

be computed as follows:

Proposition 3.5 (Pontryagin difference). Given two polyhedra

� , {x ∈ Rn | Qx � q}
and

D , {x ∈ Rn | Sx� s}
with Q ∈ RM×n, q ∈ RM, S∈ RN×m and s∈ RN, the Pontryagin differenceλ� ∼ D is given by

λ� ∼ D = {x ∈ Rn | Qx � λq − H (Q,D)
}
, (3.12)

where the i ’th element of H(Q,D) is the value of the support function ofD, evaluated at the i ’th row

of Q, i.e.

Hi (Q,D) , hD(Q
′
i ) = max

x∈D
Qi x . (3.13)
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If D = EWs, then

Hi (Q,D) = max
w∈Ws

Qi Ew . (3.14)

Proof. See [KG98, Thm. 2.3]

Remark 3.7.Note that the Pontryagin difference requires solving no more thanM linear programming

problems. It is also not necessary to compute the mappingEW, thereby reducing computation time.

Furthermore, some of the constraints inλ� ∼ D might be redundant and these can be removed by

solving M additional LPs.

The following result follows immediately and states that the complexity of the Pontryagin difference

is independent of the number of inequalities describingD:

Corollary 3.3 (Pontryagin difference). If the polyhedra� andD are given by M and N linear in-

equalities, respectively, then the Pontryagin differenceλ� ∼ D is given by (at most) M linear in-

equalities.

The next step in the calculation of the robust one-step setQ̃(λ�), givenλ� ∼ D, is to calculate the

modified one-step setQ1(λ� ∼ D), either via a projection operation or, if there is no uncertainty in

the plant matrices, via a Minkowski summation.

Remark 3.8.If there is no control input to the system, then the second step of projection or Minkowski

summation is not necessary and the algorithm reduces to those described in [GT91, KG98]. One can

still have parametric uncertainty inA, which is not considered in [GT91, KG98], but is discussed

in [De 97].

Computing the Robust One-Step Set via Projection

By linearity and convexity, if the control input is such thatxk+1 = Axk + Buk ∈ λ� ∼ D for all

(A, B) ∈ {(A1, B1) , . . . ,
(
Ap, Bp

)}
then the same control input guarantees thatxk+1 = Axk + Buk ∈ λ� ∼ D for all

(A, B) ∈ conv
{
(A1, B1) , . . . ,

(
Ap, Bp

)}
.

By this argument, it follows that

Q1(λ� ∼ D) ,
{
xk ∈ Rn | ∃uk ∈ U : A

(
w1k
)

xk + B
(
w1k
)

uk ∈ λ� ∼ D,∀w1k ∈W1
}

= {xk ∈ Rn | ∃uk ∈ U : Axk + Buk ∈ λ� ∼ D,∀(A, B) ∈ 1}
= {xk ∈ Rn | ∃uk ∈ U : Ai xk + Bi uk ∈ λ� ∼ D,∀i = 1, . . . , p

}
.



42 CHAPTER 3. UNCERTAIN LINEAR TIME-INVARIANT SYSTEMS

Hence, one way of computingQ1(λ� ∼ D), given

λ� ∼ D = {xk ∈ Rn | Qxk � q̃}

where

q̃ , λq − H (Q,D) ,

is as the orthogonal projection of the polyhedron

9 ,
{[

xk

uk

]
∈ Rn+m |uk ∈ U, Ai xk + Bi uk ∈ λ� ∼ D, i = 1, . . . , p

}

=


[

xk

uk

]
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣


Q A1 QB1
...

...

Q Ap QBp

0 G


[

xk

uk

]
�


q̃
...

q̃

g




onto the subspace spanned by the firstn coordinates [Bla94, Sect. VI], i.e.

Q1(λ� ∼ D) =
{
xk ∈ Rn

∣∣∃[x′k,u′k]′ ∈ 9 } .
There are two popular ways of computing this projection:

• If 9 is bounded one can compute the vertices of9. The setQ1(λ� ∼ D) is then the convex

hull of the projection of the vertices of9. This is the technique implemented in theMatlab

Geometric Bounding Toolbox[VKV +] function PROJECT4.

• By systematically eliminatinguk from the inequalities in9. A popular method for solving a

set of linear inequalities is theFourier-Motzkin elimination method[Chv83, KS90], for which a

division-free algorithm is given in [KG87]. The intuitive argument behind Fourier elimination

is briefly described in Appendix C.

The vertex-based method can become computationally intractable, since the number of vertices can

become quite large with an increase in the dimension and number of plants describing the uncertainty

set [Chv83, Cha. 18]. It is also not possible to give a practically useful bound on the geometric

complexity of the resulting set. The implementation of efficient, numerically robust algorithms for

finding all the vertices and computing the convex hull of the projections is tricky and therefore not

always the preferred approach.

4This toolbox only works with simple polyhedra, i.e. the number of edges attached to each vertex is no more than the

dimension of the subspace in which the polyhedron is contained. Small, random perturbations are added to the polyhedron’s

components to overcome this limitation. As a result, the problem quickly becomes ill-conditioned.



3.3. COMPUTING THE INVARIANT AND CONTRACTIVE SETS 43

Because of its simplicity and ease of implementation, Fourier elimination is quite popular. Although

Fourier elimination is very simple it could be inefficient, since many redundant inequalities5 are gen-

erated when solving forxk. These inequalities need to be removed at each step in order to reduce

the size of the problem in future iterations. Fourier elimination is therefore always followed by the

removal of redundant inequalities from̃Q(λC̃i (�,T))∩� or Q̃(λS̃i (�,T))∩� using the algorithm6

described in Appendix B. However, Fourier elimination does suffer from the fact that the number of

redundant constraints could increase exponentially in the worst case [Sch86]. As a result, this method

cannot guarantee computation of the robust one-step set in polynomial time or give a good bound on

the geometric complexity of the resulting set.

Remark 3.9.Note that projection does not require that any of the matricesAi be invertible. The

vertex-based method will only work if9 is bounded. Fourier elimination may or may not work if9

is unbounded, but is guaranteed to work if9 is bounded.

Computing the Robust One-Step Set via Minkowski Summation

If one assumes that there is no uncertainty in the pair(A, B), then the following approach which does

not rely on projection, can be used to computeQ(λ� ∼ D) [BR71, GS71]. IfA−1 is theinverse map

of A, then recalling the discussion in Section 2.10.2 it follows that

Q̃(λ�) = Q(λ� ∼ D) = {xk ∈ Rn | ∃uk ∈ U : xk+1 = Axk + Buk ∈ λ� ∼ D
}

= {xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ λ� ∼ D : xk = A−1(xk+1 − Buk)
}

= A−1 ((λ� ∼ D)⊕ (−BU)) ,

where(λ� ∼ D)⊕ (−BU) is the Minkowski sum ofλ� ∼ D andV , −BU.

The Minkowski sum can be computed by finding the vertices of the corresponding sets and computing

the convex hull of their sums [GS93], i.e.

(λ� ∼ D)⊕ V , {xk ∈ Rn |∃xk+1 ∈ λ� ∼ D, vk ∈ V : xk = xk+1 + vk

}
= conv

{
xk ∈ Rn |xk+1 ∈ vert(λ� ∼ D), vk ∈ vert(V), xk = xk+1 + vk

}
,

whereV can either be computed using a projection algorithm or, more efficiently, as suggested by

Propositions 3.6 and 3.7.

AssumingA is invertible, then the robust one-step set can be computed in a similar fashion to the

computation of the Minkowski sum, i.e.

Q(λ� ∼ D) = conv
{
xk | xk+1 ∈ vert(λ� ∼ D),uk ∈ vert(U), xk = A−1xk+1 − A−1Buk

}
.

5In [CS00] an algorithm which is based on finding the minimal generators of a cone [Las86] is used to compute the

projection. Anad hocway of avoiding redundancies is described in [DDD89, Sect. 6]. However, it is possible that the

number of inequalities could still be exponential in the worst case.
6In the later stages of Fourier elimination the linear inequalities encountered arise from the original constraints in a

special way. If this is cleverly exploited, the redundant inequalities can be detected and removed with a minimum of

computational effort [Chv83, Cha. 16].
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This vertex-based method is adopted in [GC87, Alg. 4.4] and [MS97], where the Geometric Bounding

Toolbox [VKV+] was used in the latter to perform the vertex and convex hull computations.

Note that the invertibility assumption can be dropped. If the hyperplane representation of the Min-

kowski sum

{xk ∈ Rn | T xk � t} , (λ� ∼ D)⊕ (−BU)

has been computed, then

Q̃(λ�) = Q(λ� ∼ D) = {xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ λ� ∼ D : Axk = xk+1 − Buk}
= {xk ∈ Rn | Axk ∈ (λ� ∼ D)⊕ (−BU)}
= {xk ∈ Rn | T Axk � t} .

By careful choice of algorithm the conversion from hyperplane- to vertex-representation, and vice-

versa, can be achieved in polynomial time [GS93, Sect. 2.3.3]. However, as the dimension of the

systemn grows the number of vertices increases quite rapidly compared to the number of hyperplanes

required to describe the various sets. The vertex-based method can therefore still become impractical

for large systems.

The Minkowski sum can also be computed using a projection method such as Fourier elimination.

Though Fourier elimination has worst-case exponential complexity this is not always a problem, since

the matrix is often quite sparse and many redundant constraints can be removed at each step. More

work needs to be done, however, in order to determine the suitability of using Fourier elimination

in computing the Minkowski sum. It is possible that a mix of different inequality- and vertex-based

methods might be best suited for the job.

3.3.4 Computation of the Reach Set

The reach set, as defined in Section 2.3, can also be computed using the projection method or via

Minkowski summation if there is no uncertainty in the pair(A, B).

For example, if� is a polyhedron, then recalling that

R(�) ,
{
xk+1 ∈ Rn | ∃xk ∈ �,uk ∈ U : xk+1 = Axk + Buk

}
,

it follows thatR(�) is the projection of the polyhedron

9 ,
{
[x′k+1, x

′
k,u
′
k]′ ∈ R2n+m |xk ∈ �,uk ∈ U, xk+1 = Axk + Buk

}
onto the subspace spanned by the firstn coordinates.

Alternatively,

R(�) = A�⊕ BU ,

whereA� and BU can either be computed using a projection algorithm or, more efficiently, as sug-

gested by Propositions 3.6 and 3.7.
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3.4 Some Efficient Algorithms

This section describes some less well-known algorithms for subset testing and the computation of the

linear map of a polyhedron. Depending on the size of the problem, these algorithms could be more

efficient than algorithms based on the methods described in Section 3.3.

3.4.1 Subset Testing

The following necessary and sufficient condition for a polyhedron to be a subset of another is an

extension of Farkas’ lemma [Sch86].

Lemma 3.1 (Extended Farkas’ lemma).[DH96, Bla99] Given two polyhedra

� , {ω ∈ Rn | Qω � q}
and

8 , {φ ∈ Rn | Sφ � s} ,
with Q ∈ RM×n, q ∈ RM, S∈ RN×n and s∈ RN, then

8 ⊆ �
if and only if there exists a non-negative matrix P∈ RM×N (i.e. Pi, j ≥ 0,∀i, j ) such that

PS= Q

and

Ps� q .

The existence of the matrixP can be checked by determining whether a solution to a feasibility

problem exists. This can be set up as an LP where the decision variables are the elements ofP and

the constraints arePS= Q andPs� q. A feasible solution exists if and only if8 ⊆ �.

This implies that instead of having to solveM LPs to check whether8 is a subset of� as in Propo-

sition 3.4, only a single LP is sufficient. The difference is that with Proposition 3.4 each of theM

LPs haven decision variables andN inequality constraints, while with Lemma 3.1 the LP hasM × N

decision variables and 2(M × n)+ M inequality constraints.

Depending on the problem and the LP solver that is used, either method could be faster. If an interior-

point method is used, then the time complexity is polynomial in the number of decision variables

and constraints, whereas if a simplex-based method is used, the complexity is worst-case exponential,

even if termination occurs in polynomial timeon average. An efficient practical algorithm would

compare the sizes ofM, N andn before deciding which algorithm to adopt.

This result can easily be extended to allow for the testing of set equality and approximate set equality

using a single LP as well.
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3.4.2 Linear Mapping of a Polyhedron

This section gives two results on how to compute the polyhedronB� if the number of columns of

B is less than or equal to the number of rows. This is a realistic assumption, since in most physical

systems the number of control inputs does not exceed the number of states7.

Proposition 3.6 (Invertible matrix). [BR71] A polyhedron

� , {ω ∈ Rn | Qω � q}

with Q ∈ RN×n and q∈ RN is given. If B∈ Rn×n is invertible, then

B� = {x ∈ Rn | QB−1x � q} . (3.15)

Proof. By definition,

B� , {x ∈ Rn | ∃ω ∈ � : x = Bω} .

SinceB−1 exists, one can writeω = B−1x. Therefore

B� = {x ∈ Rn | B−1x ∈ �}

and by substitutingω = B−1x into the definition of� the result follows:

B� = {x ∈ Rn | QB−1x � q} .

Remark 3.10.No LPs are needed to computeB�. B−1 can be computed using standard numerical

methods in polynomial time.

It is trivial that for a given scalarα 6= 0 and set� , {ω ∈ Rn | Qω � q}, that

α� =
{
ω ∈ Rn

∣∣∣∣ 1αQω � q

}
.

The next result follows immediately from Proposition 3.6 and states that the number of inequalities

describing the imageB� is no more than the number of inequalities describing�.

Corollary 3.4 (Invertible matrix). If B is invertible and� is given by N linear inequalities, then

B� is given by (at most) N linear inequalities.

If B is not invertible, then the following result can be used to compute the mappingB�.
7In many cases the number of inputs is more than the number ofoutputs. However, even then the number of inputs very

seldom exceeds the number ofstates. If the number of columns ofB is greater than the number of rows ofB, then the

mappingB� can be computed via a projection.
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Proposition 3.7 (Singular matrix). [MB76] A polyhedron

� , {ω ∈ Rm | Qω � q}
with Q ∈ RN×m and q∈ RN is given. If B∈ Rn×m is given with m≤ n and r= rank(B), then

B� = {x ∈ Rn | B⊥x = 0,QBI x � q} , (3.16)

where the rows of B⊥ ∈ R(n−r )×n form a basis for the subspace ofRn which is orthogonal to the

subspace spanned by the column vectors of B. The matrix BI ∈ Rm×n is any matrix with the property

BI B = Im.

Proof. A proof is given here, since [MB76] does not contain one.

Define

8 , {x ∈ Rn | B⊥x = 0,QBI x � q} .
It is obvious that KerB⊥ is orthogonal to ImB′⊥. Since ImB′⊥ is chosen to be orthogonal to ImB, i.e.

B⊥B = 0, and the column vectors of [B′⊥ B] spanRn, it follows that

Ker B⊥ = Im B .

This allows one to conclude thatx ∈ Im B if and only if x ∈ Ker B⊥, i.e.

B⊥x = 0⇔ ∃ω ∈ Rm : x = Bω .

This implies that

8 = {x ∈ Rn | ∃ω ∈ Rm : x = Bω,QBI x � q} .

Recalling thatBI B = Im and by substitutingx = Bω into QBI x � q, it follows that

8 = {x ∈ Rn | ∃ω ∈ Rm : x = Bω,Qω � q} .

The proof is completed by comparing this to the definition ofB� and the fact thatQω � q, i.e.

B� = {x ∈ Rn | ∃ω ∈ Rm : x = Bω,Qω � q} .

Remark 3.11.Standard numerical methods can be used to computeB⊥ in polynomial time. The

matrix BI is the solution to a set ofm2 equalities inm × n unknowns and can therefore also be

computed in polynomial time using standard numerical linear algebra methods.

This result allows one to give a bound on the number of inequalities describingBU.

Corollary 3.5 (Singular matrix). If B ∈ Rn×m, m ≤ n, r = rank(B) and� is given by N linear

inequalities, then B� is given by (at most) N+ 2(n− r ) linear inequalities.

This is a tight bound, since it is easy to find a problem where the number of non-redundant inequalities

is equal toN + 2(n − r ). Note that Corollary 3.4 is a special case of Corollary 3.5 for the case

rank(B) = n = m.
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3.5 Summary

This chapter deals with linear systems with parametric uncertainty in the pair(A, B) and disturbances

acting linearly on the state. The concept of contractive sets was introduced and Theorem 3.1 was

given for guaranteeing that the computation of a robust control invariant set will terminate after a

finite number of steps.

Some well-known algorithms were described for implementing the three main ingredients identified

in Chapter 2 for computing the robust controllable sets. Section 3.3 discussed how to compute the

intersection of two polyhedra and test whether one polyhedron is a subset of another (and hence also

be able to test for equality and invariance).

It was shown that the Pontryagin difference between two convex polyhedra can be computed using a

finite number of LPs. This set can then be used in a projection operation or Minkowski summation to

compute the robust one-step set.

Finally, Section 3.4 gave some less well-known results on subset testing and the linear mapping of a

polyhedron. The latter result allows one to derive a non-conservative upper bound on the number of

inequalities needed to describe the linear map.



Chapter 4

Robust Controllable Sets for Hybrid and

Piecewise Affine Systems

This chapter describes how to compute the robust controllable sets for piecewise affine systems. The

result is based on computing the Pontryagin difference between the union of convex polyhedra and a

convex polyhedron.

4.1 Introduction

In many control applications existing today, there is a high level of interaction between subsystems

with continuous dynamics and subsystems with discrete dynamics. These systems are often referred

to as hybrid systems.

A system is said to behybrid if it has state variables which can take on values from anuncountable

set and state variables which can take on values from acountableset. State variables whose set of

valuations is countable is often referred to asdiscreteand variables whose valuations come from an

uncountable set, such as a Euclidean space, ascontinuous. The evolution of the system is usually given

by equations which depend on both types of variables, where the dynamics can be continuous-time,

discrete-time or sampled-data.

Classical control theory has mainly been concerned with continuous systems and the field of computer

science has mainly been concerned with systems with discrete dynamics. As systems are becoming

more complex and the interaction of continuous and discrete dynamics is increasing, it is necessary to

develop tools for analysing and synthesising controllers for such systems.

At present, there are two main approaches to dealing with hybrid systems; a general, system-based

approach [BBM98, LTS99] and a more specific, piecewise-affine (PWA) description [RJ00, BFM00].

Though various theoretical results regarding the undecidability of the controllability and reachability

problem for general hybrid systems have been published [BT99, BT00], the reachability problem has

49
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been shown to be decidable for some classes of continuous-time, linear hybrid systems [LPY99].

An approach based on game theory is described in [LTS99] for the computation of reachable sets for

continuous-time hybrid systems. The authors of [VSLS99] propose the use of quantifier elimination

theory for computing robust invariant sets for discrete-time hybrid systems.

In [BTM00a] a procedure which uses mixed-integer programming is described which can be used for

computing the reachable sets for discrete-time PWA systems where there is either no control input or

no disturbance. The discussion in this chapter is concerned with the computation of robust controllable

sets for discrete-time PWA systems, where there is both a control input and a disturbance present1.

4.2 Mixed Logic Dynamical Systems

The MLD modelling framework, introduced in [BM99a], allows one to represent systems which can

be described by interdependent physical laws, logical rules and operating constraints. It allows a large

class of systems to be described such as

• constrained linear systems;

• finite state machines;

• some classes of discrete-event systems;

• systems with discrete states and/or inputs;

• nonlinear systems which can be approximated by piecewise affine functions;

• any combination of the above interacting with each another.

The general MLD form is given by

xk+1 = Axk + B1uk + B2δk + B3zk (4.1a)

yk = Cxk + D1uk + D2δk + D3zk (4.1b)

E2δk + E3zk � E1uk + E4xk + E5 (4.1c)

wherexk ∈ Rnc × {0,1}nl are the continuous and binary state variables,uk ∈ Rmc × {0,1}ml are the

inputs, yk ∈ Rpc × {0,1}pl the outputs,δk ∈ {0,1}rl andzk ∈ Rrc represent binary and continuous

auxiliary variables. The latter are introduced when propositional logic statements are transformed

into linear inequalities. All the constraints on the state, input,δk and zk are contained in (4.1c).

The description in (4.1) only appears to be linear; the variablesδk are constrained to be binary. It

1The method described in this chapter is self-contained and does not rely on the results of [BTM00a]. However, it is

possible to integrate some of the ideas in [BTM00a] for improving the efficiency of computing the one-step set.
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is assumed that the system is completely well-posed [BM99a] in the sense that oncexk anduk are

assigned,xk+1 andyk are uniquely defined.

As mentioned above, the variablesδk andzk are introduced when converting statements to inequalities.

For example, the statement

z= δ f (x)

is equivalent to

z≤ Mδ

−z≤ −mδ

z≤ f (x)−m(1− δ)
−z≤ − f (x)+ M(1− δ) ,

wherem (M) is a lower (upper) bound off (x) over some bounded set. As another example, the

propositional logic statement

[δ3 = 1]↔ [δ1 = 1] ∧ [δ2 = 1]

is equivalent to

−δ1+ δ3 ≤ 0

−δ2+ δ3 ≤ 0

δ1+ δ2− δ3 ≤ 1 .

This ability to convert statements involving logic variables continuous functions to inequalities is what

gives the MLD formalism the flexibility to deal with a large range of systems.

A number of controller design techniques has been developed for MLD systems. Controller design

can be achieved by

• formulating an MPC problem and solving iton-line using a mixed-integer quadratic program

(MIQP) solver [BM99a] or via a performance-driven reachability analysis [BGT00];

• formulating an MPC problem as a multi-parametric mixed-integer linear program (mp-MILP)

and computingoff-line a piecewise linear (PWL) optimal control law [BBM00a, BBM00b,

BBM00c];

• obtaining the PWA equivalent form of the MLD model [BFM00] and computing a piecewise-

linear (PWL) control law by solvingoff-linea set of linear matrix inequalities (LMIs) [MFM00].

This method is based on that of [RJ00] of computing piecewise quadratic Lyapunov functions,

but for discrete-time, rather than continuous-time PWA systems.

For further details on propositional logic and how hybrid systems can be modelled in the MLD frame-

work, the reader is referred to the references cited in this section. The reason for introducing MLD

systems here is because they have an equivalent PWA description.
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4.3 Equivalence Between MLD and Piecewise Affine Systems

In [BFM00] it is shown in a constructive manner that MLD systems are formally equivalent to PWA

systems. This fact allows one to use results which have been developed for PWA systems and ap-

ply them to a large class of linear hybrid systems which can be modelled as MLD systems, and vice

versa. The PWA equivalent form allows one to develop observability and controllability tests for

hybrid systems [BFM00], synthesise controllers [MFM00], perform a verification and reachability

analysis [BM99b, BTM00a], compute controllable, stabilisable and admissible sets [BTM00a], con-

struct a state estimator and fault detector [BMM99, FMM00] and identify a model from input-output

data [FMLM00].

Piecewise affine systems are described by the state-space equations:

xk+1 = Ai xk + Bi uk + Eiwk + f i , if

[
xk

uk

]
∈ Xi , (4.2)

where{Xi }s−1
i=0 is apolyhedralpartition2 of the state and input space. EachXi is given by

Xi ,
{[

xk

uk

] ∣∣∣∣∣Qi

[
xk

uk

]
� qi

}
(4.3)

and the f i are suitable constant vectors. Each subsystem defined by the 4-tuple(Ai , Bi , Ei , f i ),

i ∈ {0,1, . . . , s− 1}, is termed acomponentof the PWA system (4.2). If all thef i = 0, then the

system (4.2) is said to be piecewise linear (PWL) and if allAi = 0, Bi = 0, Ei = 0 then the system

is piecewise constant. It is still required that the states and inputs satisfyX andU. It is assumed that

0 ∈W and thatW is a compact polyhedron (polytope).

Remark 4.1.A disturbancewk ∈ W has been added to the description of the PWA system. The

disturbance affects the state via the matrixEi , but the partitioning still only depends on the state and

the input. In [BFM00, BM99b, BTM00a, BTM00b] it is assumed that there is no control inputBi = 0

or that there is no disturbanceEi = 0.

Remark 4.2.Note that even thoughxk ∈ Rn, uk ∈ Rm andwk ∈ Rq, this model is general enough

to represent the discrete variables present in the MLD model; the matrix update equations are well-

defined when converting from MLD to PWA form and the state evolution will be well-defined for

well-defined initial conditions. For example, consider the simple PWA system

xk+1 =


16 if xk ≥ 8

2xk if 0 ≤ xk ≤ 8

0 if xk ≤ 0

.

If x0 ∈ {0,1,2,4,8,16}, then future evolutions of the state variable will take on values from the same

discrete set.
2The interiors of all theXi are pair-wise disjoint and the union

⋃s−1
i=0 Xi covers a polyhedral region of interest in the

state and input space [BBM00c, Def. 4].
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The common boundaries ofXi are calledguard-lines. Without additional continuity assumptions on

the PWA system, (4.2) is not well-posed in general, since the function is multiply defined on the guard-

lines. This will not affect the computation of the Pontryagin difference as discussed in Section 4.5.1,

but might affect the computation of the one-step set as discussed in Section 4.5.2. This is a technical

issue which can be avoided in practice. For example, given the ill-posed system

xk+1 =
0.8xk if xk ≥ 1

0.5xk if xk ≤ 1

it can be seen that ifxk = 1, thenxk+1 ∈ {0.8,0.5}. By redefining the system as

xk+1 =
0.8xk if xk ≥ 1

0.5xk if xk ≤ 1− ε
whereε > 0 is a sufficiently small number (typically machine precision), the state evolution is well-

defined. When converting a well-posed MLD system to PWA form, the resulting description will have

a similar form as the latter, thereby guaranteeing that the evolution of the states of the PWA system is

well-defined.

See [BFM00] for more details on how to convert from MLD form to PWA form. Converting from

PWA form to MLD form is trivial and is discussed in [BM99a].

4.4 Verification and Reachability Analysis of PWA Systems

The following problem is addressed in [BTM00c] (see Figure 4.1).

Problem 4.1 (Reachability analysis problem).Given a system in MLD or PWA form and a set of

initial conditionsX0, a collection of disjoint3 target setsZ1, Z2, . . . , ZL, a bounded set of inputsU
and a time horizon T ,

1. determine whether there exists an input sequence{uk ∈ U}t−1
0 such thatZ j is reachable from

X0 within t ≤ T steps;

2. if such a sequence exists, then compute the subset of initial conditionsXZ j ofX0 from whichZ j

can be reached within T steps;

3. for a given x0 ∈ XZ j , compute an input sequence{uk ∈ U}t−1
0 , where t≤ T , which drives x0 to

any xt ∈ Z j .

Remark 4.3.Note that it is assumed in this problem that there is no disturbance in (4.2), i.e.Ei = 0.

A similar problem can also be formulated for the case when there is a disturbance but no control input,

i.e. Bi = 0 [BTM00a]. The latter problem is typically known as theverificationproblem [BM99b].
3Strictly speaking, it is not necessary for theZ j to be disjoint.
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X0

Z2

Target Set

X

X

XZL
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Initial States

Target Set

ZL

Target Set

Z1

Figure 4.1: Reachability analysis problem

Without wanting to get into too much detail, the point that is being made is that the algorithm presented

in [BM99b, BTM00a, BTM00c] can be used with very little modification to compute many of the sets

described in Chapter 2. In addition, the iterative procedure of Algorithm 2.1 is not necessary and

the sets can be computed more efficiently in a single pass with the algorithm of [BM99b, BTM00c,

BTM00a]. However, this algorithm is applicable only if the PWA system has either no control input

or no disturbance.

When there are both control inputs and disturbances present and one would like to compute therobust

controllablesets, a new algorithm is needed. An iterative procedure based on Algorithm 2.1 and the

computation of the Pontryagin difference of non-convex sets is discussed next.

4.5 Robust Controllable Sets for PWA Systems

As discussed in Section 2.10, if the system is of the form

xk+1 = fxu(xk,uk)+ fw(wk) , (4.4)

as is the case with PWA systems, and one defines

D , fw(W) , (4.5)
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then therobustone-step set̃Q(�) is equal to thenominalone-step setQ(� ∼ D), i.e.

Q̃(�) = Q(� ∼ D) , {xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ � ∼ D : xk+1 = fxu(xk,uk)
}
. (4.6)

This implies that in order to develop an algorithm for computing robust controllable sets for a given

PWA system, it is sufficient to develop procedures for computing the Pontryagin difference� ∼ D,

the nominal one-step setQ(� ∼ D) and the intersectionQ(� ∼ D) ∩ �. Given a target setT, the

iterative procedure of Algorithm 2.1 can then be used to compute the robust controllable setK̃i (X,T).

For PWA systems, even ifT is a convex polyhedron, all thẽKi (X,T) are not guaranteed to be convex

polyhedra. As a result, the algorithms described in Chapter 3 cannot be applied directly. However,

if T is a convex polyhedron, then all thẽKi (X,T) can always be described as the union of a number

of convex polyhedra. This chapter presents the building blocks of an algorithm for computing the

robust controllable sets for PWA systems. Methods for computing the Pontryagin difference� ∼ D
and the nominal one-step setQ(� ∼ D), where� is given as the union of a finite number of convex

polyhedra, will be described in Sections 4.5.1 and 4.5.2.

Before proceeding, the following assumption is made.

Assumption 4.1. Ei = E,∀i = 0, . . . , s− 1.

In other words,

0 ∈ D = EW .

4.5.1 Pontryagin Difference

This section describes a method for computing the Pontryagin difference� ∼ D, where� is a

(possibly non-convex) set which can be described as the union of a set of convex polyhedra, i.e.

� ,
N⋃

j=1

� j , (4.7)

where� j are convex polyhedra.

Recall the definition of the Pontryagin difference:

� ∼ D , {xk ∈ Rn | xk + dk ∈ �,∀dk ∈ D} .

The following result states that if� is given by the union of disjoint sets, then the Pontryagin dif-

ference is given by the union of the Pontryagin difference of each� j ∼ D. If this is the case, then

Proposition 3.5 can be used to compute all the� j ∼ D, since all the� j are convex polyhedra.

Proposition 4.1. If 0 ∈ D and� = ⋃N
j=1� j , where all the� j are pairwise disjoint, then� ∼ D =⋃N

j=1(� j ∼ D).
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Proof. If xk ∈⋃N
j=1(� j ∼ D), thenxk ∈ � j ∼ D for some� j . This implies thatxk+dk ∈ � j ,∀dk ∈

D. Combining this result with the fact that� j ⊆ �, it follows thatxk + dk ∈ �,∀dk ∈ D and hence

xk ∈ � ∼ D.

This allows one to conclude that
⋃N

j=1(� j ∼ D) ⊆ � ∼ D. The fact that� ∼ D ⊆ ⋃N
j=1(� j ∼ D)

will be shown by contradiction.

Assume that� ∼ D *⋃N
j=1(� j ∼ D).

If xk ∈ (� ∼ D)\⋃N
j=1(� j ∼ D), then eitherxk ∈ � j \� j ∼ D for some� j or xk /∈ �.

If xk /∈ �, thendk = 0 results inxk + dk /∈ �. This implies that� ∼ D ⊆ � and hence that the

former is the only other possible case. Assuming this is true, i.e.xk ∈ � j \� j ∼ D for some� j , then

one can always choose adk ∈ D such thatxk + dk ∈ ∂�.

However, there also exists anε > 0 such that it is possible to choose adk ∈ D such thatdk + ε ∈ D
andxk + dk + ε /∈ �. This follows from the fact that all the� j are disjoint, i.e.∀ j , xk ∈ ∂� j , there

exists anε > 0 such thatxk + ε /∈ �. The casexk ∈ � j\� j ∼ D is therefore also not possible and

hence(� ∼ D)\⋃N
j=1(� j ∼ D) = ∅.

This implies that the assumption� ∼ D *⋃N
j=1(� j ∼ D) is false, thereby concluding the proof.

However, in general all the� j are not disjoint and as a result,� ∼ D 6=⋃N
j=1(� j ∼ D), but

� ∼ D ⊇
N⋃

j=1

(� j ∼ D) .

From this point on, it is assumed that there exist�i ,� j , i 6= j such that�i ∩� j 6= ∅.
Before proceeding to describe the algorithm, the following set is defined:

QD(�) ,
{
xk ∈ Rn | ∃dk ∈ D : xk + dk ∈ �

}
. (4.8)

Proposition 4.2. The Pontryagin difference is given by

� ∼ D = [QD (�c
)]c

. (4.9a)

Proof. From the definition of the Pontryagin difference it follows that

(� ∼ D)c = {xk ∈ Rn | ∃dk ∈ D : xk + dk ∈ �c} .

This set is the same set asQD(�c). The proof is concluded by taking the complement.

Remark 4.4.Note that this result does not require that 0∈ D.

Because of the earlier assumption that 0∈ D, the Pontryagin difference� ∼ D can therefore be

computed by determining all states in� for which a disturbance exists which will take the system to

�c and then taking the complement.
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To summarise, given a set�, which is the union of a finite number of convex polyhedra, and a compact

polyhedronD, the Pontryagin difference can be computed as follows:

1. Given

� ,
N⋃

j=1

� j ,

compute the complement�c as described in Appendix D.�c is then given by

�c ,
M⋃

i=1

8i ,

where each8i is an open polyhedron;

2. Given the polytopeD, compute

QD(�c) = QD
(

M⋃
i=1

8i

)

=
M⋃

i=1

QD (8i ) .

The last step is a consequence of Proposition 2.2. As in Chapter 3, eachQD (8i ) can be com-

puted using a projection algorithm or as the Minkowski sumQD (8i ) = 8i ⊕ (−D);

3. Compute [QD(�c)]c as described in Appendix D. This gives the Pontryagin difference as the

union of a finite number of closed polyhedra:

� ∼ D ,
L⋃

j=1

Z j .

Remark 4.5.If the� j are closed sets, then the8i are all open sets. Open sets are difficult to work with

in computers with finite precision arithmetic. When implementing the algorithm in a computer, the

8i can be substituted with their closures to simplify the coding and improve the numerical condition.

Similarly, when computing [QD(�c)]c, the closures of the sets could be used without affecting the

result.

Remark 4.6.Note that the procedure described here is not dependent on the system dynamicsxk+1 =
fxu(xk,uk) and thatEi = E. This implies that the Pontryagin difference is not dependent on the

partitioning of the state and input space. The Pontryagin difference� ∼ D for a given� is unique,

even if the PWA system is not well-posed.
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4.5.2 Computation of the One-step Robust Controllable Set

When computing the one-step set, the result is dependent on the system dynamicsxk+1 = fxu(xk,uk)

and hence also on the partitioning of the state and input space. This section describes how to compute

the one-step set for well-defined PWA systems, given the Pontryagin difference.

If the Pontryagin difference is given as the union of convex polyhedral sets, as in the previous section,

� ∼ D ,
L⋃

j=1

Z j , (4.10)

then Proposition 2.2 allows one to write

Q̃(�) = Q(� ∼ D) =
L⋃

j=1

Q(Z j )

Here the setQ(Z j ) has to be computed while taking the partitioning{Xi }s−1
i=0 into account. As a result

Q̃(�) = Q(� ∼ D) =
L⋃

j=1

s−1⋃
i=0

Qi (Z j ) ,

where

Qi (Z j ) ,
{
xk ∈ Rn | ∃uk ∈ U, xk+1 ∈ Z j : [x′k,u

′
k]′ ∈ Xi , xk+1 = Ai xk + Bi uk

}
. (4.11)

In principle an algorithm which is based on this expression will work, but it will require the com-

putation ofs× L one-step sets at each step. This could be computationally expensive. To reduce

the number of computations, one can compute which combinations ofX ∩ Xi are non-empty4. The

one-step robust controllable set is computed by noting that

K̃1(X,�) = K1(X,� ∼ D)
= Q(� ∼ D) ∩ X

=
L⋃

j=1

Q(Z j ) ∩ X

=
L⋃

j=1

s−1⋃
i=0

Qi (Z j ) ∩ X

=
L⋃

j=1

⋃
{i |X∩Xi 6=∅}

Qi (Z j ) ∩ X .

TheQi (Z j ) can be computed using a projection algorithm The setK̃1(X,�) is a non-convex, possibly

disjoint set, given by the union of a finite number of convex polyhedra.
4SinceX ⊆ Rn andXi ⊆ Rn+m, with a slight abuse of notationX ∩ Xi , X ∩

{
xk | ∃uk : [x′k u′k]′ ∈ Xi

}
.
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Remark 4.7.If � ∼ D is given by a set of convex polyhedral sets as above, then the one-step robust

controllable set can also be computed using the algorithm in [BM99b, BTM00c, BTM00a]. The

algorithm is initialised withX0 = X and target setT = � ∼ D. The output from the algorithm will

beK1(X,� ∼ D). Some benefit in efficiency might be obtained by exploiting the MLD structure

in order to determine whichQi (Z j ) need to be computed. This might involve setting up a mixed-

integer feasibility program as in [BM99b, BTM00c, BTM00a]. Furthermore, a convexity recognition

algorithm such as the one described in [BFT00] could also be used to reduce the number of polyhedra

needed to describe the resulting robust controllable sets.

To summarise, the one-step robust controllable setK1(X,�) for a PWA system can be computed as

follows:

1. ComputeI , {i | X ∩ Xi 6= ∅}.
2. Given

� ∼ D ,
L⋃

j=1

Z j

and using an appropriate method from Chapter 3, computeQi (Z j ) ∩ X for j = 1, . . . , L and

i ∈ I.

The robust controllable set is given by

K̃1(X,�) =
L⋃

j=1

⋃
i∈I
Qi (Z j ) ∩ X . (4.12)

4.6 Example

Consider the following well-posed PWA system

xk+1 =
A1xk + B1uk + E1wk, if

[
1 1

]
xk ≤ 0

A2xk + B2uk + E2wk, if
[
−1 −1

]
xk ≤ 0

with

A1 =
[

1 2

3 4

]
, A2 =

[
3 4

5 6

]
, B1 = B2 =

[
1 0

0 1

]
, E1 = E2 =

[
1 0

0 1

]
and the constraints

X , {x ∈ R2 | ‖x‖∞ ≤ 10}
U , {u ∈ R2 | ‖u‖∞ ≤ 5}
W , {w ∈ R2 | ‖w‖∞ ≤ 1} .
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The polyhedral partition of the state and input space is

X0 =
{[

xk

uk

]
∈ R4

∣∣∣∣∣[1 1 0 0
] [xk

uk

]
≤ 0

}

X1 =
{[

xk

uk

]
∈ R4

∣∣∣∣∣[−1 −1 0 0
] [xk

uk

]
≤ 0

}
.

The one-step robust controllable setK̃1(X,�) is to be calculated, where

� ,
2⋃

j=1

� j ,

with

�1 =

xk ∈ R2

∣∣∣∣∣∣∣∣∣∣


0 1

−1 0

0 −1

1 0

 xk �


6

5

4

0




�2 =

xk ∈ R2

∣∣∣∣∣∣∣
−1 1

1 0

0 1

 xk �
1

5

4




� is shown in Figure 4.2.

4.6.1 The Pontryagin Difference

The complement of� is computed as in Appendix D. A description of this set is given by

�c ,
5⋃

i=1

8i ,

with

81 =
{

xk ∈ R2
∣∣∣[1 0

]
xk < −5

}
82 =

{
xk ∈ R2

∣∣∣[0 −1
]

xk < −6
}

83 =
{

xk ∈ R2
∣∣∣[0 1

]
xk < −4

}
84 =

{
xk ∈ R2

∣∣∣[−1 0
]

xk < −5
}

85 =

xk ∈ R2

∣∣∣∣∣∣∣
 0 1

−1 0

1 −1

 xk ≺
 6

0

−1


 .
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Figure 4.2: The shaded area represents� = ⋃2
j=1� j

�c is shown in Figure 4.3.

With D =W, the sets

QD(8i ) = 8i ⊕ (−D), i = 1,2,3,4,5

are computed in order to obtain

QD(�c) =
5⋃

i=1

QD (8i ) .

The complement [QD(�c)]c is computed as in Appendix D, giving the Pontryagin difference

� ∼ D ,
3⋃

j=1

Z j ,
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Figure 4.3: The outer, shaded area represents�c = ⋃5
i=18i , while the inner, shaded area represents

the Pontryagin difference� ∼ D =⋃3
j=1Z j

with

Z1 =

xk ∈ R2

∣∣∣∣∣∣∣∣∣∣


−1 0

0 1

0 −1

1 0

 xk �


4

5

3

−1




Z2 =

xk ∈ R2

∣∣∣∣∣∣∣
 0 1

−1 0

1 −1

 xk �
0

1

1




Z3 =

xk ∈ R2

∣∣∣∣∣∣∣
−1 1

1 0

0 −1

 xk �
−1

4

3


 .

� ∼ D is shown in Figure 4.3.
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4.6.2 The One-step Set

Since the partition{X0,X1} is not dependent onuk, the Minkowski sum can be used to compute the

sixQi (Z j ). They are given by

Q0(Z1) =

xk ∈ R2

∣∣∣∣∣∣∣∣∣∣


−1 0

1 1

−3 −4

1 2

 xk �


10

0

8

4




Q0(Z2) =


xk ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−1 0

1 1

3 4

−1 −2

1 2

−3 −4


xk �



10

0

5

6

6

7





Q0(Z3) =


xk ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣


−1 0

1 1

−3 −4

3 4

−1 −2

 xk �


10

0

8

8

7




and

Q1(Z1) =


xk ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣


1 0

−1 −1

5 6

−5 −6

3 4

 xk �


10

0

10

8

4




Q1(Z2) =

xk ∈ R2

∣∣∣∣∣∣∣∣∣∣


1 0

−1 −1

5 6

−3 −4

 xk �


10

0

5

6




Q1(Z3) =

xk ∈ R2

∣∣∣∣∣∣∣∣∣∣


1 0

−1 −1

5 6

−3 −4

 xk �


10

0

8

7


 .

The robust one-step controllable set

K̃1(X,�) =
3⋃

j=1

1⋃
i=0

Qi (Z j ) ∩ X

is shown in Figure 4.4.
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Figure 4.4: The shaded area represents the robust one-step controllable setK̃1(X,�)

4.7 Summary

This chapter started by briefly describing MLD systems. The reason for introducing MLD systems

in this chapter is that a large class of hybrid systems can be described using the MLD formalism.

Furthermore, MLD systems are equivalent to PWA systems. This implies that if one can compute

robust controllable sets for one class of systems, then the same sets can be used in the analysis and

synthesis of controllers for the equivalent system. This chapter was concerned with computing the

robust controllable sets for PWA systems.

In general, the sets are non-convex at each stage of the iteration in the computation of the robust

controllable sets. As a matter of fact, they are given by the union of a set of convex polyhedra.

The main building block in the computation of the robust controllable set is the computation of the

Pontryagin difference of the union of convex polyhedra and the disturbance set. The computation

of the Pontryagin difference involves computing the complement of the union of a set of polyhedra

twice. This appears to be the main bottleneck of the proposed approach.

Nevertheless, it is possible to proceed and complete the computation of the robust controllable set

using the results obtained in the previous two chapters. Though this chapter only describes the com-

putation of one step of the algorithm for the robust controllable sets, by repetitively applying the

algorithm one can compute all the robust controllable sets. With the appropriate choice of target

set, one can also compute the maximal robust control invariant and maximal robust stabilisable sets,

provided they are finitely determined.



Part II

Nonlinear Model Predictive Control
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Chapter 5

Nominal Feasibility in Model Predictive

Control

The nominal MPC regulation problem is introduced. The feasible set of the MPC scheme is defined

and the causes of infeasibility in MPC are given. The notion of strong feasibility is introduced and

a new sufficient condition is derived for guaranteeing strong feasibility. The effect of the choice

of horizons and terminal constraint set on the feasible set and feasibility of the MPC problem is

investigated.

5.1 Introduction

This chapter briefly introduces Model Predictive Control (MPC) and proceeds to address some nomi-

nal feasibility issues related to solving the MPC problem.

It is assumed that there are no disturbances present, i.e.

xk+1 = f (xk,uk) .

The MPC control action is determined by solving the following finite horizon optimal control problem

at each time step:

Problem 5.1 (Nominal MPC Regulation Problem). Solve

V∗(xk) = min
πN

k

F(x̂P|k)+
P−1∑
i=0

L(x̂i |k, ûi |k) (5.1)

67
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subject to

x̂l+1|k = f (x̂l |k, ûl |k), x̂0|k = xk (5.2a)

x̂l |k ∈ X, ûl |k ∈ U, l = 0, . . . , P − 1 (5.2b)

ûl |k = h(x̂l |k), l = N, . . . , P − 1 (5.2c)

x̂P|k ∈ T ⊆ X . (5.2d)

The decision variable in the MPC problem is the control sequence

πN
k ,

[
û′0|k, û

′
1|k, . . . , û

′
N−1|k

]′
(5.3)

and it is assumed that no disturbances are present. The notationx̂l |k and ûl |k denote estimates of

the state and input at timek + l . The variablesN and P are the control and prediction horizons,

respectively, and it is assumed thatP ≥ N ≥ 0. Note that if P = N, then constraint (5.2c) is

removed.T is the terminal constraint set and 0∈ T ⊆ X.

N, P, F(·), L(·, ·), h(·) andT are the design variables andf (·, ·), X andU are fixed.X andT are

closed andU is compact. It is assumed that(0,0) ∈ X◦ ×U◦ and 0= f (0,0). The aim of the control

action is to regulate the states and control inputs to(0,0).

Since the optimisation is over a finite horizon, in the design of the terminal costF(x̂P|k) and the stage

cost L(x̂i |k, ûi |k), it is assumed that̂ul |k = h(x̂l |k) is a Lyapunov stabilising control law defined on

X that will be applied on the infinite horizon forl ≥ P. It is assumed thatL(·, ·) is a continuous,

non-negative, time-invariant function defined onX×U andF(·) is a continuous, non-negative, time-

invariant function defined onX.

At each time instantk, the current statexk of the system is measured. The new control input to be

applied to the system is the first element of the (not necessarily optimal) solutionπN
k
∗

to Problem 5.1,

i.e.

κ(xk) , û∗0|k .

Hereκ(x) implicitly defines the MPC control law, with the closed-loop system being given byxk+1 =
f (xk, κ(xk)). Feedback is incorporated into MPC by repeating the state measurement and control

input calculation at the next time instant. Due to the finite prediction horizon, the computed control at

the next time instant̂u∗0|k+1 is in general not equal to the previously computedû∗1|k.

Remark 5.1.Note that the constraint̂x0|k ∈ X is included in (5.2). Strictly speaking, this is not

necessary since this constraint does not affect the resulting control action, but only affects the region

of feasibility. The constraint can be removed to enlarge the region of feasibility of the MPC controller.

However, by including this constraint the notation and presentation of the results in this chapter are

simplified.

Remark 5.2.The above formulation is the one most commonly adopted in the literature and is similar

to those of [May00, MRRS00], but with a prediction horizon which is allowed to be different from the
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control horizon. There is some benefit to be gained by including a separate prediction horizon, such

as increasing the size of the feasible set ifT is a control invariant set. Section 5.8 discusses the effect

of the prediction horizon on the properties of the feasible set.

5.2 Nominal Feasibility in MPC

Often one is interested in obtaining the set of states for which the MPC problem is feasible. Before

proceeding, it is necessary to assume that the set of ordered pairs(xk, π
N
k )which satisfy the constraints

in (5.2), is non-empty.

The feasible set1 XF of the MPC problem is the set of statesxk for which a feasible control sequence

πN
k to Problem 5.1 exists, i.e.

XF (T, N, P) ,
{
xk ∈ Rn | ∃πN

k : (xk, π
N
k ) satisfies (5.2)

}
. (5.4)

XF can therefore be interpreted as the orthogonal projection of (5.2) onto the first coordinate. Note

also that the input admissible set of the MPC controller is, by definition,Xκ = XF .

If a projection algorithm is available then the feasible set can be computed. However, as discussed in

Chapter 3, projection is not the most efficient or easiest way to proceed in calculating the feasible set.

An alternative method is to compute theN-stepnominalcontrollable set toKOh
P−N(X,T). Depending

on the problem and the algorithms used, the iterative approach might be more efficient.

Theorem 5.1. The feasible setXF (T, N, P) of the MPC regulation problem is given by

XF (T, N, P) = KN(X,KOh
P−N(X,T)) . (5.5)

Proof. From the constraints (5.2) the solution to the MPC problem has to satisfyx̂l |k ∈ X andûl |k =
h(x̂l |k) ∈ U,∀l = N, . . . , P − 1, thereforex̂l |k ∈ Xh,∀l = N, . . . , P − 1. It is also required that

x̂P|k ∈ T, thereforex̂N|k ∈ KOh
P−N(X,T).

Furthermore, the constraintŝxl |k ∈ X and ûl |k ∈ U have to be satisfied for alll = 0, . . . , N − 1.

Because the problem does not include the effect of any disturbances, it follows that there exists a

control sequence of lengthN such that these constraints can be satisfied if only ifxk = x̂0|k ∈
KN(X,KOh

P−N(X,T)).

Remark 5.3.As mentioned earlier, the constraintx̂0|k ∈ X can be removed. If this constraint has

been removed, then the feasible set is equal to the one-step set to the(N − 1)-step controllable set to

KOh
P−N(X,T), i.e.XF (T, N, P) = Q (KN−1

(
X,KOh

P−N (X,T)
))

.

It is useful to note that the feasible set is equal to the one-step controllable set to the feasible set of the

MPC problem with a control and prediction horizon ofN − 1 andP − 1:
1Occasionally, the arguments(T, N, P) in XF (T, N, P) will be dropped for simplicity of notation.
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Corollary 5.1.

XF (T, N, P) = Q(XF (T, N − 1, P − 1)) ∩ X (5.6a)

= K1(XF(T, N − 1, P − 1)) . (5.6b)

Proof. This follows by observing that

XF(T, N, P) = KN(X,KOh
P−N(X,T)) = Q(KN−1(X,KOh

P−N(X,T))) ∩ X

and

XF(T, N − 1, P − 1) = KN−1(X,KOh
P−N(X,T)) .

Furthermore, ifxk ∈ XF(T, N, P), then after implementing the resulting control the state at the next

time instant will be contained in the feasible set of the MPC problem with a control and prediction

horizon ofN − 1 andP − 1:

Lemma 5.1.

x̂0|k ∈ XF (T, N, P)⇒ x̂1|k ∈ XF (T, N − 1, P − 1) . (5.7)

Proof. Similar to the proof of Theorem 5.1, it can be shown thatx̂1|k ∈ KN−1(X,KOh
P−N(X,T)) =

XF(T, N − 1, P − 1). Alternatively, it could be argued that one can drive the system fromx̂0|k
to KOh

P−N(X,T) in N steps only if it is possible to drive the system from̂x1|k = f (x̂0|k, û0|k) to

KOh
P−N(X,T) in N − 1 steps.

This result provides one with a possible way of recovering from infeasibility without the need for soft

constraints.

Corollary 5.2. If there are no disturbances present and the MPC problem with horizons N and P is

feasible at time k, but infeasible at time k+ 1, then the MPC problem with horizons N− 1 and P− 1

is feasible at time k+ 1.

This process can be repeated untilN = 0, if necessary, at which point the state will lie inside the

setKOh
P−N(X,T) and one could switch to the control lawuk = h(xk), in a fashion similar to dual-

mode MPC [MM93]. However, so far no assumptions about the invariance ofT has been made and

constraint satisfaction for all time cannot be guaranteed.
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MPC as a Minimum-time Control Scheme

Another interesting interpretation of the above result is that ifN = P, then by decreasing the horizon

at each time step one can drive the system toT in N steps. This behaviour is similar to the “minimum-

time” control algorithms described in [KG87, MS97].

However, in the latter the controllable sets toT are computed off-line. It is determined on-line

for which pair of setsxk ∈ KN(X,T)\KN−1(X,T). A control is then computed such thatxk+1 ∈
KN−1(X,T). This process is repeated forN steps, at which pointxk+N ∈ T.

ProvidedT is control invariant, the same minimum-time behaviour and constraint satisfaction for all

time can be achieved using MPC without having to compute the controllable sets off-line and having

to search through all controllable sets in memory.

5.3 Causes of Infeasibility in MPC

An important fact to recognise is that infeasibility can occur even if there are no disturbances and no

model mismatch. This problem of guaranteeing nominal feasibility is inherent in the MPC formula-

tion.

As was mentioned earlier, due to thefinite-horizonnature of MPC, the control at the next time instant

could be different from the previously computed value. There are basically two ways in which the

MPC problem could become infeasible:

• A bad choice of design variables (horizons and cost function) could result in a solution with

x̂∗1|k ∈ X\XF . Sincexk+1 /∈ XF , the MPC problem will be infeasible at the next time instant;

• If XF\C∞(X) 6= ∅ it is possible that̂x∗1|k ∈ XF\C∞(X), which will result in xk+1 /∈ C∞(X).
Since there does not exist a control sequence which will satisfy the constraints if the state is

outside the maximal control invariant set, the MPC problem will become infeasible at some

future time, even though it will be feasible at timek+ 1.

The use of soft constraints [SR99, Mac01] is one way of solving the infeasibility problem and will be

discussed in Chapter 7. However, this is not the best approach to addressing nominal feasibility. State

constraints will be violated at some future time, even in the absence of disturbances if the solution to

the soft-constrained problem results inx̂∗1|k ∈ X\C∞(X). This chapter addresses the nominal feasibil-

ity issue by providing conditions onN, P andT under which feasibility (and hence state constraint

satisfaction) can be guaranteed for all time, without the need for soft constraints.

Another important issue to consider is the fact that the solution to Problem 5.1 might be sub-optimal.

Schemes which rely on the optimality of the solution to guarantee feasibility and stability lose their

guarantee of feasibility if the solution is sub-optimal. For example, in [BTM00b] a method is de-

scribed for analysing the feasibility and stability of a given MPC scheme. It is assumed that either
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the on-line computed control input is optimal or that the MPC control law has been computed off-line

as described in Section 7.4. Sub-optimality of the control law might invalidate the analysis results,

depending on the values used forT, N andP.

Finally, the choice ofF(·) and L(·, ·) also affects the feasibility of the resulting MPC controller.

Though it does not affect the feasible setXF , it will affect whether the feasible set is a positively in-

variant set for the closed-loop system. Once again, a sub-optimal solution might invalidate feasibility

results based on the cost function.

Therefore, one of the aims of the approach adopted in this chapter is to derive conditions based on the

standard MPC framework of Problem 5.1 whichdo not rely on the cost function or optimality of the

solution.

Before proceeding, some further definitions are needed to define precisely the aspects of feasibility

that will be considered.

5.4 Fundamental Definitions and Results for Nominal Feasibility

By definition the MPC regulation problem is feasible at timek if and only if xk ∈ XF 6= ∅. However,

one is interested in guaranteeing that once feasible, the MPC problem will always be feasible:

Definition 5.1 (Feasible for all time). The MPC problem isfeasible for all time k∈ N if and only if

the initial statex0 belongs to the feasible set and all future evolutions of the state of the closed-loop

system belong to the feasible set, i.e.xk+1 = f (xk, κ(xk)) ∈ XF ,∀k ∈ N

With this definition, the first result follows from the discussion in Section 5.3 and is a necessary and

sufficient condition for guaranteeing that the MPC problem is feasible for all time:

Lemma 5.2. The MPC problem is feasible for all time if and only if x0 ∈ XF∩C∞(X) and the solution

to the MPC problem results in̂x∗1|k ∈ XF ∩ C∞(X) for all k ≥ 0.

Definition 5.2 (Feasible control input). Given a statexk, a control inputuk is feasibleif and only if

the state-input pair(xk,uk) is compatible with the constraints of the MPC problem, i.e.uk is feasible

if and only if there exists a control sequenceπN
k = [û′0|k, û

′
1|k, . . . , û

′
N−1|k]′ with û0|k = uk such that

(xk, π
N
k ) satisfies (5.2).

In other words, a control input is feasible if and only if it is the first element of a feasible solution to

the MPC problem. The feasible set is therefore the set of states for which a feasible control input (and

sequence) exists. Note that if a control input isadmissible, it is not necessarilyfeasible. For a given

state the set offeasibleinputs is a subset of theadmissibleinputs.

As discussed, the MPC problem might become infeasible at some point in time for asubsetof initial

states contained inXF . It is desirable to design the controller such thatfor all initial statescontained
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in XF , the MPC problem will be feasible for all time. An infeasible MPC problem can then be treated

as a process exception; the constraints should be softened in order to compute a control action and the

operator alerted that constraint violation is probable.

Definition 5.3 (Strongly feasible). The MPC problem isstrongly feasibleif and only if for all x0 ∈
XF andfor all sequences of feasible control inputs the MPC problem is feasible for all time. Equiva-

lently, the MPC problem is strongly feasible if and only if for allxk ∈ XF and feasible control inputs,

xk+1 ∈ XF .

If the feasible set is strongly feasible, then one can guarantee that the MPC problem will never become

infeasible if there are no disturbances or model uncertainty. It is this notion ofstrong feasibility,

which is independent of optimality or the cost function, which will be used throughout to investigate

feasibility in MPC. This strong feasibility result is also guaranteed in the traditional MPC approaches

when using a control invariant terminal set [MRRS00].

Though this definition might result in conservative guarantees for feasibility, it does provide a good

basis from which to proceed. By introducing additional assumptions, such as the optimality of the

solution or a guarantee that the cost function will decrease at each time step, one might be able to

obtain better results.

Set invariance theory immediately provides one with the following condition for guaranteeing that the

feasible set will be strongly feasible.

Proposition 5.1. The MPC problem is strongly feasible only if the feasible setXF is a control

invariantset for the system xk+1 = f (xk,uk).

It is important to note that control invariance is only a necessary condition for a strongly feasible MPC

problem. The design variables which determine whetherXF is control invariant areN, P, h(xk) and

T. All the design variables, including the cost functionsF(xk) and L(xk,uk), and the optimality of

the solution determine whetherXF is positively invariant for the closed-loop system. As discussed in

Section 5.3, the aim of this chapter is to determine feasibility conditions independent of the choice of

cost function or optimality of the solution.

The setXF is a control invariant set only ifXF is a subset of the maximal control invariant setC∞(X).
This means that the feasible set cannot be larger than the maximal control invariant set if the MPC

problem is to be strongly feasible. A design goal would therefore be to obtain an MPC control problem

with a feasible set as close as possible in size to the maximal control invariant set. The concept

of finite-determinedness of controllable sets is useful in obtaining results relating to the size of the

feasible set and will be discussed in the following sections.

One might also be interested in determining whether increasing the control and prediction horizons

or choosing a new terminal set will significantly increase the size of the feasible set. This can be

determined by calculating what fraction of the volume of the maximal control invariant set the new

feasible set is, in relation to the old feasible set. Comparing volumes might be misleading and an
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alternative is to use an approximation test for set equality as in Section 3.3.2. Relevant metrics still

need to be developed in order to determine the change in size of the feasible set.

5.5 The Need for a Terminal Constraint Set

The idea of using a terminal constraint to guarantee nominal stability (and feasibility) was introduced

in [KG88], where the terminal constraint was chosen to be the originT = {0n}. However, this

constraint reduces the size of the feasible set and could result in numerical convergence problems in

the optimisation, especially when working with nonlinear models [May00].

One of the most popular methods for guaranteeing that the MPC problem is strongly feasible, is to

choose a control invariant terminalset [MM93]. By choosing the terminal constraint to be a set,

rather than the origin, the size of the feasible set is increased and most of the numerical convergence

problems are addressed.

Though the terminal constraint idea seems to have been embraced by the academic community, it still

needs to find its way into industry. This is due to a number of factors:

• The addition of a control invariant set could result in a smaller feasible set for the same control

horizon, as stated in Proposition 5.2. However, it might be possible to increase the size of

the feasible set with only a small increase in the control or prediction horizon. By increasing

the prediction horizon one could get an increase in the size of the feasible set without a large

increase in computational overhead, as discussed in [DMMS00, ZA98];

• The computation of a sufficiently large control invariant terminal set is believed to be com-

putationally expensive. However, this computation is done off-line and computation speed is

therefore less important;

• The addition of a terminal set increases the overhead in the optimisation. With the availability

of efficient interior-point methods [RWR98, Mac01] with a time complexity independent on the

number of constraints, this will probably be less of an issue in the future;

• The invariance condition is only sufficient and it would be nice to see under what circumstances

it becomes a necessary condition or whether a better solution to the feasibility problem exists;

• By modifying the original MPC formulation and adding more mathematics such as set invari-

ance theory, some transparency is lost. The results and tools from set invariance theory therefore

need to presented in the most simplistic form possible, while still capturing the essential con-

cepts. For safety-critical applications guarantees of controller performance is required and set

invariance might be able to provide such guarantees.

For the reasons mentioned above, this chapter investigates to what extent the invariance condition on

T is necessary in guaranteeing feasibility.
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5.6 A Generalised Sufficient Condition for Strong Feasibility

The following sufficient condition can be thought of as a generalisation of the “control invariant

terminal set” condition of [MM93]. The proof differs from the traditional “shifted control” approach

generally adopted for proving feasibility for MPC schemes with a control invariant terminal set. The

main idea here is to show that ifxk is in the feasible set, thenxk+1 = f (xk, κ(xk)) is also in the

feasible set.

Lemma 5.3. If XF (T, N, P) is control invariant, then the MPC problem with a control horizon of

Ñ = N + 1 and a prediction horizon of̃P = P + 1 is strongly feasible.

Proof. XF (T, N, P) is control invariant if and only if

XF (T, N, P) ⊆ Q(XF (T, N, P)) .

Recall thatXF (T, N, P) = KN(X,KOh
P−N(X,T)) and that

XF (T, N + 1, P + 1) = KN+1(X,KOh
P−N(X,T)) = Q(XF (T, N, P)) ∩ X .

If xk ∈ XF(T, N + 1, P + 1), then after implementing any feasible control input,

xk+1 ∈ KN(X,KOh
P−N(X,T)) = XF(T, N, P) ⊆ Q(XF(T, N, P)) .

Sincexk+1 must also be contained inX, xk+1 ∈ Q(XF(T, N, P)) ∩ X. However, this implies that

xk+1 ∈ XF (T, N+1, P+1), since Corollary 5.1 states thatXF(T, N+1, P+1) = Q(XF(T, N, P))∩
X.

The MPC problem is therefore feasible at the next time instant. By induction, the MPC problem is

feasible for all time. Since this holds for any arbitrary elementxk ∈ XF (T, N + 1, P + 1) and any

feasible control input, the MPC problem is strongly feasible.

Remark 5.4.This result holds even ifXF (T, N − 1, P − 1) and/orT are not control invariant.

This result is useful from both a theoretical and practical viewpoint, since one can choose anyT
and increaseP and N to see whether the feasible set becomes control invariant for some values. If

the feasible set is control invariant then by increasing the complexity of the optimisation by a small

amount (i.e. increasing the control and prediction horizons by one), one can guarantee that the MPC

problem is strongly feasible.

The next result follows immediately.

Theorem 5.2. If XF (T, N, P) is control invariant, then the MPC problem with a control horizon of

Ñ ≥ N + 1 and a prediction horizon of̃P = P + Ñ − N is strongly feasible.



76 CHAPTER 5. NOMINAL FEASIBILITY IN MODEL PREDICTIVE CONTROL

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

T K
1

K
2

K
3

K
4

Figure 5.1: Plot showing that even if the terminal set is not control invariant, the MPC problem is

strongly feasible ifN = P ≥ 4

Proof. From Lemma 5.3, ifXF (T, N, P) is control invariant, thenXF(T, N + 1, P + 1) is strongly

feasible and hence also control invariant. The result follows by induction.

This result will be used throughout the chapter and implies that increasing the control and prediction

horizons by the same amount will result in a strongly feasible MPC problem.

Remark 5.5.A necessary and sufficient condition for the MPC problem to be strongly feasible, is

given later by Corollary 6.1.

Example 5.1. Consider the system

xk+1 =
[

1 1

0 1

]
xk +

[
0.5

1

]
uk , (5.8)

with the input constrained to‖u‖∞ ≤ 1 and the states constrained to‖x‖∞ ≤ 5. The target set

T = {x ∈ R2 | ‖x‖∞ ≤ 1} is not control invariant and the control and prediction horizons are

equal P = N. Figure 5.1 is a plot ofT and the controllable setsKN(X,T) = XF(T, N, N) for

N = 1, . . . ,4.
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Recalling that a set� is control invariant if and only if� ⊆ Q(�) and that the inequalityKN(X,T) ⊆
Q(KN−1(X,T)) holds, one can determine graphically thatK1(X,T) andK2(X,T) are not control

invariant, but thatK3(X,T) is. Theorem 5.2 implies that an MPC problem with the givenT and

horizons N= P ≥ 4 will be strongly feasible, even thoughT is not control invariant.

5.7 Equal Control and Prediction Horizons

The terminal controllerh(xk) does not affect the feasible set if the control and prediction horizons are

equal. The only design variables that determine the geometrical properties of the feasible set are the

control horizonN = P and the terminal constraint setT.

5.7.1 Terminal SetT = X

The following new result on the feasibility of the MPC problem considers the case when the terminal

constraint set is equal to the state constraints. This theorem tells one what happens with the feasibility

of the MPC problem if the terminal constraint set is effectively “removed”2.

Theorem 5.3. Let P= N andT = X:

1. The feasible set is equal to the N-step admissible set:

XF (X, N, N) = CN(X) .

The feasible set contains the maximal control invariant set:

C∞(X) ⊆ XF (X, N, N) .

The feasible set is control invariant if and only if the maximal control invariant set is finitely

determined and the control horizon is equal to or greater than its determinedness index i∗, i.e.

XF (X, N, N) ⊆ Q(XF(X, N, N))⇔ C∞(X) = Ci ∗(X), N ≥ i ∗ ;

2. The MPC problem is strongly feasible if the control horizon is larger than the determinedness

index i∗ of the maximal control invariant setC∞(X), i.e. N≥ i ∗ + 1;

3. A larger control horizon results in asmaller feasible set. The size of the feasible set stops

decreasing if and only if the maximal control invariant set is finitely determined and the control

horizon is larger than its determinedness index, i.e.

i ∗ ≥ N1 > N2⇔ XF (X, N1, N1) ⊂ XF (X, N2, N2) .

Furthermore,

XF (X, N, N) = C∞(X) = Ci ∗(X),∀N ≥ i ∗ .
2In the sense of replacingT with the original state constraintsX.
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Proof.

1. From Theorem 5.1 and the definitions of controllable and admissible sets, the feasible set is

given by

XF(X, N, N) = KN(X,KOh
0(X,X)) = KN(X,X) = CN(X) .

By constructionC∞(X) ⊆ CN(X), henceC∞(X) ⊆ XF(X, N, N).

SinceCi (X) contains the maximal control invariant set andCi (X) is control invariant only if

Ci (X) ⊆ C∞(X), Ci (X) is control invariant if and only ifCi (X) = C∞(X). However, this is only

possible ifC∞(X) is finitely determined.C∞(X) is finitely determined if and only if there exists

an i such thatCi (X) = Ci+1(X). As a consequence,XF (X, N, N) = CN(X) is control invariant

if and only if C∞(X) is finitely determined andN ≥ i ∗.

2. The first statement says that an MPC problem withN = P andT = X is control invariant if

and only ifN ≥ i ∗. Theorem 5.2 then implies that an MPC problem with control and prediction

horizonP = N ≥ i ∗ + 1 is strongly feasible.

3. This follows from the fact thatCN+1(X) ⊆ CN(X). The strict inclusionCN+1(X) ⊂ CN(X)
holds if and only ifN < i ∗, since Theorem 2.3 implies thatCN+1(X) = CN(X) if and only if

the maximal control invariant set is finitely determined andN ≥ i ∗.

Theorem 5.3 implies that one cannot choose the design variables such that the MPC problem is

strongly feasible if and only if the maximal control invariant set is not finitely determined. In general

one cannot guarantee finite determinedness or that the determinedness index will be small enough for

the controller to be implementable. As such, one cannot choose values for the control horizon which

would make the MPC problem strongly feasible. It might be possible that a redesign of the state

and/or control constraints or the system might solve the determinedness problem, but it is in general

not clear how to proceed if this is the case.

This result also implies that if one were wanting to do without the terminal constraint and keep the

control and prediction horizons equal, then a strongly feasible MPC problem will result if the maximal

control invariant set is finitely determined and the control horizon is larger than the determinedness

index. It could therefore be argued that a terminal constraint set is necessary if the required control

horizon is too large for the available computation power. By adding a terminal set and choosing a

smaller control horizon, it might be possible to get a strongly feasible MPC controller with a suffi-

ciently large feasible set.
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Assuming the Solution is Optimal

A subset of the feasible set might still be positively invariant for the closed-loop system and this

region might be large enough for all practical purposes. However, calculating this region is diffi-

cult, even if the internal model is LTI. It is shown in [BMDP00a] that for MPC problems with LTI

models and polyhedral constraints, the closed-loop system is a piecewise-affine (PWA) function. A

method for computing a region of attraction of the origin for PWA systems is described in [BTM00a].

In [BTM00b] this procedure is used to calculate a positively invariant subset of the closed-loop sys-

tem, where it is assumed that the optimal solution will be obtained at each time step.

Another approach which is based on findinga priori a lower bound for the control horizon which

guarantees that the finite and infinite horizon costs are equal, given a set of initial states, is described

in [CM96]. With the appropriate assumptions on the system and the cost function, if the finite and

infinite horizon costs are equal, then the origin of the closed-loop system is an asymptotically stable

fixed point (and feasibility for all time is guaranteed). A similar idea is described in [PN00a, PN00b],

but allowing for a difference between the finite and infinite horizon costs. Though an explicit terminal

constraint is not present in all of these formulations, the results rely on guaranteeing that the terminal

state lies in some control invariant set.

5.7.2 Control Invariant Terminal Set

The following theorem contains the well-known control invariant terminal constraint condition [MM93,

MRRS00].

Theorem 5.4. Let P = N and the terminal constraint set be acontrol invariantsubset ofX, i.e.

T ⊆ Q(T) ∩ X:

1. The feasible set is equal to the N-step stabilisable set:

XF (T, N, N) = SN(X,T) .

The feasible set is control invariant and contained within the maximal control invariant set:

XF(T, N, N) ⊆ C∞(X) ;

2. The MPC problem is strongly feasible;

3. A largercontrol horizon results in alargerfeasible set. The size of the feasible set stops increas-

ing if and only if the maximal stabilisable set is finitely determined and the control horizon is

larger than its determinedness index i∗, i.e.

i ∗ ≥ N1 > N2⇔ XF (T, N1, N1) ⊃ XF (T, N2, N2) .

Furthermore,

XF(T, N, N) = S∞(X,T) = Si ∗(X,T),∀N ≥ i ∗ .
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Proof.

1. From Theorem 5.1 and the definitions of controllable and stabilisable sets, the feasible set is

given by

XF(T, N, N) = KN(X,KOh
0(X,T)) = KN(X,T) = SN(X,T) .

SinceT is control invariant, it follows from the first property in Proposition 2.7 thatSN(X,T)
is control invariant. The setSN(X,T) = XF (T, N, N) is control invariant only ifSN(X,T) ⊆
C∞(X).

2. SinceXF (T, N, N) is control invariant for allN ≥ 0, it follows from Theorem 5.2 that the

MPC problem withN = P ≥ 1 is strongly feasible.

3. This follows from the second property in Proposition 2.7. The strict set inclusionSN+1(X,T) ⊃
SN(X,T) holds if only if N < i ∗, since Theorem 2.2 implies thatSN+1(X,T) = SN(X,T) if

and only ifS∞(X,T) is finitely determined andN ≥ i ∗.

In addition to the above result, the following result implies that by changing the terminal constraint

set fromT = X to T ⊂ X, given the same control horizon, the feasible set will be contained within

the original feasible set:

Proposition 5.2. LetT be a control invariant set. If N= P, then the feasible set of an MPC problem

withT ⊂ X is contained within the feasible set of an MPC problem withT = X, i.e.

XF(T, N, N) ⊆ XF (X, N, N) .

Furthermore, ifS∞(X,T) is not finitely determined orS∞(X,T) is finitely determined with deter-

minedness index i∗ and N< i ∗, then

XF(T, N, N) ⊂ XF (X, N, N) .

Proof. RecallCN(X) = XF (X, N, N) and ifT is control invariant, thenSN(X,T) = XF(T, N, N).

SinceSN(X,T) ⊆ C∞(X) andC∞(X) ⊆ CN(X) it follows thatSN(X,T) ⊆ CN(X). This gives the

first inclusion.

N < i ∗ if and only if SN(X,T) ⊂ SN+1(X,T). Combining this with the fact thatSN+1(X,T) ⊆
S∞(X,T) ⊆ C∞(X) ⊆ CN(X) givesSN(X,T) ⊂ CN(X). This gives the second inclusion.

Theorem 5.4 and Proposition 5.2 imply that if the maximal stabilisable set is finitely determined, then

one could determine the size of the control horizon which will maximise the feasible set. It also tells
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one that an increase in control horizon will not increase the size of the feasible set. In some cases

it happens thatC∞(X) = S∞(X,T) and that both sets are finitely determined. One can then choose

the control horizon which minimises the computational overhead. For example. ifi ∗ and j ∗ are the

determinedness indices ofC∞(X) andS∞(X,T), respectively, then one could choose theT and N

such thatN = min(i ∗, j ∗).

Increasing the Horizon Length Until x̂N|k ∈ T

A remark could be made with regards to the discussion in [SR98, Sect. 4A] and [RR99]. The authors

argue that a terminal set should not be included in the MPC problem, as it increases computational

overhead. They propose that after each optimisation it should be checked whether the terminal state

x̂N|k lies in a control invariant terminal set and if not, increase the control horizon by some heuristic

and repeat the optimisation until the terminal state lies in a control invariant set. This requirement is

mainly due to the fact that the authors require the finite and infinite horizon costs to be equal.

This approach suffers from two main drawbacks. Ifxk /∈ C∞(X) then the terminal state will never

lie in a control invariant set foranycontrol horizon and the process of increasing the control horizon

will only result in an infeasible problem at some future time. Secondly, the problem is restricted to

slower processes, since the control horizon has to be increased repeatedly before applying the control

input. In [SR98, Sect. 4B] the authors propose that one switch to an MPC controller which is known

to be stabilising, such as one with a terminal constraint, if a control horizon is not obtained which

guarantees optimality. This adds unnecessary overhead to the MPC problem.

Furthermore, if the sampling time of the process has already been fixed, then this puts a restriction on

the size of the optimisation problem which can be solved between samples. This immediately places

an upper bound on the control horizon. By fixing the control horizon to this value and including

a control invariant terminal constraint in the optimisation one not only maximises the feasible set,

given the available computation power, but can provide a guarantee that the finite horizon cost will

be equal to the infinite horizon cost for a subset of the feasible set. This subset of optimality cannot

be increased, given the computational power, without changing the cost function and/or computing a

larger control invariant set.

The author of this thesis proposes that the computational overhead of adding constraints in the form

of a control invariant terminal set is minor compared to the overhead of having to repeatedly increase

the control horizon. Recently, in [RWR98] it was shown that if the system is LTI, then interior-point

methods can be used to solve for the MPC control action with a time complexity ofO(N(m+n)3). In

other words, the time complexity is independent of the number of constraints and linear in the control

horizon length. With this new algorithm, the addition of a control invariant terminal set will result in

a minor increase in the time taken to compute the control action.
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5.8 Different Control and Prediction Horizons

When the prediction horizon is larger than the control horizon, feasibility analysis of the MPC problem

is slightly more involved and it is more difficult to obtain many useful results regarding the feasibility

of the MPC problem.

Proposition 5.3. Assume that the maximal control invariant set is finitely determined with deter-

minedness index i∗ and that P> N. If T is any subset ofX and P≥ i ∗, thenXF (T, N, P) ⊆ C∞(X).

Proof. For all xk ∈ XF (T, N, P) there exists a control sequence of lengthP such that the state

constraints are satisfied. By recalling the definition of admissible sets it follows thatXF (T, N, P) ⊆
CP(X). But P ≥ i ∗, thereforeCP(X) = C∞(X).

Note that since Proposition 5.3 does not assume any invariance condition onT, the result does not

imply that the feasible set is control invariant. Even with a control invariantT, if P > N one cannot

guarantee in general that the MPC problem is strongly feasible or even control invariant without

making additional assumptions.

Before proceeding with considering some special cases, the following lemma is useful in understand-

ing Theorem 5.5.

Lemma 5.4. LetT ⊆ X.

1. If T = Xh, thenKOh
i (X,T) = Oh

i (X) for all i ≥ 0. Furthermore, if the maximal positively

invariant setOh∞(X) is finitely determined with determinedness index i∗, thenKOh
i (X,T) =

Oh∞(X) for all i ≥ i ∗.

2. If T ⊃ Xh and the maximal positively invariant setOh∞(X) is finitely determined with deter-

minedness index i∗, thenKOh
i (X,T) = Oh∞(X) for all i ≥ i ∗ + 1.

Proof.

1. Recalling the definitions in Section 2.9, it follows that for alli ≥ 0:

KOh
i (X,T) = KOh

i (X,X
h) = KOi (Xh,Xh) = Oi (Xh) = Oh

i (X) .

2. Firstly, it will be shown thatOh∞(X) ⊆ KOh
i (X,T). If xk ∈ Oh∞(X) then after applyinguk =

h(xk) for i ≥ i ∗ + 1 steps,xk+i ∈ Oh∞(X). ButOh∞(X) ⊆ Xh ⊂ T, thereforexk ∈ KOh
i (X,T).

Secondly, it will be shown by contradiction thatOh∞(X) ⊇ KOh
i (X,T). Assume thatOh∞(X) +

KOh
i (X,T). This implies that there exists anxk ∈ KOh

i (X,T) for which the evolution of the

system leavesXh in i ∗ steps or less. However,i ≥ i ∗ +1, which implies that∀xk ∈ KOh
i (X,T)

the system evolution will remain withinXh for the firsti ∗ steps.
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5.8.1 Terminal SetT = X

The next result considers the case when the control and prediction horizons are different and the

terminal constraint set is equal toX.

Theorem 5.5. Let P> N andT = X:

1. The feasible set is equal to the N-stepcontrollableset toKOh
P−N(X,X) for the closed-loop

system xk+1 = f (xk,h(xk)), i.e.

XF(X, N, P) = KN(X,KOh
P−N(X,X)) .

The feasible set is not necessarily control invariant;

2. The MPC problem is strongly feasible if thedifferencebetween the prediction and control hori-

zons is larger than the determinedness index i∗ of the maximal positively invariant setOh∞(X),
i.e. P− N ≥ i ∗ + 1. The condition relaxes to P− N ≥ i ∗ if T = Xh;

3. Assume that N is fixed. Byincreasingthe prediction horizon, the size of the feasible setdoes not

increase. If the maximal positively invariant setOh∞(X) is finitely determined and thedifference

between the prediction and control horizons is larger than its determinedness index i∗, then the

feasible set is equal to the N-step stabilisable set toOh∞(X), i.e.

N + i ∗ + 1≥ P1 > P2 > N ⇒ XF (X, N, P1) ⊆ XF(X, N, P2)

and

XF (X, N, P) = SN(X,Oh
∞(X)),∀P ≥ N + i ∗ + 1;

4. Assume that P≥ N + i ∗ + 1. A larger controlhorizon results in alargerfeasible set. The size

of the feasible set stops increasing if and only if the maximal stabilisable setS∞(X,Oh∞(X)) is

finitely determined and the control horizon is larger than its determinedness index j∗, i.e.

j ∗ ≥ N1 > N2⇔ XF (X, N1, P) ⊃ XF (X, N2, P) .

Furthermore,

XF(X, N, P) = S∞(X,Oh
∞(X)),∀N ≥ j ∗, P ≥ N + i ∗ + 1 .

Proof.

1. From Theorem 5.1 and the definitions of controllable sets, the feasible set is given by

XF(X, N, P) = KN(X,KOh
P−N(X,X)) .

Since no further assumptions have been made, one cannot deduce anything about the invariance

of the feasible set.



84 CHAPTER 5. NOMINAL FEASIBILITY IN MODEL PREDICTIVE CONTROL

2. If P−N ≥ i ∗ +1, then by the second statement in Lemma 5.4 it follows thatKOh
P−N(X,X) =

Oh∞(X). This implies thatXF(X, N, P) = KN(X,Oh∞(X)). ButOh∞(X) is control invariant for

the systemxk+1 = f (xk,uk), thereforeXF(X, N, P) = SN(X,Oh∞(X)).

The feasible set can be seen to be equal to that of an MPC problem withN = P and a control

invariantT = Oh∞(X). Strong feasibility follows from Theorem 5.4. The relaxation follows

from the first statement in Lemma 5.4.

3. If P1 > P2 thenKOh
P1−N(X,X) ⊆ KOh

P2−N(X,X) follows from the definition of the sets.

As a result of applying Proposition 2.1 repetitively, it follows thatKN(X,KOh
P1−N(X,X)) ⊆

KN(X,KOh
P2−N(X,X)) for all N.

This implies thatXF(X, N, P1) ⊆ XF(X, N, P2). The feasible set for the case whenP ≥
N + i ∗ + 1 was derived in the previous statement.

4. The proof is the same as for the third statement in Theorem 5.4, sinceXF (X, N, P) = SN(X,T)
with T = Oh∞(X).

Remark 5.6.The third statement in Theorem 5.5 says that an increase in the prediction horizon will

not result in an increase in the size of the feasible set. Depending on the size ofN, it is more likely that

an increase in the prediction horizon leads to a decrease in the size of the feasible set. The decrease

in the size of the feasible set then stops if and only ifP − N is larger than the determinedness index

of Oh∞(X).

Note that ifP−N ≤ i ∗, then one cannot guarantee that the feasible set is control invariant, except that

there exists a subset of the feasible set which is control invariant. It is also difficult to say anything

useful about the size of the feasible set with respect to the length of the horizons.

Theorem 5.5 leads to the following well-known result which is useful when the determinedness index

of Oh∞(X) is known.

Corollary 5.3. If Oh∞(X) is finitely determined with determinedness index i∗, then the feasible set of

an MPC problem with terminal constraintT = Oh∞(X) and N= P is equal to the feasible set of an

MPC problem withT = X and P ≥ N + i ∗ + 1, i.e. XF (Oh∞(X), N, N) = XF (X, N, P) for all

P ≥ N + i ∗ + 1. Both problems are strongly feasible.

This result implies that if the system is LTI, the constraints are given by linear inequalities and the

control law is linearh(xk) = K xk, then it is probably more efficient to use a terminal set rather than

setting P − N to be larger than the determinedness index ofOh∞(X). This is because the number

of inequalities describingOh∞(X) will be no more than the extra number of inequalities in the MPC

problem withP− N ≥ i ∗ + 1. When computingOh∞(X), it is nearly always the case that the number

of inequalities are less, therefore making the MPC problem withN = P andT = Oh∞(X) more

efficient than one withP − N ≥ i ∗ + 1 andT = X.
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5.8.2 Control Invariant Terminal Set

In general, ifT is any control invariant subset ofX andP > N, it is difficult to say anything about the

feasibility of the MPC problem. However, the following theorem is useful ifOh∞(X) is complex and

it is easy to obtain a simple expression for a positively invariant subset ofOh∞(X). It also says that an

increase in the prediction horizon will not result in a decrease in the feasible set.

Theorem 5.6. Let P > N and the terminal constraint setT be a positively invariant set for the

closed-loop system xk+1 = f (xk,h(xk)), i.e.Oh∞(T) = T ⊆ Oh∞(X):

1. The feasible set is equal to the N-stepstabilisableset toKOh
P−N(X,T), i.e.

XF (T, N, P) = SN(X,KOh
P−N(X,T)) .

The feasible set is control invariant;

2. The MPC problem is strongly feasible;

3. Assume that N is fixed. Byincreasingthe prediction horizon, the size of the feasible setdoes not

decrease. If the setKOh
∞(X,T) is finitely determined and thedifferencebetween the prediction

and control horizons is larger than or equal to its determinedness index i∗, then the feasible set

is equal to the N-step stabilisable set toKOh
∞(X,T), i.e.

N + i ∗ ≥ P1 > P2 > N ⇒ XF (T, N, P1) ⊇ XF (T, N, P2)

and

XF(T, N, P) = SN(X,KOh
∞(X,T)),∀P − N ≥ i ∗ ;

4. Assume that P− N is fixed. A largercontrolhorizon results in alargerfeasible set. The size of

the feasible set stops increasing if and only ifS∞(X,KOh
P−N(X,T)) is finitely determined and

the control horizon is larger than its determinedness index j∗, i.e.

j ∗ ≥ N1 > N2⇔ XF (T, N1, P) ⊃ XF (T, N2, P)

and

XF(T, N, P) = S∞(X,KOh
P−N(X,T)),∀N ≥ j ∗ .

Furthermore, ifS∞(X,KOh
∞(X,T)) = Ss∗(X,KOh

∞(X,T), then

XF (T, N, P) = S∞(X,KOh
∞(X,T)),∀N ≥ s∗, P − N ≥ i ∗ .

Proof.
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1. SinceT is positively invariant forxk+1 = f (xk,h(xk)),KOh
P−N(X,T) is also positively invari-

ant and hence control invariant forxk+1 = f (xk,uk). From Theorem 5.1 and the definitions of

controllable and stabilisable sets, the feasible set is given by

XF(X, N, P) = KN(X,KOh
P−N(X,T)) = SN(X,KOh

P−N(X,T)) .

2. SinceXF (T, N, P) is control invariant for allN ≥ 0, it follows from Theorem 5.2 that the

MPC problem withP > N ≥ 1 is strongly feasible.

3. If P1 > P2, thenKOh
P1−N(X,T) ⊇ KOh

P2−N(X,T) ⊇ KOh
1(X,T) ⊇ T, sinceT is pos-

itively invariant. As a result of applying Proposition 2.1 repetitively, it follows that for all

N, KN(X,KOh
P1−N(X,T)) ⊇ KN(X,KOh

P2−N(X,T)). This implies thatXF (T, N, P1) ⊇
XF(T, N, P2).

The feasible set for the case whenP ≥ N + i ∗ follows from the fact thatKOh
P−N(X,T) =

KOh
∞(X,T),∀P − N ≥ i ∗.

4. The proof proceeds along similar lines as for the third statement in Theorem 5.4, since the

feasible setXF (T, N, P) = SN(X,T) with a control invariantT = KOh
P−N(X,T).

The conclusion that increasing the difference between the control and prediction horizon could result

in a larger feasible set, providedT is positively invariant for the systemxk+1 = f (xk,h(xk)), is also

reported in [DMMS00]. This idea of using different control and prediction horizons to reduce the

computational burden in MPC, while enlarging the region of feasibility, is also discussed in [ZA98].

5.9 Nominal Stability in MPC

This chapter deals mainly with feasibility in MPC. As such, the results in this chapter do not neces-

sarily imply anything about the stability of the closed-loop system. Strong feasibility does not imply

stability.

If the feasible set is bounded and the MPC problem is strongly feasible, then one can think of the

system as being nominally stable in a weak Lyapunov sense. However, one is often interested in

obtaining stronger stability guarantees, such as asymptotic and exponential stability.

One way in which stability can be ensured for suboptimal solutions, is to add constraints to the MPC

problem which ensure that the cost will not increase with time [SMR99]. With some additional

assumptions on the system and cost function, it can be shown that feasibility implies asymptotic

stability (and feasibility for all time).

Another way of ensuring exponential stability for suboptimal MPC, is to choose the terminal set to be

acontractive constraint[dM00], e.g.T , {x̂P|k ∈ Rn | ‖x̂P|k‖ ≤ α‖x̂0|k‖}. Feasibility could possibly
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be a problem, but with a proper choice of the contraction parameterα ∈ [0,1), feasibility for all time

can be guaranteed.

The usual way of ensuring stability is via some kind of Lyapunov argument. The reader is referred

to [MRRS00, DMS00, May00] for surveys on stability results in MPC which are based on this ap-

proach.

Usually the following assumptions3, together with optimality of the solution at each time step, are

made when using a direct Lyapunov argument to prove that the origin is an asymptotically stable

fixed point with region of attractionXF [MRRS00]:

1. h(x) ∈ U,∀x ∈ T, i.e. the control lawh(x) is admissible inT;

2. f (x,h(x)) ∈ T,∀x ∈ T, i.e.T is positively invariant for the systemxk+1 = f (x,h(x));

3. There exists a positivec such that the stage costL(x,u) ≥ c‖(x,u)‖2 andL(0,0) = 0.

4. F(x) is positive definite andF( f (x,h(x))) − F(x) ≤ −L(x,h(x)),∀x ∈ T, i.e. F(·) is a

control Lyapunov function in a neighbourhood of the origin;

It can be shown that the above assumptions allow one to useV∗(xk) as a Lyapunov function for the

closed-loop system.

Strictly speaking, optimality at each time step (and hence uniqueness of the solution) is not needed to

ensure convergence to the origin. The Lyapunov method is based on guaranteeing that at each time

step, the new control sequence is such that the cost decreases, i.e.

V∗(xk+1) < V∗(xk) .

If the above conditions hold, and a feasible control sequenceπN
k was found at timek, then the control

sequence

πN
k+1 =

[
û′1|k, û

′
2|k, . . . , û

′
N−1|k,h(x̂N|k)′

]′
is feasible at timek + 1 and results in a lower cost than the cost obtained at timek with πN

k . By

initialising the problem with the time-shifted control sequence found at the previous time step and

appending it withh(·), convergence to the origin is guaranteed even if the solution is suboptimal.

If the following additional assumptions hold, then the origin of the closed-loop system is an exponen-

tially stable fixed point: there exist positive constantsa, b andc such that

1. a‖x‖2 ≤ V∗(x) ≤ b‖x‖2,∀x ∈ XF ;

2. V∗( f (x,h(x)))− V∗(x) ≤ −c‖x‖2,∀x ∈ XF .
3Sometimes some continuity assumptions onf , L and F are included to guarantee existence of a unique solution to

Problem 5.1 [Rao00, Chap. 5], though these can often be dropped in practice.
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It is interesting to note that the conditionL(x,u) ≥ c‖(x,u)‖2 ≥ c‖x‖2 is sufficient to guarantee

exponential stability4, providedF(·) is chosen such thatV∗(x) ≤ b‖x‖2,∀x ∈ T [MRRS00, App. A].

For example, oftenF(x) = x′QF x with QF � 0 is the chosen control Lyapunov function.

Because of the fact that asymptotic stability is guaranteed, for allx0 ∈ XF\T, the system is guaran-

teed to enterT after a finite number of steps. Exponential stability follows since the conditions for

exponential stability are satisfied for allx ∈ T.

As before, optimality and uniqueness of the solution is not required to guarantee exponential stability.

The optimisation problem need only be initialised with the shifted feasible control sequence found at

the previous time step.

5.10 Summary

A standard formulation for the nominal MPC regulator was given. The formulation allows for different

control and prediction horizons as well as the inclusion of a terminal constraint set.

Even in the absence of disturbances, infeasibility occurs in MPC mainly because of the finite hori-

zon nature of the problem. The feasible set of the MPC problem was defined and the reasons for

infeasibility occurring in MPC were discussed.

The notion of strong feasibility was introduced. An MPC problem is strongly feasible if and only if it

is feasible for all time, even if the solution is sub-optimal. A new sufficient condition was derived for

guaranteeing strong feasibility, even if the terminal constraint is not control invariant. An equivalent

statement of the condition is that if

XF(T, N − 1, P − 1) ⊆ XF(T, N, P) ,

then the MPC scheme with control and prediction horizons ofN andP is strongly feasible.

The effect of the horizons and terminal constraint set on the geometrical properties of the feasible

set was investigated. A new result on the possible need for some kind of “feasibility constraint” was

found during this study. If the control and prediction horizons are equal and the terminal constraint

set is equal to the state constraints, then the MPC problem can be made to be strongly feasible if and

only if there exists a finiteN such that

XF (X, N, N) = XF (X, N − 1, N − 1) .

In general, such anN is not guaranteed to exist.

Finally, some well-known conditions on guaranteeing nominal stability in MPC were given.

4By replacinga with c.



Chapter 6

Robust Feasibility in Model Predictive

Control

A necessary and sufficient condition for robust feasibility is given. The design of robustly feasible

MPC controllers via the addition of a robustness constraint is discussed. A new necessary and suffi-

cient and some new sufficient conditions are given for the proposed scheme to be robustly feasible.

The implementation of the scheme for linear systems with parametric uncertainty is given. A proce-

dure for computing a setpoint which is compatible with the constraints and disturbances is given.

6.1 Introduction

Recall the definitions for the feasible set and feasible control inputs, as in Section 5.4. This chapter

deals with determining whether the MPC problem will be feasible for all time, despite any disturbance

sequences that might occur. Feasibility must also be independent of the optimality of the solution to

the MPC problem. The definition of strong feasibility in the presence of disturbances is extended to

the following:

Definition 6.1 (Robust strongly feasible).The MPC problem isrobust strongly feasibleif and only

if for all feasible state-input pairs and allowable disturbances the MPC problem is guaranteed to be

feasible at the next time instant.

Sections 6.2–6.4 will mainly be concerned with a system given by

xk+1 = fxu(xk,uk)+ fw(wk) . (6.1)

LTI systems with polytopic uncertainty and state disturbances will be considered in Section 6.5.

Before proceeding, define

D , fw(W) . (6.2)

89
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It is assumed that 0∈W and 0= fw(0) and that the state is measured.

6.2 A Necessary and Sufficient Condition for Robust Feasibility

This section deals with deriving a necessary and sufficient condition for strong robust feasibility for

the MPC problem considered in Chapter 5.

By recalling the definition of the nominal reach set from Section 2.3

R(�) , {xk+1 ∈ Rn | ∃xk ∈ �,uk ∈ U : xk+1 = fxu(xk,uk)} , (6.3)

it is possible to state the following:

Lemma 6.1. For Problem 5.1 the following holds true:

1. For all x̂0|k ∈ XF (T, N, P) and for all corresponding feasible control inputŝu0|k, x̂1|k =
fxu(x̂0|k, û0|k) ∈ R (XF (T, N, P)) ∩XF (T, N − 1, P − 1).

2. For all x̂1|k ∈ R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1) there exist an̂x0|k ∈ XF (T, N, P)

and a corresponding feasible control inputû0|k such thatx̂1|k = fxu(x̂0|k, û0|k).

3. For all states xk+1 ∈ (R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1))⊕ D there exist a state xk ∈
XF (T, N, P), a corresponding feasible control inputû0|k and an allowable disturbancewk ∈
W such that xk+1 = fxu(xk, û0|k)+ fw(wk).

Proof.

1. This follows from Lemma 5.1 and the definition of the reach setR (XF (T, N, P)). If x̂0|k ∈
XF(T, N, P) and a feasible control input has been found, thenx̂1|k ∈ R (XF(T, N, P)) has to

be true, since a feasible control input is also admissible.

2. If x̂1|k ∈ R (XF (T, N, P))∩XF (T, N − 1, P − 1) then there exists a feasible control sequence

{ûl |k}N−1
1 which will take the system from̂x1|k toKOh

P−N(X,T) in N −1 steps. Also, there ex-

ists anadmissiblecontrol inputû0|k and anx̂0|k ∈ XF (T, N, P) such that̂x1|k = fxu(x̂0|k, û0|k).

However, the appended sequence{ûl |k}N−1
0 is a feasible control sequence which will drive the

system from the given̂x0|k to KOh
P−N(X,T) in N steps, viax̂1|k. Hence the samêu0|k is also

feasible.

3. Recalling the definition ofD and the Minkowski sum, it follows immediately that∀xk+1 ∈
(R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1)) ⊕ D there exists an̂x1|k ∈ R (XF (T, N, P)) ∩
XF (T, N − 1, P − 1) and a disturbancewk ∈W such thatxk+1 = x̂1|k + fw(wk).

From the second result, it follows that there must also exist anx̂0|k ∈ XF (T, N, P) and a

feasible control input̂u0|k such that̂x1|k = fxu(x̂0|k, û0|k). Sincex̂0|k = xk, the result follows.
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Remark 6.1.Note that, in general,

XF (T, N − 1, P − 1) * R (XF (T, N, P)) .

If this set inclusion does not hold, then

R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1) 6= XF (T, N − 1, P − 1) .

Definition 6.2. Assuming no disturbances, the set of statesRM PC reachable fromXF (T, N, P) using

control inputs which are feasible for the MPC problem is

RM PC ,
{
xk+1 ∈ Rn | ∃(xk, π

N
k ) which satisfies (5.2) :xk+1 = fxu(xk, û0|k)

}
. (6.4)

Given the above result and definition, the following result can be given.

Proposition 6.1. Assuming no disturbances, the set of states reachable fromXF(T, N, P) using fea-

sible control inputs is

RM PC = R(XF (T, N, P)) ∩ XF (T, N − 1, P − 1) . (6.5)

Proof. The fact thatRM PC ⊇ R(XF(T, N, P)) ∩ XF (T, N − 1, P − 1) follows from the second

statement in Lemma 6.1.

If RM PC * R(XF(T, N, P))∩XF (T, N−1, P−1), then eitherxk+1 /∈ XF (T, N−1, P−1), which

contradicts Lemma 5.1, orxk+1 /∈ R(XF(T, N, P)) which contradicts the definition of the reach set.

Therefore,RM PC ⊆ R(XF(T, N, P)) ∩ XF (T, N − 1, P − 1).

R(XF (T, N, P)) is the set of states reachable from the feasible setXF(T, N, P) usingadmissible

control inputs, while the setR(XF (T, N, P))∩XF (T, N−1, P−1) is the subset which is reachable

using feasiblecontrol inputs. The setR(XF(T, N, P))\XF (T, N − 1, P − 1) is the set of states

reachable using admissible control inputs which are incompatible with the constraints of the MPC

problem over the prediction horizon.

With this understanding of the set of states reachable using feasible control inputs, one can derive a

necessary and sufficient condition for strong robust feasibility.

Theorem 6.1 (Robust strongly feasible).The nominal MPC regulator is robust strongly feasible if

and only if

(R (XF (T, N, P)) ∩XF (T, N − 1, P − 1))⊕ D ⊆ XF (T, N, P) . (6.6)
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Proof. (⇒) If the problem is robust strongly feasible then for allxk ∈ XF(T, N, P) it is true that for

all corresponding feasible control inputs and for all allowable disturbancesxk+1 = x̂1|k + fw(wk) ∈
XF(T, N, P).

Assume that the set inclusion does not hold. The third statement in Lemma 6.1 implies that for all

xk+1 ∈ {(R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1))⊕ D} \XF (T, N, P)

there exist anxk ∈ XF (T, N, P), a corresponding feasible control input and an allowable disturbance

which will result inxk+1 = fxu(xk, û0|k)+ fw(wk) /∈ XF (T, N, P). This contradicts the assumption

that the MPC problem is robust strongly feasible and the set inclusion therefore has to hold.

(⇐) By the first statement in Lemma 6.1,

xk ∈ XF (T, N, P)⇒ x̂1|k ∈ R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1) .

After applying a feasible control input, then for all allowable disturbances it is true thatxk+1 =
x̂1|k + fw(wk) ∈ (R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1)) ⊕ D. But this set is contained inside

XF (T, N, P), hence the problem is feasible at timek+ 1, despite the presence of a disturbance.

This statement says that a nominal MPC scheme is robust strongly feasible if and only if the Minkow-

ski sum ofD and the intersection ofXF (T, N − 1, P − 1) with the set reachable fromXF (T, N, P)

is a subset of the feasible setXF(T, N, P).

Corollary 6.1. Assuming there are no disturbances present, then the nominal MPC regulator of Prob-

lem 5.1 is strongly feasible if and only if

R (XF (T, N, P)) ∩ XF (T, N − 1, P − 1) ⊆ XF (T, N, P) . (6.7)

Remark 6.2.This result is stronger than Theorem 5.2 and can be used to prove Theorem 5.2.

Theorem 6.1 is useful for analysing the robust feasibility of a given MPC regulator. If the nominal

MPC problem satisfies this criterion, then no modifications need to be made in order to robustify the

controller. By increasing the size ofW until (6.6) is violated one can calculate the size of disturbances

to which the closed-loop system will be robust.

Theorem 6.1 was derived for obtaining a condition for guaranteeing strong feasibility, i.e.all feasible

(optimal and suboptimal) control inputs are considered. This result could therefore be conservative in

practice. It is possible that the MPC scheme will reject a larger set of disturbances when implemented,

due to the fact that the optimisation routine might try to steer the system towards the origin, rather

than towards the boundary ofR (XF (T, N, P)) ∩ XF (T, N − 1, P − 1).

The following example shows that a nominal MPC scheme can be robust strongly feasible without

having to make any modifications to the original formulation.
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Figure 6.1: Plot showing that the given nominal MPC scheme is robust strongly feasible for an un-

known disturbance with‖w‖∞ ≤ 0.333

Example 6.1. Consider the system:

xk+1 =
[

1 0

1 1

]
xk +

[
1 0.5

0 0.5

]
uk +

[
1 0

0 1

]
wk , (6.8)

with no constraints on the states.

The input is constrained to‖u‖∞ ≤ 1 and the disturbance‖w‖∞ ≤ γ . The target setT = {02} and

the control and prediction horizons are equal P= N.

Figure 6.1 is a plot of the reach setR(XF ({02},5,5)) and the feasible setsXF ({02}, N, N) =
SN(R2, {02}) for N = 4 and5. As the figure shows,

R(XF({02},5,5)) ∩ XF ({02},4,4) = XF({02},4,4) .

It was found that

XF ({02},4,4)⊕ EW ⊆ XF ({02},5,5) if γ ≤ 0.333

and

XF ({02},4,4)⊕ EW * XF({02},5,5) if γ > 0.333.
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Figure 6.2: Plot showing that the given nominal MPC scheme for the double integrator is not robust

strongly feasible for any size of disturbance

This implies that the nominal MPC regulator with N= 5 is robust strongly feasible for all‖w‖∞ ≤
0.333

The next example demonstrates that a nominal MPC scheme for the double integrator is not robust

strongly feasible given any arbitrarily small disturbance set. It is only strongly feasible in the nominal

sense.

Example 6.2. Consider the double integrator:

xk+1 =
[

1 1

0 1

]
xk +

[
0.5

1

]
uk +

[
1 0

0 1

]
wk , (6.9)

with no constraints on the states. The input is constrained to‖u‖∞ ≤ 1 and the disturbance‖w‖∞ ≤
γ . The target setT = {02} and the control and prediction horizons are equal P= N.

Figure 6.2 is a plot of the reach setR(XF({02},5,5)) and the feasible setsXF ({02}, N, N) =
SN(R2, {02}) for N = 4 and5.

As can be seen,

R(XF ({02},5,5)) ∩ XF ({02},4,4) = XF({02},4,4)
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andXF ({02},4,4) intersects the boundary ofXF ({02},5,5), hence

XF ({02},4,4)⊕ EW * XF ({02},5,5)

for anyγ > 0.

This implies that the given MPC controller with N= 5 is not robust strongly feasible, even though it

has nominal strong feasibility.

It would be desirable to determine whether one can synthesise a predictive controller to be robust to

an a priori determined disturbance set. The robust synthesis problem is the focus of the rest of this

chapter.

6.3 Min-max Robust MPC Schemes

This section briefly describes the two main robust model predictive control (RMPC) schemes found

in the literature - open-loop and feedback RMPC. Both approach the problem from a min-max point

of view. The control tries to minimise the worst-case cost that could result from a future disturbance

sequence.

In both cases it is usually assumed that the control and prediction horizons are equal, i.e.

N = P .

In order to guarantee that the RMPC scheme is robust strongly feasible the terminal constraintT is

chosen to be a robust control invariant set

T ⊆ Q̃(T) .

The open-loop RMPC problem is given by:

Problem 6.1 (Open-loop RMPC). Solve

min
πN

k

max
{ŵl |k∈W}N−1

0

F(x̂N|k)+
N−1∑
i=0

L(x̂i |k, ûi |k) (6.10)

subject to

x̂l+1|k = f (x̂l |k, ûl |k, ŵl |k), x̂0|k = xk (6.11a)

x̂l |k ∈ X, ûl |k ∈ U, l = 0, . . . , N − 1 (6.11b)

x̂N|k ∈ T . (6.11c)

The decision variable is

πN
k ,

[
û′0|k, û

′
1|k, . . . , û

′
N−1|k

]′
. (6.12)
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Following the discussion in Section 2.6, the feasible set of open-loop RMPC is

Xol
F =

{
x0 ∈ Rn | ∃ {uk ∈ U}N−1

0 : {xk ∈ X}N−1
0 , xN ∈ T,∀ {wk ∈W}N−1

0

}
. (6.13)

The feedback RMPC problem is given by:

Problem 6.2 (Feedback RMPC).Solve

min
πN

k

max
{ŵl |k∈W}N−1

0

F(x̂N|k)+
N−1∑
i=0

L(x̂i |k, ûi |k) (6.14)

subject to

x̂l+1|k = f (x̂l |k, ûl |k, ŵl |k), x̂0|k = xk (6.15a)

x̂l |k ∈ X, ûl |k ∈ U, l = 0, . . . , N − 1 (6.15b)

ûl |k = h(x̂l |k), l = 1, . . . , N − 1 (6.15c)

x̂N|k ∈ T . (6.15d)

The decision variable is

πN
k ,

[
û′0|k,h

(
x̂1|k

)′
, . . . ,h

(
x̂′N−1|k

)]′
. (6.16)

The only real, but very important, difference between Problems 6.1 and 6.2 is the choice of decision

variable. In open-loop RMPC the decision variable is a controlsequenceof lengthN and in feedback

RMPC the decision variable is the controllaw h(·).
Some authors, such as [MRRS00], prefer using the more general sequence of control laws

πN
k ,

[
û′0|k,h1

(
x̂1|k

)′
, . . . ,hN−1

(
x̂′N−1|k

)]′
as the decision variable for feedback RMPC. By choosing a single control law as the feedback policy

implicitly puts a causality constraint [SM98] on the sequence of control laws in the sense that the

control is independent on the path taken to reach the state, i.e. ifx̂1
l |k and x̂2

l |k are the estimates of the

state for two different disturbance sequences, then

x̂1
l |k = x̂2

l |k ⇒ û1
l |k = û2

l |k .

As is often the case, if the system is time-invariant, the terminal constraint is robust control invariant

and the disturbance sequence does not depend on previous values of the disturbance, then no benefit

in terms of the size of the feasible set of the RMPC scheme is gained from using a controller with

memory. A memoryless control law is sufficient for guaranteeing that the region in which constraint

satisfaction for all time can be guaranteed, is maximised. By solving for a single, memoryless con-

troller as in Problem 6.2 the complexity of the min-max problem is reduced and the presentation and
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development of theoretical results is simplified. The idea of optimising over a single feedback policy

for MPC of LTI systems is adopted in [KBM96, SM98], the former for polytopic uncertainty and the

latter for bounded state disturbances.

Following the discussion in Section 2.6, sinceT is robust control invariant, the feasible set of the

feedback RMPC problem stated above is

X f b
F = K̃N(X,T) . (6.17)

As mentioned before, the main difference is that open-loop RMPC tries to find a sequence of control

inputs, whereas feedback RMPC tries to find a control law which will guarantee constraint satisfaction

over the control horizon. A simplistic way of appreciating the difference between the two schemes is

to realise that open-loop RMPC assumes that the control sequence computed at timek will be applied

blindly for N steps, without measuring the state and recomputing a new control sequence at each of

the subsequent time steps. Asinglecontrol sequence is chosen such thatfor all allowable disturbance

sequences the constraints will be satisfied.

Clearly, by choosing different control sequences for different disturbance sequences will be less con-

servative. Feedback RMPC takes into account that at each point in the future the state will be measured

to determine which disturbance has occurred. Based on this knowledge of where the actual state lies

compared to the previously predicted range of possible values, a different control can be computed.

Feedback RMPC assumes that feedback will be used over the nextN steps and incorporates this into

the prediction. As a result, the feasible set of feedback RMPC is often much larger than for open-loop

RMPC, i.e.

Xol
F ⊂⊂ X f b

F .

Though feedback RMPC is in principle a good idea, it is fairly difficult to implement and compu-

tationally expensive. Min-max RMPC schemes require determining all possible future evolutions of

the disturbance sequence over the control horizon. Even if some special properties about the sys-

tem and disturbances hold, such as linearity and convexity [SM98], the computations quickly become

intractable as the horizon is increased.

The aim of the next section is to describe a method for robustifying MPC via the inclusion of a “ro-

bustness constraint”. The proposed scheme does not suffer from having to predict all possible future

disturbance evolutions on-line, but relies on the off-line computation of a robust control invariant set.

The addition of this constraint to the original MPC problem usually increases the computational load

by a minimal amount compared to traditional min-max RMPC schemes. Furthermore, in principle the

feasible set of the modified MPC problem can be made to be as large as possible.
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6.4 Robust Feasibility via a Robustness Constraint

The idea of adding a constraint to the nominal MPC problem to robustify the system against persistent

state disturbances was proposed in [CZ99]. This approach to solving the robust feasibility problem

has a number of benefits over the traditional robust MPC schemes.

This section also gives a new necessary and sufficient condition for the MPC problem with a ro-

bustness constraint to be robust strongly feasible. Some new sufficient conditions are also given in

Theorem 6.4, which are generalisations of [CZ00c, Thm. 5] and therefore less conservative. In Sec-

tion 6.5 it will be shown that this approach can also be extended to LTI systems with parametric

uncertainty and state disturbances.

The original MPC problem of Chapter 5 is modified by placing an additional constraint onx̂1|k. Typ-

ically the constraint is derived from a robust control invariant set contained inX or XF (T, N, P),

depending on the problem at hand. It is then required thatx̂1|k lie inside the Pontryagin difference of

this pre-computed set and the disturbance set. As will be shown in the sequel, this constraint allows

one to modify a nominal MPC scheme in order to guarantee robust strong feasibility.

Problem 6.3 (MPC with a Robustness Constraint).[CZ99, CZ00c] Solve

min
πN

k

F(x̂P|k)+
P−1∑
i=0

L(x̂i |k, ûi |k) (6.18)

subject to

x̂l+1|k = fxu(x̂l |k, ûl |k), x̂0|k = xk (6.19a)

x̂1|k ∈ XR ∼ D (6.19b)

x̂l |k ∈ X, ûl |k ∈ U, l = 0, . . . , P − 1 (6.19c)

ûl |k = h(x̂l |k), l = N, . . . , P − 1 (6.19d)

x̂P|k ∈ T ⊆ X (6.19e)

The decision variable in the above MPC problem is the control sequence

πN
k =

[
û′0|k, û

′
1|k, . . . , û

′
N−1|k

]′
.

The problem posed above is the same as Problem 5.1, but with the robustness constraint (6.19b) added

to the original MPC constraints. It is assumed thatXR ⊆ X. No assumption about strong feasibility

of the original MPC problem is made.

Remark 6.3.Note that, in contrast with the min-max RMPC schemes, Problem 6.3 does not minimise

the worst case cost, nor does it make use of explicit predictions of the future behaviour of the distur-

bance. Typically,XR is a robust control invariant set and by choosing the parameters appropriately,

strong robust feasibility can be guaranteed. The effect of the disturbance is implicitly taken into ac-

count by requiring that the predicted state at the next time instant lie inside a robust control invariant

set.
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The feasible set1 is defined in a similar fashion as in Section 5.2 to be the set of states for which a

control sequence exists which will satisfy the constraints in Problem 6.3.

Theorem 6.2 (Feasible set of MPC with robustness constraint).The feasible setXrc
F of the MPC

controller defined by Problem 6.3 is given by

Xrc
F = K1(X, (XR ∼ D) ∩ XF(T, N − 1, P − 1))

= Q((XR ∼ D) ∩ XF (T, N − 1, P − 1)) ∩ X . (6.20)

Proof. The fact thatx̂1|k ∈ XF (T, N − 1, P − 1)) follows as with Theorem 5.1. Additionally, it is

required that̂x1|k ∈ XR ∼ D, hencex̂0|k ∈ Q((XR ∼ D) ∩ XF (T, N − 1, P − 1)). Finally, x̂0|k ∈ X,

hencex̂0|k ∈ Q((XR ∼ D) ∩ XF(T, N − 1, P − 1)) ∩ X and the result follows from the definition of

controllable sets.

Remark 6.4.If the constraintx̂0|k ∈ X is removed, then

Xrc
F = Q((XR ∼ D) ∩ XF(T, N − 1, P − 1)) . (6.21)

Furthermore, sinceXR ∼ D ⊆ X, the explicit constraint̂x1|k ∈ X can be removed without changing

the problem.

The next result is a necessary and sufficient condition for Problem 6.3 to be strongly feasible.

Theorem 6.3 (Feasibility of MPC with robustness constraint).Problem 6.3 is robust strongly fea-

sible if and only if (
R
(
Xrc

F

) ∩ (XR ∼ D) ∩ XF (T, N − 1, P − 1)
)⊕ D ⊆ Xrc

F . (6.22)

Proof. The proof follows the same argument as that of Theorem 6.1.

The important thing to note about this result is that it does not requireXR or the originalXF to be

robust control invariant and can hence also be used for analysis. If this condition is satisfied, thenXrc
F

is robust control invariant. Furthermore, none of the following conditions on their own are necessary

nor sufficient for Problem 6.3 to be robust strongly feasible, since one can find counter-examples to

these conditions:

XR ⊆ XF(T, N, P) ,

XR ∼ D ⊆ XF(T, N, P) .

However, the following theorem provides some sufficient conditions to guarantee that Problem 6.3 is

robust strongly feasible.

1The notationXF (T, N, P) is still meant to denote the feasible set of Problem 5.1.
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Theorem 6.4 (Sufficient conditions for MPC with a robustness constraint).

1. If XR is robust control invariant and

XR ∼ D ⊆ XF (T, N − 1, P − 1) , (6.23)

then Problem 6.3 is robust strongly feasible and

Xrc
F = K1(X,XR ∼ D) = Q(XR ∼ D) ∩ X . (6.24)

2. If XR is robust control invariant and

XR ⊆ XF(T, N − 1, P − 1) , (6.25)

then Problem 6.3 is robust strongly feasible and

Xrc
F = K1(X,XR ∼ D) = Q(XR ∼ D) ∩ X . (6.26)

3. If

XR ⊆ XF (T, N, P) (6.27)

and

XF (T, N − 1, P − 1) ⊆ XR ∼ D , (6.28)

then Problem 6.3 is robust strongly feasible and

Xrc
F = XF (T, N, P) . (6.29)

Proof.

1. If XR ∼ D ⊆ XF (T, N − 1, P − 1), then it follows that(XR ∼ D) ∩ XF (T, N − 1, P − 1) =
XR ∼ D and hence from Theorem 6.2 thatXrc

F = Q(XR ∼ D) ∩ X.

Recall that(XR ∼ D) ⊕ D ⊆ XR ⊆ X and from the geometric condition for robust control

invariance thatXR ⊆ Q̃(XR) = Q(XR ∼ D), which implies thatXR ⊆ Q(XR ∼ D) ∩ X.

If xk ∈ Xrc
F , then for all feasible inputŝx1|k ∈ XR ∼ D and for all allowable disturbances

xk+1 ∈ (XR ∼ D)⊕ D ⊆ XR ⊆ Q(XR ∼ D) ∩ X = Xrc
F .

2. This result follows immediately from the first statement, sinceXR ∼ D ⊆ XF(T, N−1, P−1).

3. If XF (T, N − 1, P − 1) ⊆ XR ∼ D, then it follows that(XR ∼ D) ∩ XF (T, N − 1, P − 1) =
XF(T, N−1, P−1) and hence from Theorem 6.2 thatXrc

F = Q(XF (T, N−1, P−1))∩X =
XF(T, N, P).
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If XF(T, N − 1, P − 1) ⊆ XR ∼ D, thenXF (T, N − 1, P − 1)⊕D ⊆ (XR ∼ D)⊕D. Recall

also that(XR ∼ D)⊕D ⊆ XR ⊆ XF(T, N, P).

If xk ∈ Xrc
F , then for all feasible inputŝx1|k ∈ XF(T, N − 1, P − 1) ⊆ XR ∼ D and for

all allowable disturbances,xk+1 ∈ XF(T, N − 1, P − 1) ⊕ D ⊆ (XR ∼ D) ⊕ D ⊆ XR ⊆
XF(T, N, P) = Xrc

F .

Remark 6.5.The method for constructingXR given in [CZ00c] satisfies the second condition in

Theorem 6.4. Given ana priori chosenN = P andT = Oh∞(X), the authors propose setting

XR = S̃M∗(X, Õh∞(X)), whereM∗ is the largestM such thatS̃M(X, Õh∞(X)) ⊆ SN−1(X,Oh∞(X)) =
XF (T, N − 1, N − 1). A better choice would be to setXR = C̃∞(XF (T, N − 1, N − 1)) or

to setXR = S̃∞(XF(T, N − 1, N − 1), Õh∞(X)), since it is easy to show via contradiction that

S̃M∗(X, Õh∞(X)) ⊆ S̃∞(XF(T, N − 1, N − 1), Õh∞(X)) ⊆ C̃∞(XF(T, N − 1, N − 1)).

Remark 6.6.If XF(T, N − 1, P − 1) = SN−1(X,Oh∞(X)) as in Remark 6.5, then another method

which improves on the one given in [CZ00c] is to findM∗, the largestM such thatS̃M(X, Õh∞(X)) ∼
D ⊆ SN−1(X,Oh∞(X)) and settingXR = S̃M∗(X, Õh∞(X)). Similarly, an improvement on the latter

scheme is to findM∗, the largestM such thatS̃M (XF(T, N, P), Õh∞(X)) ∼ D ⊆ SN−1(X,Oh∞(X))
and settingXR = S̃M∗(XF(T, N, P), Õh∞(X)). Strong robust feasibility is then guaranteed in both

cases by the first condition in Theorem 6.4.

Remark 6.7.The last result in Theorem 6.4 does not requireXR to be robust control invariant. Fur-

thermore, the robustness constraint is effectively redundant and the constraintx̂1|k ∈ XR ∼ D can

be removed if the third statement holds for the given MPC scheme with robustness constraint. Theo-

rem 6.1 then guarantees strong robust feasibility.

6.4.1 Implementation of MPC with a Robustness Constraint

The idea of using a constraint to guarantee feasibility can be implemented in one of two ways:

• GivenXR, choose anN, P andT such that one of the conditions in Theorems 6.3 or 6.4 holds;

• Given an MPC controller, chooseXR such that one of the conditions in Theorems 6.3 or 6.4

holds.

Which approach is the most appropriate is dependent on the structure of the system. For example, for

a general nonlinear system, ifXR is the maximal robust control invariant set, then the first approach

might not work if the terminal constraint is chosen such thatK∞(X,T) ⊆ XR ∼ D, since no choice

of control horizon will result inXR ∼ D ⊆ XF (T, N − 1, P − 1). On the other hand, experience has

shown that for LTI systems there nearly always exists a choice of horizons which results in one of the

conditions in Theorems 6.3 or 6.4 holding.
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The first approach can be implemented as follows:

1. Given:XR and the resultingXR ∼ D;

2. Choose/compute a terminal constraintT, the maximum allowed control horizonNmax and a

value for the differenceP − N;

3. SetN ← 1;

4. ComputeXF (T, N − 1, P − 1);

5. ComputeXF (T, N, P) = Q(XF (T, N − 1, P − 1)) ∩ X;

6. If any of the robust feasibility conditions in Theorems 6.3 or 6.4 hold, then stop;

7. If N < Nmax then setN ← N + 1 and go to step 5, else go to step 2.

The second approach can be implemented as follows:

1. Given: a terminal constraintT and values for the horizonsP andN.

2. ComputeXF (T, N − 1, P − 1) andXF (T, N, P) = Q(XF (T, N − 1, P − 1)) ∩ X;

3. ComputeXR = C̃∞(X);
4. If any of the robust feasibility conditions in Theorems 6.3 or 6.4 hold, then stop;

5. ComputeXR = C̃∞(XF (T, N, P));

6. If any of the robust feasibility conditions in Theorems 6.3 or 6.4 hold, then stop;

7. ComputeXR = C̃∞(XF (T, N − 1, P − 1));

ProvidedC̃∞(XF (T, N − 1, P − 1)) 6= ∅, the last choice forXR will always work, since the second

statement in Theorem 6.4 will hold. Obviously, alternative choices forXR are possible, such as those

proposed in Remarks 6.5 and 6.6.

6.4.2 Benefits of MPC with a Robustness Constraint

The following are some benefits of using the robustness constraint approach in guaranteeing robust

feasibility in MPC:

• Traditional robust MPC schemes based on the min-max approaches discussed in Section 6.3

typically result in computationally impractical implementations. This is because, as the horizon

increases, the number of possible sequences of disturbances can grow exponentially and often

also the number of steps required in solving the min-max problem.
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What the robustness constraint approach offers is a guarantee for robust feasibility with the

addition of only a minimal amount of on-line computational effort. For example, if the cost

function is quadratic, the system is LTI and the constraints are given by polyhedra, then a single

QP is sufficient for solving for the MPC control action.

• An additional benefit of the robustness constraint approach is that one can robustify an existing

MPC controller without having to redefine the problem in a substantial way. A new choice of

terminal constraint, horizons or cost function is not necessary.

• The use of a terminal constraintT alone does not give a robust feasibility guarantee. The

robustness constraintXR ∼ D does away with the need for relying on a terminal constraint to

guarantee feasibility.

However, often the terminal constraint is used to provide a stability guarantee. The robustness

constraint allows one to seek alternative ways of guaranteeing stability without having to rely

on the use of a terminal constraint.

• In principle (particularly for LTI systems) the MPC problem can be made to be robust strongly

feasible over as large a subset ofX as possible. For example, by settingT = X andN = P one

can chooseXR = C̃∞(X). The MPC problem will be robust strongly feasible with a feasible set

Xrc
F = Q(C̃∞(X) ∼ D) ∩ X, for any choice ofN.

6.5 LTI Systems with Parametric Uncertainty

If the system is LTI with no uncertainty in the matrices(A, B) and only additive state disturbances are

present, then all the results in Sections 6.2 and 6.4 can be used to guarantee robust strong feasibility.

However, if there is parametric uncertainty in(A, B) as in Section 3.1, then a few small modifications

need to be made to Problem 6.3 and care has to be taken which matrices are to be used in the different

parts of the MPC problem.

It is assumed that the actual system is given by

xk+1 = Axk + Buk + Ewk (6.30)

where

(A, B) ∈ 1 , conv
{
(A1, B1) , . . . ,

(
Ap, Bp

)}
(6.31)

andwk ∈W, whereW is a polytope containing the origin.

Before proceeding, one has to choose a nominal matrix pair

(A0, B0) ∈ 1 (6.32)

which will be used in the constraints and cost function of the MPC problem. The MPC problem then

becomes:
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Problem 6.4 (Robustly feasible MPC for LTI systems with parametric uncertainty). Solve

min
πN

k

F(x̂P|k)+
P−1∑
i=0

L(x̂i |k, ûi |k) (6.33)

subject to

x̂l+1|k = A0x̂l |k + B0ûl |k, x̂0|k = xk (6.34a)

Aj x̂0|k + Bj û0|k ∈ λ̃XR ∼ D, j = 1, . . . , p (6.34b)

x̂l |k ∈ X, ûl |k ∈ U l = 0, . . . , P − 1 (6.34c)

ûl |k = h(x̂l |k), l = N, . . . , P − 1 (6.34d)

x̂P|k ∈ T ⊆ X (6.34e)

The decision variable in the MPC problem is still the control sequenceπN
k =

[
û′0|k, û

′
1|k, . . . , û

′
N−1|k

]′
.

The vertices of the matrix polytope are included in the robustness constraint (6.34b). Due to convex-

ity, if the constraints are satisfied for all vertices, then the constraints will be satisfied for all points

contained in the convex hull.

Some slight modifications need to be made to the results in Section 6.4. It is easy to verify that the

feasible set of the robust MPC problem is given by

Xrc
F =

{
xk ∈ X

∣∣∣∣∣∃uk ∈ U :
Aj xk + Bj uk ∈ λ̃XR ∼ D, j = 1, . . . , p,

A0xk + B0uk ∈ XF (T, N − 1, P − 1)

}
, (6.35)

whereXF (T, N − 1, P − 1) is computed using the nominal matrix pair(A0, B0) andXrc
F can then be

computed using a projection method.

Due to plant-model mismatch the necessary and sufficient condition of Theorem 6.3 does not nec-

essarily hold. However, due to convexity the sufficient conditions of Theorem 6.4 hold ifXR is

λ-contractive and̃λ is such thatλ ≤ λ̃ ≤ 1. The following substitutions need to be made:

XR ∼ D← λ̃XR ∼ D

and

Q(XR ∼ D)← Q1(λ̃XR ∼ D) .

6.6 Robust Stability

As with nominal stability, it is desirable to obtain stability results for the various RMPC schemes. The

conditions in Section 5.9 need to be strengthened as follows to guarantee robust asymptotic stability

for the open-loop and feedback RMPC schemes:
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1. h(x) ∈ U,∀x ∈ T, i.e. the control lawh(x) is admissible inT;

2. f (x,h(x), w) ∈ T,∀x ∈ T,∀w ∈ W, i.e. T is robust positively invariant for the system

xk+1 = f (x,h(x));

3. There exists a positivec such that the stage costL(x,u) ≥ c‖(x,u)‖2 andL(0,0) = 0.

4. F(x) is positive definite andF( f (x,h(x), w)) − F(x) ≤ −L(x,h(x)),∀x ∈ T,∀w ∈ W, i.e.

F(·) is a robust control Lyapunov function in a neighbourhood of the origin;

These conditions guarantee that the worst-case cost in the min-max RMPC schemes will decrease at

each time step. Robust asymptotic stability follows.

However, with the robustness constraint MPC scheme of Section 6.4, the worst-case cost does not

come into play, since the scheme does not rely on explicit predictions of the disturbance. Nevertheless,

a robust stability result can be obtained.

Definition 6.3 (Asymptotic stability of a perturbed system). [SRM97] The origin is an asymptoti-

cally stable fixed point of the perturbed systemx̄k+1 = G(x̄k)+ wk if and only if:

1. there exists strictly positive constantsr andµ such that the solution of the perturbed system

x̄k+1 = G(x̄k) + wk remains in a ballBr for all k ≥ 0, if x̄0 ∈ Bq, q 6= r for someq, and

wk ∈ Bµ for all k;

2. the solution of the perturbed systemx̄k+1 = G(x̄k)+wk converges asymptotically to the origin,

if x̄0 ∈ Bq,wk ∈ Bµ for all k andwk → 0 ask→∞.

Theorem 6.5 (Asymptotic stability of a perturbed system).[SRM97] Let G : Rn 7→ Rn satisfy a

Lipschitz condition in a neighbourhood of the origin with F(0) = 0. If the origin is an exponentially

stable fixed point of xk+1 = G(xk), it is an asymptotically stable fixed point of the perturbed system

x̄k+1 = G(x̄k)+ wk.

Let G(xk) = fxu(xk, κ(xk)) be the description of the nominal system in closed-loop with the robust-

ness constraint MPC control law of Section 6.4, where the parameters have been chosen such that

the origin is an exponentially stable fixed point (see Section 5.9). An additional Lipschitz continuity

assumption onG(·) guarantees robust asymptotic stability of the system, providedwk is an asymptot-

ically decaying disturbance andW is bounded.

An unresolved question is for which class of systems the Lipschitz continuity of the resulting closed-

loop system holds. For LTI systems where the inequalities are linear and the cost is quadratic, the

optimisation problem becomes a QP. It can be shown that the solution of the QP is Lipschitz continu-

ous over the feasible set [Hag79, Mea94, BMDP00a]. As a result, the closed-loop system is Lipschitz

continuous and the stability result is applicable.
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This observation that if the system is LTI then the resulting closed-loop system is robust asymptot-

ically stable, is also noted in [SR98, Thm. 2]. However, feasibility for all time is not guaranteed

in [SR98]. With the addition of a robustness constraint to the original (nominal) MPC problem, both

strong robust feasibility and robust asymptotic stability can be guaranteed for LTI systems with an

asymptotically decaying disturbance.

As mentioned in [Mea94, SRM97, SM98], the output feedback case can be addressed by cascading

an asymptotically stable state estimator with an exponentially stable MPC scheme. The errors in the

estimation can be treated as disturbances on the state. By assuming a bound on the effect of the errors

on the state and incorporating this into the MPC controller, a stable closed-loop system results with

guaranteed feasibility.

6.7 Output Feedback

The case of output feedback has always been one of the main problems in MPC because of the fact

that there is always some error between the actual and estimated state. All guarantees of feasibility,

even if there is no plant-model mismatch or disturbances, are lost if the initial state estimate differs

from the true state.

However, if one has an asymptotically stable estimator and one can place a bound on the error, then

it is easy to see that by defining the error as a bounded state disturbance of ana priori chosen size,

then one can synthesise a predictive controller with a robustness constraint which incorporates this

fact. Furthermore, if the nominal MPC scheme is exponentially stable and satisfies some Lipschitz

conditions, then the origin of the estimator-controller-plant system is an asymptotically stable fixed

point, as mentioned in Section 6.6.

To see why errors in output feedback can be treated as a state-disturbance, consider the LTI system

xk+1 = Axk + Buk

yk = Cxk

in closed-loop with a feedback control law

uk = K x̂k|k ,

where the estimate of the current statex̂k|k is provided by an observer of the form

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1

x̂k|k = l (yk, x̂k|k−1) .

The error between the estimated and the actual state is given by

ek , x̂k|k − xk . (6.36)
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If one implements the control law, then the closed-loop system

xk+1 = Axk + BK(xk + ek)

yk = Cxk

is equivalent to

xk+1 = (A+ BK)xk + Ewk

yk = Cxk ,

with E = BK andwk = ek. The error in the estimate is scaled by the control law and produces a

control input which is slightly perturbed from the ideal control lawuk = K xk, which would have been

possible if there were state feedback.

If the control law or plant is nonlinear as with MPC, then an analysis of this kind is more difficult.

In the case of an MPC controller in closed-loop with an LTI system, the controller can be computed

off-line and it results in a piecewise affine control law, as discussed in Section 7.4.2, i.e.

uk = K i x̂k|k + gi , if x̂k|k ∈ CRi .

The closed-loop system is then also a piecewise affine system

xk+1 = (A+ BKi )xk + Bgi + Eiwk, for x̂k|k ∈ CRi

yk = Cxk ,

where the estimation errorek = wk is still treated as a state disturbance withEi = BKi . Given a

bound on the errorek ∈ E, this analysis can be performed for all critical regionsCRi and a disturbance

setW computed.

For large systems this kind of analysis might be impractical. Prior to controller design, aW which

is ‘sufficiently large’ to include the effect of state estimation errors and actual state disturbances can

be chosen. Combining this heuristic approach with a robustness constraint already provides one with

some kind of robustness guarantee, compared to a standard MPC scheme which has no robust feasi-

bility guarantee.

Finally, one could design the estimator such that the error size is robust to the unmeasured state

disturbances [Bla90, Sect. IV]. The estimator parameters have to be chosen such that there exists

a robust positively invariant set contained within thea priori chosen bounds onek. An alternative

way of including output feedback in MPC is to incorporate set-based estimation techniques [Sch68,

Hny69, Sch73, CGZ96, CGVZ98] into the predictive controller [BG00, CZ00b]. However, the meth-

ods proposed in [BG00, CZ00b] propagate the uncertainty in the state forward in time using open-loop

predictions. Because of the fact that the predictions areopen-loop, this approach is conservative and

the controller could therefore have a small feasible set. An MPC scheme with a robustness constraint

which assumes a bound on the size of the estimation error can be designed to have a larger feasible

set, given the same control horizon.
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6.8 Setpoint Calculation

In most applications the operating level as required by the operator changes during the lifetime of

the process. A controller which has been designed to operate around a single set-point is therefore

not very practical. The problem with many MPC schemes is that a large change of set-point could

result in an infeasible MPC problem at some future time. The MPC controller has therefore got to be

designed to drive the system from one operating point to another without violating the constraints.

Many approaches have been proposed for designing MPC controllers to allow for varying set-points.

One of the solutions which has received a large amount of attention is the concept of using a reference

governor [GKT95, GK99]. In the standard approach it is assumed that some stabilising controller,

which does not explicitly take account of the constraints, has been designeda priori. The reference

governor then modifies the reference at each time step in order to avoid the violation of constraints.

These ideas have been applied in a predictive control context [BCM97, BM98, Bem98], where some

form of uncertainty in the impulse/step response can also be assumed.

In [CZ00a] a method is described which combines the reference governor approach with an MPC

controller. The region of attraction of the reference governor is enlarged by allowing the controller

to not only modify the reference, but the input as well. Bounded state disturbances are dealt with by

adding a robustness constraint to the original MPC problem, as in Section 6.4.

An alternative solution to the set-point tracking problem is to derive an MPC controller for a family of

set-points [FCA00]. In this approach, a “pseudo-linearisation” of the plant is used to obtain a closed

form expression for the MPC controller parameters as a function of the set-point.

More fundamental than taking the system from one set-point to another, is that of determining a set-

point which is compatible with the constraints and disturbances [MR93]. The problem of determining

a setpoint, assuming no disturbances, is discussed in [Mus97]. A procedure for computing the setpoint

for systems with measured disturbances is described in [RR99] and an algorithm which explicitly ac-

counts for model uncertainty is given in [KBH00]. This section discusses the problem of determining

a setpoint when there are unknown, but bounded state disturbances.

6.8.1 Computation of a Compatible Setpoint for LTI Systems

Consider the LTI system

xk+1 = Axk + Buk + Ewk

yk = Cxk + Fvk ,
(6.37)

wherewk ∈ W andvk ∈ V are the disturbances with(0,0) ∈ W × V. It is required thatuk ∈ U
and yk ∈ Y for all time. The desired set-points for the inputs and outputs are given byud and yd,

respectively.
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The problem becomes that of determining a steady-state equilibrium for the statexss = Axss+ Buss

and inputuss such that the steady-state outputyss = Cxss is close toyd in some sense and that the

constraints can be satisfied for all allowable disturbances2.

Note that the disturbances are unknown. If the output constraints are to be satisfied for all state and

output disturbances, then the state has to be kept inside a robust control invariant set contained inside

the output admissible set, i.e.

xk ∈ C̃λ∞(Xφ) ,∀k ∈ N (6.38)

where the output admissible setXφ is given by

Xφ = {xk ∈ Rn | Cxk ∈ Y ∼ FV
}
. (6.39)

An inner approximation tõCλ∞(Xφ) can be computed using the algorithms given in Chapter 3. Let�

denote an inner approximation to the maximalλ-contractive setC̃λ∞(Xφ). The problem can then be

restated as finding anxss and admissibleuss such that the constraints

xss ∈ � ∼ EW (6.40a)

xss= Axss+ Buss (6.40b)

are satisfied andyss anduss are as close as possible toyd andud.

Remark 6.8.Note that it is required thatxss ∈ � ∼ EW and not justxss ∈ �. If only the latter were

enforced, then it is possible that at steady-state, a state disturbance could drive the system outside the

output admissible set.

The issue is complicated by the fact that the number of inputs and outputs often differ. If there are

more inputs than outputs, then multiple combinations of inputs may produce the same output. If there

are less inputs than outputs, then it is possible that there does not exist a combination of inputs which

will ensure that all desired output values are met. Furthermore, it is often more desirable to satisfy

some steady states and give up on others if it is not possible to get an exact solution3.

If � ∼ EW andU are given by linear inequalities, then anad hocway of computing the optimal

setpoint is to solve the following soft-constrained quadratic program:

min
xss,uss,ε

1

2

[
ε′Qssε + (uss− ud)

′ Rss(uss− ud)
]+ q′ssε (6.41)

2Recall from Section 2.2 that the output constraints can be recast as constraints on the state, i.e.X = Rn is replaced

with Xφ , the output admissible set.
3The setpoint determination then becomes one of a multi-objective optimisation problem [MSB92]. There are several

proposals for dealing with multi-objective problems and an approach based on mixed-integer programming is discussed in

Chapter 8.



110 CHAPTER 6. ROBUST FEASIBILITY IN MODEL PREDICTIVE CONTROL

subject to the constraints

xss= Axss+ Buss (6.42a)

xss ∈ � ∼ EW (6.42b)

uss ∈ U (6.42c)

yd − Cxss� ε (6.42d)

yd − Cxss� −ε (6.42e)

0� ε , (6.42f)

where Qss � 0 and Rss � 0. The weightqss � 0 is chosen sufficiently large such that the soft

constraint is guaranteed to be exact4. The uniqueness of the solution is guaranteed if the system is

detectable [RR99, App. A].

Due to the exact penalty nature of the problem, the optimisation routine tries to minimise the slack

variablesε before minimisinguss−ud, thereby assigning a high priority to all the outputs and putting

all the inputs on the same, but lower priority level.

Remark 6.9.Providedqss is large enough, if any of the slack variables of the solution are non-zero,

then it indicates that the computed steady state is incompatible with the output constraints and distur-

bances. Such a violation should be used to indicate a process exception and the operator should be

notified. Furthermore, an infeasible solution indicates that a steady state is not possible.

Example 6.3. Consider the system:

xk+1 =
[

1 0

1 1

]
xk +

[
1 0.5

0 0.5

]
uk +

[
1 0

0 1

]
wk

yk =
[

1 0

0 1

]
xk +

[
1 0

0 1

]
vk ,

with

Y ,
{
y ∈ R2 |‖y‖∞ ≤ 5

}
U ,

{
u ∈ R2 |‖u‖∞ ≤ 1

}
W ,

{
w ∈ R2 |‖w‖∞ ≤ 0.5

}
V ,

{
v ∈ R2 |‖v‖∞ ≤ 1

}
.

The desired output yd and input ud values at steady-state are given as

yd =
[

2

4

]
,ud =

[
0

0

]
.

4See Chapter 7 for a discussion on how to compute such aqss.
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The first step is to calculate the output admissible set. The output admissible set is

Xφ ,
{
x ∈ R2 | Cx ∈ Y ∼ FV

}
= {x ∈ R2 | ‖x‖∞ ≤ 4

}
.

The second step is to calculate the maximal robust control invariant setC̃∞(Xφ) contained in the

output admissible set. It turns out that an inner approximation is not necessary, sinceC̃∞(Xφ) is

finitely determined.

The third step is to compute the Pontryagin difference betweenC̃∞(Xφ) and EW. This set is

� ∼ EW = C̃∞(Xφ) ∼ EW =



x ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


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0.8 2
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0.2 2

1 0

0 1

−1 0

0 −1



x �


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3.5

3.5

3.5
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.

Finally, solving the soft-constrained QP given in Section 6.8.1 with

Qss= Rss= I ,qss= 100· [1,1]′ .

the steady-state

xss=
[

2

3.05

]
,uss=

[
0.2

−0.4

]

is obtained.

Figure 6.3 shows the various sets considered in the computation of the setpoint as well as the location

of the final steady state xss and the state which corresponds to the desired yd.

Staying Away From the Constraints

In many industrial processes the operating pointsyd andud of the plant are calculated on a higher

level to minimise some economic cost. This optimisation is often posed as an LP and as a result the

most economic operating point is always on the boundary or intersection of some of the constraints.
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Figure 6.3: The sets used for calculating the setpoint in Example 6.3

On the other hand, one cannot drive the system too close to the boundary since an unknown distur-

bance could push the system outside the constraints. If the constraint is a safety constraint, then this

could result in system failure.

If theW contains the origin in its interior, then the new steady state will be contained in the interior

of the output admissible setXφ. This agrees with intuition in the sense that in order to satisfy the

constraints in the presence of disturbances, the set-point has to be some distance from the boundary.

The soft-constrained optimisation problem posed above will result in a setpoint which is as close to the

desired set-point as possible. As can be seen, there will always be some tradeoff between optimality

and robustness, since a larger disturbance set will result in a setpoint which is further away from the

boundary and hence less optimal in an economic sense.

6.8.2 The MPC Problem With a New Setpoint

Given the new steady-state pair(xss,uss) as computed using the above soft-constrained QP, the origin

of the system and the input- and state constraints need to be translated and a new MPC problem needs

to be set up to regulate the system to the new setpoint.
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Problem 6.5 (Robustly feasible MPC with a new setpoint).Solve

min
πN

k

F(x̂P|k)+
P−1∑
i=0

L(x̂i |k, ûi |k) (6.43)

subject to

x̂l+1|k = Ax̂l |k + Bûl |k, x̂0|k + xss= xk (6.44a)

x̂1|k ∈ XR ∼ D (6.44b)

x̂l |k + xss ∈ X, ûl |k + uss ∈ U, l = 0, . . . , P − 1 (6.44c)

ûl |k = h(x̂l |k), l = N, . . . , P − 1 (6.44d)

x̂P|k ∈ T . (6.44e)

The input that is implemented is given byuk = û∗0|k + uss.

Remark 6.10.The setsXR andT might have to be recomputed for the new setpoint and translated

constraints. It is also possible that the horizon lengths need to be increased in order to make the new

problem feasible.

If the number of possible operating points are finite, then an off-line design could be carried out to

determine all possible values for the constraints and horizons to guarantee feasibility for all cases. If

the possible operating points are not known before-hand, then an on-line computation has to be done

with each set-point change.

If T = X, N = P and one would like to keep the current horizon length and robustness constraint, then

a steady-state would have to be computed which is compatible with the constraints of the original MPC

problem. This is achieved by adding the constraintxss ∈ XR ∼ D to the steady-state computation of

Section 6.8.1.

An important further point which needs mentioning is that “any domain of attraction for a linear

constrained system is a tracking domain of attraction” [BM00]. What this implies is that if the set-

point of the system changes, the shape and size of the maximal stabilisable and control invariant set

does not change and therefore does not need to be recomputed. Though [BM00] discusses only the

nominal case, it should be possible to extend the results to the case with disturbances. If this does

hold true, then the following remark is also true:

Remark 6.11.If T = X, N = P andXR = C̃∞(X) in the original robust MPC problem, then the new

MPC problem will be feasible at the next time instant and it will be robust strongly feasible as well.

No new calculations forN or XR need to be made. The newxss is a compatible steady-state only if

xss ∈ C̃∞(X).
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6.9 Robust MPC Design Examples

This section shows how a robust strongly feasible MPC controller can be designed by adding a ro-

bustness constraint to the nominal controller.

6.9.1 The Double Integrator

Consider the double integrator:

xk+1 =
[

1 1

0 1

]
xk +

[
0.5

1

]
uk +

[
1 0

0 1

]
wk .

It was shown in Example 6.2 that a nominal MPC controller cannot be designed to be robust strongly

feasible for any size of disturbance. It will be shown how adding a robustness constraint guarantees

robust strong feasibility of the closed-loop system.

The constraints are given by

X ,
{
x ∈ R2 |‖x‖∞ ≤ 5

}
U ,

{
u ∈ R2 |‖u‖∞ ≤ 1

}
W ,

{
w ∈ R2 |‖w‖∞ ≤ 0.5

}
.

The first step is to design an MPC controller with nominal exponential stability. For this purpose, the

stage cost is chosen to be quadratic

L(x,u) = x′Qx+ u′Ru

with

Q = I2, R= 1 .

The terminal controller is chosen to be the solution of the unconstrained, infinite horizon LQR problem

with weightsQ andR, as in (7.4):

h(xk) = K∞xk =
[
−0.4345 −1.0285

]
xk .

The terminal cost is chosen to correspond to be the control Lyapunov functionF(x) = x′QF x with

QF =
[

2.3671 1.1180

1.1180 2.5875

]
,

whereQF is found as part of the solution to the Algebraic Riccati Equation (7.4).



6.9. ROBUST MPC DESIGN EXAMPLES 115

The terminal constraint is chosen to be the maximal positively invariant set for the unconstrained LQR

controller contained inX:

T = Oh
∞(X) = Oh

1(X) =


x ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1 0

−1 0

−0.4345 −1.0285

0.4345 1.0285

0.1068 −0.1818

−0.1068 0.1818


x �



5

5

1

1

1

1




.

The control and prediction horizons are chosen to be equal, i.e.P = N. It is desired that the smallest

control horizon be chosen such that the feasible set is as large as possible, while still being robust

strongly feasible. The largest that the feasible set can be, is equal toQ(C̃∞(X) ∼ D) ∩ X.

The maximal robust control invariant setC̃∞(X) has a determinedness index of 6 and the robustness

constraint is chosen to be

XR ∼ D = C̃∞(X) ∼ D .

It is found that

XR ∼ D * S0(X,T) = XF(T,0,0)

but that

XR ∼ D ⊆ S1(X,T) = XF(T,1,1) .

The first statement in Theorem 6.4 implies that if the control horizonN ≥ 2, then the MPC scheme

with the given robustness constraint is robust strongly feasible with feasible set

Xrc
F = Q(C̃∞(X) ∼ D) ∩ X .

The control horizon is therefore set toN = P = 2. Figure 6.4 shows the corresponding sets used

in deriving the MPC control law with robustness constraint. Figure 6.5 shows the state evolution

starting from a number of initial states inside the feasible set. The MPC problem remains feasible for

a sequence of random state disturbances.

It is interesting to note that even though the disturbance does not decay to zero, the system is stable in

the sense that every trajectory enters a bounded subset containing the origin.

6.9.2 A System With Three States and Two Inputs

This section illustrates that it is not necessary to visualise the sets in order to design a robust MPC

controller. The tools developed in this thesis can be used to obtain values for the MPC parameters

such that the feasible set is maximised, while still guaranteeing strong robust feasibility.
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Consider the arbitrary system:

xk+1 =
−0.1 0.2 0.1

−0.3 −0.5 0.3

0.5 −0.6 0.7

 xk +
1 2

5 8

8 2

uk +
1 0 0

0 1 0

0 0 1

wk ,

where the constraints are given by

X ,
{
x ∈ R3 |‖x‖∞ ≤ 100

}
U ,

{
u ∈ R2 |‖u‖∞ ≤ 1

}
W ,

{
w ∈ R3 |‖w‖∞ ≤ 10

}
.

The first step is to design an MPC controller with nominal exponential stability. For this purpose, the

stage cost is chosen to be quadratic

L(x,u) = x′Qx+ u′Ru

with

Q = I3, R= I2 .

The terminal constraint is chosen to be

T = {0}

with the terminal cost

F(x) = 0

and terminal controller

h(xk) = 0 .

The maximal robust control invariant set is finitely determined with a determinedness index of 1. By

choosing

XR = C̃∞(X) = C̃1(X)
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the robustness constraint is

XR ∼ D =



x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−0.2913 −0.4854 0.2913

0.5328 −0.3651 0.5920

0.5000 −0.6000 0.7000

−0.5328 0.3651 −0.5920

0.2913 0.4854 −0.2913

−0.5000 0.6000 −0.7000

1 0 0

0 1 0

0 0 1

−1 0 0

0 −1 0

0 0 −1



x �


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82.0000
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90

90
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

.

By increasingN = P from 1 to 5 it is found that

XR ∼ D * SN(X,T) = XF(T, N, P), N = 1,2,3,5

but that

XR ∼ D ⊆ S6(X,T) = XF (T,6,6) .

The first statement in Theorem 6.4 implies that if the control horizonN ≥ 7, then the MPC scheme

with the given robustness constraint is robust strongly feasible with feasible set

Xrc
F = Q(C̃∞(X) ∼ D) ∩ X .

Figure 6.6 shows the state evolution starting from a number of initial states inside the feasible set. The

MPC problem remains feasible for a sequence of random state disturbances.

As with the double integrator, it is interesting to note that even though the disturbance does not decay

to zero, the system is stable in the sense that every trajectory enters a bounded subset containing the

origin.

6.10 Summary

The notion of strong feasibility defined in the previous chapter was extended to the notion of robust

strong feasibility. A necessary and sufficient condition was derived for a given nominal MPC scheme

to be robust strongly feasible. This condition reduces to a necessary and sufficient condition on the

strong feasibility of the MPC controller in the absence of disturbances.
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Figure 6.6: The evolution of the system from a number of initial states inside the feasible set of the

robust MPC controller designed in Section 6.9.2
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The differences between open-loop robust MPC and feedback robust MPC schemes were discussed.

These schemes suffer from having to predict all possible future disturbance evolutions at each time

step, thereby making on-line implementation very difficult.

The addition of a robustness constraint to the nominal MPC scheme for guaranteeing robust strong

feasibility and reducing the computational effort was discussed. The idea relies on the off-line com-

putation of a robust control invariant set. This constraint is used to modify the original MPC scheme

by requiring the predicted state at the next time instant to lie inside the Pontryagin difference of

this pre-computed set and the disturbance set. A new necessary and sufficient condition and some

new sufficient conditions were derived for guaranteeing the robust strong feasibility of the proposed

scheme.

It was then shown how this scheme can be applied to guaranteeing robust strong feasibility for MPC

of systems with parametric uncertainty and state disturbances. If the constraints are given by convex

polyhedra and the cost function is quadratic, then a single QP at each time step is sufficient to compute

an MPC control which will guarantee that the MPC problem is feasible at the next time instant, despite

the presence of uncertainty and disturbances. This makes the on-line implementation of the robustness

constraint MPC approach feasible, since the addition of the extra constraint adds minimal overhead to

the computational effort required.

Some well-known conditions for guaranteeing robust stability were also given. It was briefly discussed

how the robustness constraint approach can be used to guarantee robust feasibility and stability in the

case of output feedback with an asymptotically stable observer.

Finally, some of the ideas from set invariance theory were applied to the computation of a setpoint

which is compatible with the constraints of the system, while bearing in mind that there are unknown

disturbances on the state and output.
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Chapter 7

Soft Constraints and Exact Penalty

Functions

Soft constraints and exact penalty functions are introduced. It is shown how to compute a lower

bound on the penalty weight such that the soft-constrained MPC is such that constraint satisfaction is

guaranteed if possible.

7.1 Introduction

The success of Model Predictive Control (MPC) in industry is primarily due to the ease with which

constraints on the inputs and states can be included in the control problem formulation. However,

sometimes a disturbance drives the plant into a state for which the control problem is infeasible and

hence a new control input cannot be computed. Heuristic methods such as removing constraints or

repeating the previously computed input are sub-optimal and could lead to unpredictable closed-loop

behaviour.

A more systematic method for dealing with infeasibility is to “soften” the constraints by adding slack

variables to the problem, where the size of the slack variables correspond to the size of the associated

constraint violations [dOB94, SR99, Mac01]. The slack variables are added to the MPC cost function

and the optimiser searches for a solution which minimises the original cost function, while keeping

the constraint violations as small as possible.

Additionally, it is desirable that the solution to the soft-constrained MPC problem be the same as the

solution to the original hard-constrained MPC problem, if the latter were feasible. The theory of exact

penalty functions can be used to derive a lower bound for the constraint violation weight such that

equality is guaranteed [Fle87, Sect. 14.3]. However, in MPC this weight is dependent on the current

state of the system. It is therefore necessary to calculate a lower bound for the whole of the feasible

set of the hard-constrained problem.

123
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A naive and impractical solution would be to grid the state space region of interest and compute the

optimal Lagrange multipliers at each point. This method is computationally demanding and due to the

finite nature of the grid one cannot guarantee that the true lower bound on the weight will be found. As

mentioned in [SR96], a conservative state-dependent lower bound might be obtainable by exploiting

the Lipschitz continuity of the quadratic program [Hag79]. However, it is unclear as to how exactly

one would proceed to implement this for the entire feasible state space.

Furthermore, it is shown in Section 7.6 that the norm of the Lagrange multipliers of the optimal

solution are, in general, non-convex over the feasible set. This further complicates the problem.

This chapter shows how the Karush-Kuhn-Tucker (KKT) conditions can be used to compute a lower

bound by solving a finite number of linear programs (LPs). This method is therefore computationally

less demanding than gridding and provides a guarantee that the lower bound has been found.

Once a lower bound has been computed, the soft-constrained MPC problem can be set up. This new

MPC problem will produce a result where the original hard-constrained MPC problem would have

been infeasible. The important result is that one can guarantee that the soft- and hard-constrained MPC

problems will produce the same result for the region in which the latter would have been feasible.

Section 7.2 defines a standard formulation of MPC with an LTI model subject to linear inequality

constraints. It is shown that the cost function and constraints of the resulting quadratic program (QP)

are dependent on the current plant state. More precisely, the MPC problem can be treated as a multi-

parametric quadratic program (mp-QP) [BMDP00b]. This allows one to gain additional insight into

the structure of the problem and develop a systematic approach for computing a lower bound for the

violation weight.

Exact penalty functions are introduced in Section 7.3 in order to find a condition on the lower bound

for the violation weight. By introducing slack variables the non-smooth1, exact penalty function can

be converted into an easily-solvable, soft-constrained QP.

A procedure for setting up an optimisation routine for computing a non-conservative lower bound for

the violation weight is described in Section 7.5. This weight guarantees the exactness of the penalty

function over ana priori chosen subset of feasible states.

A simple example is presented in Section 7.6 to show how a soft-constrained mp-QP could be set

up to have the same solution as the original hard-constrained mp-QP. The chapter concludes with a

summary of the results.

7.2 Model Predictive Control of LTI Systems

A standard formulation for MPC will be described below. The cost function and constraints of the

optimisation problem will be shown to be dependent on the system state.

1In the sense of not being differentiable everywhere.
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Consider the following discrete-time, LTI system:

xk+1 = Axk + Buk (7.1a)

wherexk ∈ Rn denotes the state anduk ∈ Rm is the input. The system is subject to linear inequality

constraints on the control inputs and/or the states over the whole time horizonk ∈ N, as in (3.2).

Assuming that a full measurement of the state is available, the MPC problem to be solved at each time

step is given by:

Problem 7.1 (Hard-constrained MPC with quadratic cost). Solve

U∗H (xk) = arg min
U

x̂′P|k F x̂P|k +
P−1∑
i=0

x̂′i |k Qx̂i |k + û′i |k Rx̂i |k (7.2)

subject to

x̂l+1|k = Ax̂l |k + Bûl |k, x̂0|k = xk (7.3a)

x̂l |k ∈ X, ûl |k ∈ U, l = 0, . . . , P − 1 (7.3b)

ûl |k = K x̂l |k, l = N, . . . , P − 1 (7.3c)

x̂P|k ∈ T ⊆ X , (7.3d)

where Q� 0, R� 0, F � 0 and K is a feedback gain.

The decision variable is the control sequence

U ,
[
û′0|k, û

′
1|k, . . . , û

′
N−1|k

]′
.

Various possibilities exist in choosingK and F in order to guarantee nominal stability. A popular

choice is to setK = K∞, whereK∞ and F are the solutions of the unconstrained, infinite horizon

LQR problem with weightsQ andR:

K∞ = −(R+ B′FB)−1B′F A (7.4a)

F = (A+ BK∞)′F(A+ BK∞)+ K ′∞RK∞ + Q . (7.4b)

The horizon lengths andT are then chosen such that the feasible set is strongly feasible, as discussed

in detail in Chapter 5. It is then straightforward to show via a Lyapunov argument that with this

choice ofF andK the origin of the nominal closed-loop system will be an exponentially stable fixed

point [MRRS00].

In addition to exponential stability, it is also possible to check whether it is necessary to add a ro-

bustness constraint to guarantee that the the MPC problem is robust strongly feasible, as discussed

in Chapter 6. If the (possibly modified) MPC problem is robust strongly feasible and the additive
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disturbance decays asymptotically to zero, then the origin of the closed-loop system will be an asymp-

totically stable fixed point [SRM97].

By substituting

x̂l |k = Al xk +
l−1∑
j=0

Aj Bûl−1− j |k (7.5)

into the cost function of Problem 7.1, the optimisation can be rewritten as

U∗H (xk) = arg min
U

1

2
U ′HU + U ′Gxk + x′kFxk (7.6a)

subject to

EU � f + Gxk . (7.6b)

The matrices and vectorsF , G, E, f , G andH � 0 are obtained by collecting terms. The term

involving F is usually dropped, since it does not affect the optimal solutionU∗H (xk).

Remark 7.1.Note that both the cost function and constraints, and hence the optimal solution, are de-

pendent onxk. The MPC problem can therefore be treated as an mp-QP for which an explicit solution

can be computed off-line [BMDP00a, BMDP00b] as will be discussed in Section 7.4. Additionally,

it can also be shown that for the reference tracking case, the mp-QP is dependent on the current

state, past input and reference [BMDP00a, KM00b]. If a measured disturbance is assumed, then the

disturbance also enters as a parameter of the mp-QP.

The feasible set of the hard-constrained mp-QP is defined as in Chapter 5:

XF , {xk ∈ Rn | ∃U : EU � f + Gxk} . (7.7)

Even if the MPC problem has been designed to be strongly feasible as discussed in Chapter 5, it is still

possible that a disturbance or modelling error could result in the system being driven to a state outside

XF , where the hard-constrained mp-QP is infeasible and hence no solution exists. One possible way

of dealing with this situation is to soften some or all of the constraints, as described in the sequel.

7.3 Soft Constraints

A straightforward way of softening constraints is to introduce slack variables which are defined

such that they are non-zero only if the corresponding constraints are violated. If the original, hard-

constrained solution is feasible, one would like the soft-constrained problem to produce the same

control action. In order to guarantee this the weights in the cost function have to be chosen large

enough such that the optimiser tries to keep the slack variables at zero, if possible. Exact penalty

functions can be used to guarantee this behaviour [Fle87, Sect. 14.3].
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7.3.1 Exact Penalty Functions

The general non-linear, constrained minimisation problem can be stated as:

θ∗ = arg min
θ

V(θ) (7.8a)

subject to

c(θ) � 0 . (7.8b)

This optimisation problem can be recast into the following equivalent unconstrained, non-smooth

penalty function minimisation:

θ∗s = arg min
θ

V(θ)+ ρ‖c(θ)+‖ (7.9)

where the vectorc(θ)+ contains the magnitude of the constraint violations for a givenθ andc+i ,
max(ci ,0). The scalarρ is the constraint violation penalty weight.

Thedual normis used in the condition onρ which guarantees that the solutionθ∗s to (7.9) is equal to

the solutionθ∗ to (7.8). The dual of a given norm‖ · ‖ is defined as

‖u‖D , max
‖v‖≤1

u′v . (7.10)

It can be shown that the dual of‖ ·‖1 is ‖ ·‖∞ and vice versa, and that‖ ·‖2 is the dual of itself [HJ85].

If θ∗ denotes the optimal solution to (7.8) andλ∗ is the corresponding Lagrange multiplier vector,

then the following well-known result gives a condition under which the solutions to (7.8) and (7.9)

are equal:

Theorem 7.1 (Exact penalty function). If the penalty weightρ > ‖λ∗‖D and c(θ∗s ) � 0, then the

solutionθ∗ to (7.8) is equal to the solutionθ∗s to (7.9).

Proof. See [Fle87, Thm. 14.3.1].

If ρ > ‖λ∗‖D, then (7.9) is called anexact penalty function. The cost function (7.9) is non-smooth

and therefore not as easy to solve for as, say, a QP. One way to overcome this difficulty is to introduce

slack variables into the problem.

7.3.2 Slack Variables as Soft Constraints

The non-smooth, unconstrained minimisation (7.9) can be cast into the following equivalent con-

strained problem:

min
(θ,ε)

V(θ)+ ρ‖ε‖ (7.11a)
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subject to

c(θ) � ε (7.11b)

0� ε , (7.11c)

whereε are the slack variables representing the constraint violations, i.e.ε = 0 if the constraints are

satisfied.

The hard-constrained MPC problem can now be formulated as the soft-constrained MPC problem:

Problem 7.2 (Soft-constrained MPC).Solve

(U∗S(xk), ε
∗(xk)) = arg min

(U ,ε)

1

2
U ′HU + U ′Gxk + ρ‖ε‖ (7.12a)

subject to

EU � f + Gxk + ε (7.12b)

0� ε . (7.12c)

If ‖ε‖1 or ‖ε‖∞ is used in (7.12a) to penalise the constraint violations, then the soft-constrained

problem can be formulated as a QP and solved using standard techniques [dOB94, SR99, Mac01].

Remark 7.2.Even though thel2-norm‖ε‖2 ,
√
ε ′ε will result in a non-smooth penalty function, one

cannot formulate the soft-constrained MPC problem as a QP because the hard-constrained MPC cost

function is quadratic and‖ε‖2 has a square root. Using thel 2
2 quadratic norm‖ε‖22 , ε ′ε one can

express the problem as a QP, but this does not result in an exact penalty function since (7.9) will be

smooth; it is the non-smoothness of the penalty function which allows it to be exact2.

7.4 Explicit Solution of the MPC Control Law

In MPC, the optimal solutionU∗H is dependent on the current statexk, as discussed in Section 7.2, and

hence the corresponding Lagrange multiplierλ∗ is also dependent onxk. The lower bound forρ is

therefore dependent onxk.

One would have to calculate a lower bound forρ which guarantees that the soft-constrained MPC

will produce the same solution as the original hard-constrained MPC for allxk ∈ XF . The Karush-

Kuhn-Tucker (KKT) conditions provide some insight into the relation of the Lagrange multipliers to

xk. This section gives an explicit expression for the Lagrange multiplier in terms ofxk, as well as the

region in which the expression is valid.

2In [SR99], ‖ε‖2S is added to the cost function, together with a weightedl1-norm; thel1-norm guarantees an exact

penalty function andS is an extra tuning weight used to penalise the constraint violations.
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7.4.1 KKT Conditions for mp-QP Problems

The Lagrangian of optimisation problem (7.6) is

L (U , λ, xk) = 1

2
U ′HU + U ′Gxk + x′kFxk + λ′(EU − f − Gxk) . (7.13)

A stationary point for the Lagrangian occurs when∇UL (U , λ, xk) = 0, hence the corresponding

KKT optimality conditions are [Fle87]:

HU + Gxk + E′λ = 0 (7.14a)

λ � 0, λ ∈ Rq (7.14b)

EU − f − Gxk � 0 (7.14c)

diag(λ)(EU − f − Gxk) = 0 (7.14d)

whereq is the number of non-redundant3 linear inequalities in (7.6b).

ProvidedH � 0 (as is the case whenR� 0), from (7.14a) one can solve for the unique

U = −H−1(Gxk + E′λ) (7.15)

and substituteU back into (7.14), if desired. For a givenxk, theU andλ which solve (7.14) are equal

to the solutionU∗H (xk) and Lagrange multipliersλ∗ of (7.6).

7.4.2 Expressions for the Optimal Solution and Lagrange Multipliers

Before proceeding to use the KKT conditions to derive an explicit expression for the optimal solution,

the following non-degeneracy assumption is made in order to guarantee that the Lagrange multipliers

are unique at the optimum.

Assumption 7.1. For all xk ∈ XF and for all admissible combinations of active constraints at the

optimal solution of (7.6), the corresponding rows of matrixE are linearly independent.

It might be possible to relax this assumption, as can be done for the case of computing the explicit

solution of an mp-LP [BBM00c]. However, this assumption seems to be valid in most practical cases.

Theorem 7.2 (Explicit solution of the MPC control law). [BMDP00a, BMDP00b] LetH � 0 and

E satisfy Assumption 7.1. For a given xk, let λ̆(xk) = 0 and λ̃(xk) denote the Lagrange multipli-

ers corresponding to the inactive and active constraints at the optimal solution, respectively. The

Lagrange multipliers corresponding to the active constraints are given by

λ̃ (xk) = Sxk + t (7.16)

3It is assumed that the non-redundant inequalities are removed from (7.6b) before analysis and implementation.
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and the optimal solution4 is given by

U∗H (xk) =
(
−H−1G −H−1Ẽ′S

)
xk −H−1Ẽ′t (7.17)

where

S= −
(

ẼH−1Ẽ′
)−1 (

G̃+ ẼH−1G
)

(7.18a)

t = −
(

ẼH−1Ẽ′
)−1

f̃ (7.18b)

and Ẽ, f̃ andG̃ correspond to the set of active constraints. Furthermore, these expressions are valid

for all xk contained in the polyhedron

CR =
{

xk ∈ Rn

∣∣∣∣∣
[
−EH−1G − EH−1Ẽ′S− G

−S

]
xk �

[
f + EH−1Ẽ′t

t

]}
. (7.19)

Proof. Substitute (7.15) into (7.14d) to obtain the complementary slackness condition

diag(λ)
(
E
(−H−1

(
Gxk + E′λ

))− f − Gxk

) = 0 .

For the inactive constraints

λ̆(xk) = 0 .

Let the rows ofẼ, f̃ andG̃ correspond to the set of active constraints. For the active constraintsλ̃ � 0

and hence (7.14d) implies that

Ẽ
(
−H−1

(
Gxk + Ẽ′λ̃

))
− f̃ − G̃xk = 0

and solving5 for λ̃ it follows that

λ̃ (xk) = −
(

ẼH−1Ẽ′
)−1 (

f̃ +
(

G̃+ ẼH−1G
)

xk

)
.

By definingSandt as in (7.18), the expressioñλ (xk) = Sxk + t results.

Substituting this expression forλ̃ (xk) into (7.15) one gets

U∗H (xk) = −H−1
(
Gxk + Ẽ′ (Sxk + t)

)
=
(
−H−1G −H−1Ẽ′S

)
xk −H−1Ẽ′t .

U∗H (xk) has to satisfy the constraints (7.6b) and the Lagrange multipliersλ̃(xk) corresponding to the

active constraints have to be non-negative. These two constraints combine to define the critical region

CR =
{

xk ∈ Rn
∣∣∣E ((−H−1G −H−1Ẽ′S

)
xk −H−1Ẽ′t

)
� f + Gxk, Sxk + t � 0

}
=
{

xk ∈ Rn

∣∣∣∣∣
[
−EH−1G − EH−1Ẽ′S− G

−S

]
xk �

[
f + EH−1Ẽ′t

t

]}
.

4Note that the controluk = κ(xk) to be implemented is given by the firstm components ofU∗H (xk).
5(ẼH−1Ẽ′)−1 exists because the rows ofẼ are linearly independent.
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This result implies that the resulting MPC control law is a continuous, piecewise-affine function with

domainXF . In order to determine the complete expression over all ofXF it is necessary to determine

all feasible combinations of active constraints. Rather than trying out all 2q − 1 combinations of

possible active constraints, an efficient procedure can be described as follows:

1. Seti ← 0.

2. Choose an arbitraryxk ∈ XF .

3. Solve the corresponding QP.

4. By looking at the constraints which are active at the solution of this QP, compute the affine

functions forU∗H (xk) andλ∗(xk) as in Theorem 7.2.

5. Compute the resulting critical regionCRi and remove the redundant constraints.

6. Terminate if
⋃i

j=0 CR j = XF , else seti ← i + 1 and continue.

7. Choose an arbitraryxk ∈ XF\⋃i−1
j=0 CR j and go to Step 3.

This procedure guarantees that all feasible combinations of active constraints will be computed. The

number of feasible combinations is often many orders of magnitude less than 2q − 1. A systematic

procedure for choosing thexk in Step 7 is described in [BMDP00a, BMDP00b] and involves the

computation of a sensible partitioning ofXF .

7.5 Computing a Lower Bound for the Penalty Weight

The problem of guaranteeing the exactness of the soft-constrained MPC problem can be restated as:

Problem 7.3. GivenX0, a closed,bounded6 polyhedral subset of the feasible set

X0 ⊆ XF ,

find aρ such that

xk ∈ X0⇒ U∗H (xk) = U∗S(xk) .

In other words, find aρ such that

ρ > max
U ,xk,λ

‖λ‖D (7.20)

6The requirement thatX0 is bounded, is sufficient to guarantee that the maximisation in (7.20) is bounded from above.

To determine whether a givenX0 is contained inXF , one can test whether the hard-constrained MPC problem is feasible at

each one of the vertices ofX0.
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with the maximisation subject to the KKT optimality conditions (7.14) and the additional constraint

xk ∈ X0. This value forρ will guarantee that the soft- and hard-constrained QP problems produce the

same solution for all feasiblexk ∈ X0, since allU andλ which satisfy the KKT conditions for a given

xk solve the corresponding primal and dual problems.

The optimisation in (7.20) is difficult, since it is the maximisation of the norm of a piecewise affine

function, which is not necessarily convex or concave. Furthermore, the number of possible active

constraint combinations is exponential in the worst case (2q − 1) and checking each combination of

active constraints is therefore impractical.

However, despite this inherent complexity of the optimisation problem, the explicit solution derived

in Section 7.4 can be used to develop a systematic procedure for computing a lower bound forρ:

1. Using the KKT conditions, compute off-line the explicit solution to the mp-QP (7.6):

(a) Identify, forX0, all possible combinations of active constraints and the corresponding

critical regionsCRi via the procedure described in [BMDP00a, BMDP00b];

(b) For each critical regionCRi that intersectsX0, obtain the explicit affine expression for the

Lagrange multipliers corresponding to the set of active constraints:

λ̃(xk) = Si xk + t i , (7.21)

whereSi and t i are as in Theorem 7.2 and the superscripti denotes the corresponding

active region.

2. Choose a lower bound onρ such that

ρ > max
i

max
xk∈CRi

‖λ∗(xk)‖D = max
i

max
xk∈CRi

‖λ̃(xk) = Si xk + t i ‖D . (7.22)

If ‖ · ‖1 or ‖ · ‖∞ is used to penalise the constraint violations in (7.12a), then the maximum can

be found by solving a finite number of LPs for each critical region.

The authors of [BMDP00a, BMDP00b] discuss the computational complexity of computing the ex-

plicit solution of the mp-QP and give a bound on the maximum number of possible active constraint

combinations. Though it is possible that the computation of the solution could take a long time, for

off-line design and analysis the computation speed is less of an issue. The method outlined here is

more efficient than the brute force approach of gridding and provides a guarantee that a lower bound

has been found.

7.6 Example

Consider the system:

xk+1 =
[

1 1

0 1

]
xk +

[
0.5

1

]
uk (7.23)
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with constraints on the input

U = {u ∈ R | −1≤ u ≤ 1} (7.24)

and the state

X =
{

x ∈ R2

∣∣∣∣∣
[
−25

−5

]
≤ x ≤

[
25

5

]}
. (7.25)

The weights for the MPC controller are chosen as

Q = I2, R= 1 (7.26)

with the terminal weight

F =
[

2.3671 1.1180

1.1180 2.5875

]
(7.27)

corresponding to the unconstrained, infinite-horizon LQR cost, obtained from solving (7.4). The

unconstrained LQR controller is

K∞ =
[
−0.4345 −1.0285

]
(7.28)

and the maximal positively invariant set using this controller is

OK∞∞ (X) = OK∞
1 (X) =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


−0.4345 −1.0285

0.4345 1.0285

0.1068 −0.1818

−0.1068 0.1818

 x �


1

1

1

1


 . (7.29)

If the terminal set is chosen to be

T = OK∞∞ (X) , (7.30)
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then the maximal stabilisable setS∞(X,T) has a determinedness index of 13:

S∞(X,T) = S13(X,T) =



x ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1 5

−1 −5

1 4

−1 −4

1 3

−1 −3

1 2

−1 −2

1 1

−1 −1

1 0

0 1

−1 0

0 −1



x �



37.5

37.5

33

33

29.5

29.5

27

27

25.5

25.5

25

5

25

5





. (7.31)

In addition, the maximal stabilisable set is equal to the maximal control invariant setC∞(X), which

has a determinedness index of 5:

S∞(X,T) = C∞(X) = C5(X) . (7.32)

The feasible set of an MPC controller with horizon

P = N = 13 (7.33)

and terminal constraintT as above is maximal in the sense that

XF = C∞(X) = S∞(X,T) . (7.34)

Because of the choice of terminal constraintT and costF , the origin will be an exponentially stable

fixed point of the closed-loop system, with region of attraction equal to the maximal control invariant

set.

As mentioned earlier, the norm of the Lagrange multipliers is not guaranteed to be convex overXF .

Figure 7.1 shows the value of the infinity norm of the Lagrange multipliers for the range

xk = αx1+ (1− α)x2, α ∈ [0,1], x1 = [19,−1]′, x2 = [19,−3.6]′ .

The figure shows that‖λ∗(xk)‖∞ is non-convex over a small, convex subset ofXF . This implies

that problems exist for which the optimisation in (7.20) is inherently complex, thereby ruling out the

possibility of using convex optimisation techniques.

Figure 7.2 depicts the feasible set and the critical regions for different combinations of active con-

straints for the above MPC controller. The states at which the 1-norm and infinity-norm of the La-
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Figure 7.1: Plot showing that‖λ∗(xk)‖∞ is non-convex overXF for the given example. The statexk

is varied fromx1 = [19,−1]′ to x2 = [19,−3.6]′, by choosingxk = αx1+ (1− α)x2, α ∈ [0,1]

grange multipliers are maximised are

arg max
xk∈XF

‖λ∗(xk)‖∞ = arg max
xk∈XF

‖λ∗(xk)‖1 = ±[12.5,5]′ , (7.35)

with the maximum norms

max
xk∈XF

‖λ∗(xk)‖∞ = 2.188× 103 (7.36a)

max
xk∈XF

‖λ∗(xk)‖1 = 8.162× 103 . (7.36b)

This implies that if‖ε‖1 is used in (7.12) to penalise the constraint violations, then

ρ > 2.189× 103, xk ∈ XF ⇒ U∗S(xk) = U∗H (xk) .

Similarly, if ‖ε‖∞ is used, then

ρ > 8.163× 103, xk ∈ XF ⇒ U∗S(xk) = U∗H (xk) .
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Figure 7.2: The feasible setXF and critical regions of the resultant MPC control law withP = N =
13 andT = OK∞∞ (X). The location of the maximising solution to (7.22) is indicated

7.7 Summary

The problem investigated in this chapter is how to choose the weights in a soft-constrained MPC

problem such that the resulting control action would be equal to the solution of the original, hard-

constrained MPC problem. The theory of exact penalty functions say that if the the constraint viola-

tion weight of the soft-constraint problem is larger than the norm of the Lagrange multipliers of the

original, hard-constrained problem, then the two solutions will be equal.

A standard formulation of an MPC controller for LTI systems subject to polyhedral constraints was

given. It was shown that both the cost function and the constraints of the resulting optimisation prob-

lem are dependent on the current state. This implies that the Lagrange multipliers are also dependent

on the state. It is therefore necessary to compute an upper bound on the norm of the Lagrange multi-

pliers for all feasible states.

A method for computing the upper bound of the norm of the Lagrange multipliers over a bounded
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subset of the feasible states was presented. The region of interest can be divided into polytopes in

which different combinations of constraints become active at the solution and the Lagrange multipliers

are given by an affine expression in the state. The problem of finding the maximum norm of the

Lagrange multipliers therefore reduces to solving a finite number of LPs.

If the constraint violation weight that is used in the soft-constrained problem is larger than the com-

puted bound, the solution is guaranteed to be equal to the hard-constrained solution for all feasible

conditions that were considered.





Chapter 8

Optimisation Subject to Prioritised

Constraints

Multi-objective problems and prioritised solutions are introduced. A mixed-integer approach is de-

scribed for finding a solution to a constrained optimisation problem which minimises the number

of violations in a set of prioritised constraints. The same idea is applied in the computation of a

minimum-time, output-prioritised MPC control law for hybrid systems which can be modelled in

MLD form.

8.1 Introduction

In most practical applications there is usually a large number of control objectives. The nature of these

objectives vary widely from time and frequency domain constraints to the minimisation of a number

of cost functions.

The issue is further complicated by the fact that often the objectives cannot be met simultaneously and

a solution therefore does not exist. The question then becomes how the objectives should be modified

in order for a solution to exist.

The usual approach to attacking an infeasible controller design problem is for the designer to re-

specify the objectives and then determine whether a solution to the new problem exists. The choice

of which objective to change and how to change it is usually based on the designer’s experience

and insight into the physical process. This re-specification of the objectives could involve a number

of iterations and some systematic method which would reduce the number of iterations is therefore

highly desirable.

The area of multi-objective optimisation attempts to provide insight and tools for automating the

controller design problem. The need for multi-objective optimisation problems to incorporate the fact

that certain objectives are more important than others further complicates the problem. Section 8.2

139
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defines an abstract framework for handling some of theseprioritised, multi-objective problems.

Finding a general approach to solving a general multi-objective problem is extremely difficult and

therefore this chapter deals mainly with the problem of satisfying prioritised constraints, rather than

the minimisation of a number of continuous cost functions. Section 8.3 defines a number of related

prioritised constraint satisfaction problems and Section 8.4 provides some solutions.

Most of the results in this chapter apply to the general class of multi-parametric, mixed-integer, non-

linear programs (mp-MINLPs). Section 8.5 discusses some practical issues for the special case when

the problem is an mp-MIQP or mp-MILP, as occurs when implementing MPC controllers for hybrid

systems.

While controlling a system, often a disturbance or fault occurs which drives the system outside the

maximal control invariant set, thereby making the satisfaction of all the constraints impossible. A

control sequence then has to be chosen which will bring the system into the desired region as soon as

possible, while bearing in mind that the constraints on output variables have different priorities. An

MPC solution to thisminimum-time, output-prioritisedproblem is presented in Section 8.6.

One of the motivations for this chapter was to develop a framework for the optimal reconfiguration of

a control system in the event of a fault occurring. In Section 8.7 the results of this chapter are applied

to the steady-state computation for a faulty three-tank system.

8.2 Prioritised, Multi-Objective Problems

Given a cost function vectorv(θ) ∈ Rr , whereθ ∈ 2 is the decision variable, the multi-objective

optimisation problem is often defined as finding the set of allθ∗ such that

θ∗ = arg min
θ

[v1(θ), v2(θ), . . . , vr (θ)] . (8.1)

At this stage it is unclear what is meant by an optimal solution of a cost function vector. When working

with multi-objective optimisation problems one therefore needs a definition for optimality. A notion

of optimality which is often used is that of Pareto-optimality.

8.2.1 Pareto-Optimal Solutions

Definition 8.1 (Pareto-optimal solution). A solution θ∗ is Pareto-optimalif and only if ∀θ 6= θ∗

there exists ani such thatvi (θ) > vi (θ
∗) or vi (θ) ≥ vi (θ

∗) for all i .

Remark 8.1.This definition is probably easier to understand by noting that a solutionθ∗ is notPareto-

optimal if and only if∃θ 6= θ∗ such that∀i : vi (θ) ≤ vi (θ
∗) and∃i : vi (θ) < vi (θ

∗).

A solution is therefore Pareto-optimal if and only if one cannot find another solution which improves

uniformly on all thevi (θ). Equivalently, a solution is Pareto-optimal if and only if a decrease in
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any one of the component cost functions will result in an increase in at least one of the other cost

components.

The easiest way of finding anunprioritised, Pareto-optimal solution is to solve for

θ∗ = arg min
θ

r∑
i=1

wivi (θ) , (8.2)

where the weights are anywi ∈ R+. By varying thewi one can generate a set of Pareto-optimal

solutions.

However, this chapter is concerned with finding the subset of Pareto-optimal solutions which are

optimal with respect to the relativepriorities of all the cost functionsvi (θ).

8.2.2 Prioritised-Optimal Solutions

Before giving a definition of a prioritised-optimal solution, the following assumption is made:

Assumption 8.1. The objective associated with cost functionvi (θ) has a higher priority than the one

associated withvi+1(θ).

A formal definition ofpriority will not be given. However, the following implicitly defines what is

meant by priority.

Definition 8.2 (Prioritised-optimal solution). A solution θ∗ is aprioritised-optimalsolution if and

only if @θ 6= θ∗ such thatvi ∗(θ) < vi ∗(θ
∗), wherei ∗ is the index of the first element wherev(θ) and

v(θ∗) differ.

The process of finding the set of prioritised-optimal solutions can be described as follows: A subset

21 ⊆ 2 is chosen for which allθ ∈ 21 are such thatv1(θ) is minimised. The subset22 ⊆ 21 is then

chosen such that∀θ ∈ 22, v2(θ) is minimised. This process is continued until allvi (θ) have been

minimised1. Determining the prioritised-optimal solution is equivalent to finding the lexicographic

minimum2 of a set [VSJ99, Def. 1].

A singleprioritised, Pareto-optimal solution is therefore obtained by solving the sequence of optimi-

sation problems fori = 1, . . . , r :

v∗i = min
θ
vi (θ) (8.3)

subject to the set of constraints

v j (θ) = v∗j , j = 1, . . . , i − 1 . (8.4)

1An implemented algorithm will not necessarily follow this recipe, but the result would be the same.
2This process is analogous to arranging a set of words alphabetically, hence the use of the word ‘lexicographic’. For

example, the lexicographic minimum of the set{[2,3, 1], [3,2, 1], [2, 2,4], [2,2, 1], [2, 2,3]} is [2, 2,1].
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The solution to ther ’th optimisation problem is a prioritised-optimal solution. This approach is also

the method that is used in [MSB92, VSF99]. Though easy to implement, this method will always

requirer optimisation problems to be solved.

It would therefore be desirable if one could find a set of weights for (8.2) such that one could guarantee

that the solution to (8.2) is a prioritised, Pareto-optimal solution to (8.1), as was done in [VSJ99] for

the special case of a prioritised LP. It turns out that this is relatively easy if the cost function is such

that∀θ , v(θ) ∈ Nr . A choice of weights which guarantees a prioritised-optimal solution is given by

the following theorem.

Theorem 8.1 (Weights for the prioritised, multi-objective problem).

Letvi (θ) ∈ N andvi (θ) ≤ ti ,∀θ ∈ 2. If

θ∗ = arg min
θ∈2 W′v(θ) , (8.5a)

where

W ,



w1
...

wi
...

wr


(8.5b)

withwi ∈ R+ and

wi >

r∑
j=i+1

t jw j , (8.5c)

thenθ∗ is a prioritised, Pareto-optimal solution to(8.1).

Proof. Assume thatθ∗ is an optimal solution to (8.5a), but that it is not prioritised-optimal, i.e. there

exists aθ 6= θ∗ such thatvi ∗(θ) < vi ∗(θ
∗), wherei ∗ is the index of the first element wherev(θ) and
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v(θ∗) differ, i.e. vi ∗(θ) ≤ vi ∗(θ
∗)− 1. If this is the case, then

W′v(θ)−W′v(θ∗) =
r∑

j=1

w j (v j (θ)− v j (θ
∗))

=
r∑

j=i ∗
w j (v j (θ)− v j (θ

∗)), sincev j (θ) = v j (θ
∗), j = 1, . . . , i ∗ − 1

= wi ∗(vi ∗(θ)− vi ∗(θ
∗))+

r∑
j=i ∗+1

w j (v j (θ)− v j (θ
∗))

≤ wi ∗(vi ∗(θ)− vi ∗(θ
∗))+

r∑
j=i ∗+1

w j t j , sincev j (θ)− v j (θ
∗) ≤ t j

< wi ∗(vi ∗(θ)− vi ∗(θ
∗))+ wi ∗

= wi ∗(vi ∗(θ)− vi ∗(θ
∗)+ 1)

≤ 0, sincewi ∗ > 0, vi ∗(θ)− vi ∗(θ
∗) ≤ −1 .

This implies thatW′v(θ) < W′v(θ∗). This contradicts the assumption thatθ∗ is optimal, thereby

concluding the proof.

This idea that the weight for a certain priority level must be larger than the weighted sum of the

number of lower-prioritised objectives, will be used frequently in the subsequent sections.

8.2.3 Constraint Satisfaction

It might seem that by restricting the cost functions to boundedvi (θ) ∈ N very few multi-objective

problems will fall into this class. However, note that the satisfaction of a constraint can be represented

as the minimisation of a cost function, e.g. if the constraintgi (θ) ≤ 0 is given and one defines

vi (θ) ,

0 if gi (θ) ≤ 0

1 if gi (θ) > 0
(8.6)

thenvi (θ) = 1 if the constraint is violated andvi (θ) = 0 if it is satisfied. For a more complex example,

assume that the objectives consist only of constraints and that there arer priority levels, with the

possibility of some constraints having the same priority. Given a candidate solutionθ , one can define

vi (θ) ∈ N to denote the number of violated constraints on priority leveli , hencev(θ) ∈ Nr represents

the number of violated constraints on each of the priority levels. Hence, a solution is prioritised-

optimal if and only if there does not exist another solution which will violate less constraints on any

level, without increasing the number of violated constraints on a higher level.

Theorem 8.1 therefore allows one to define multi-objective problems in terms of thenumberof con-

straint satisfactions, violations or relaxations. The problem of designing a single optimisation which

minimises the number3 of prioritised constraint violations seems to have received very little attention
3In [VSJ99] the problem of minimising thesizeof the constraint violations in a prioritised fashion is considered.
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in the optimisation and control literature. The subsequent sections present a method for solving this

and related problems.

Though Theorem 8.1 is the solution to an abstract problem, it will be shown how one can modify a

multi-parametric, soft-constrained optimisation problem so that the solution is such that the number

of constraint violations is minimised in a prioritised-optimal fashion. This is achieved by introducing

logic variables into the problem such that the value of the logic variable at the solution indicates which

constraints have been satisfied or violated.

Remark 8.2.Note that in this context the usual concept of a constrained optimisation problem can

be interpreted as a prioritised multi-objective optimisation problem, with the satisfaction of the con-

straints taking higher priority than the optimisation of the cost function. As a result, in subsequent

sections only the prioritised satisfaction of constraints will be considered. The optimisation problem

will be constructed such that minimisation of the cost function effectively has the lowest priority. The

cost function will only be minimised after a set of solutions has been found that guarantees constraint

satisfaction.

8.2.4 Numerical Conditioning of the Proposed Choice of Weights

Though Theorem 8.1 is a simple result, it has a drawback in the sense that the weights can grow to be

very large if there are a large number of priority levels, as shown in the next example.

Example 8.1. Let a problem contain 100 objectives and choosewr = 1.

• Let each of the objectives be assigned its own priority, i.e. ti = 1. If one chooseswi =
1+∑r

j=i+1 t jw j , thenw1 ≈ 6.338×1029. If wi = 0.001+∑r
j=i+1 t jw j , thenw1 ≈ 3.172∗1029,

which is not much better.

• If the objectives can be divided into 10 different priorities, i.e. ti = 10, and one chooses

wi = 1+∑r
j=i+1 t jw j , thenw1 = 2.357947691× 109. If wi = 0.001+∑r

j=i+1 t jw j , then

w1 ≈ 2.144× 109. These two choices of weights are slightly more acceptable.

• Let the objectives be such that the first 10 have the same, but higher priority than the next 90,

i.e. t1 = 10 and t2 = 90. If one chooseswi = 0.001+∑r
j=i+1 t jw j , thenwi = 90.001 for

i = 1 . . . 10 andwi = 1 for i = 11. . . 100. This choice of weights is a lot more preferable

than for the previous two cases, where the choice of weights could result in an ill-conditioned

problem.

One can therefore conclude that a large problem with many priority levels might result in an ill-

conditioned optimisation problem. The proposed choice of weights therefore works best either when

there are a small number of priority levels or a small number of objectives with a high priority. This is

typically the case in many practical applications where there are a large number of lower-prioritised

performance constraints and a small number of higher-prioritised safety constraints.
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8.3 Problem Formulation

The main aim of this chapter is to design a prioritised, soft-constrained problem for a given hard-

constrained, multi-parametric, mixed-integer, nonlinear program (mp-MINLP). Amulti-parametric

optimisation problem is one where the cost function and/or constraints are dependent on one or more

variable. A different optimal solution set will exist for each one of these variables. The motivation

here for working with multi-parametric programs is due to the fact that the optimisation problem in

MPC controller design is dependent on the current state and hence the solution is also dependent on

the current state. The current state therefore parametrises the solution.

This section is concerned with defining the scope of objectives and problems which this chapter at-

tempts to solve. The hard-constrained problem and prioritisation scheme is described. This is followed

with the setting up of the prioritised, soft-constrained problem and the types of problems which will

be addressed in the next section.

Consider the following hard-constrained mp-MINLP:

Problem 8.1 (Hard-constrained mp-MINLP). Solve

θ∗(x) = arg min
θ

f (θ, x) (8.7a)

subject to

g(θ, x) � 0 (8.7b)

whereθ ∈ Rd1 × Zd2 is the decision variable and x∈ Rp1 × Zp2 is the parameter vector of the

mp-MINLP and f : (Rd1×Zd2)× (Rp1×Zp2) 7→ R. The constraints(8.7b), where g: (Rd1×Zd2)×
(Rp1 × Zp2) 7→ Rc, define a closed and bounded, non-empty setF , {(θ, x) : g(θ, x) � 0} 6= ∅ and

all the constraints are unique, i.e. gi (·, ·) = gj (·, ·)⇔ i = j .

The constraints implicitly define the set of feasible parameters for the hard-constrained mp-MINLP:

XF H , {x : ∃θ such thatg(θ, x) � 0} . (8.8)

It is assumed that both minθ f (θ, x) and maxθ f (θ, x) exist∀x ∈ XF H . No continuity assumptions

are made.

The constraints (8.7b) usually reflect desired constraints which the decision variable has to satisfy.

However, sometimes a parameterx is passed to the optimisation routine for which no feasible solution

exists, i.e.x /∈ XF H . It is therefore necessary to either redefine the problem or, more likely, relax

some of the constraints and allow for the violation of some of the constraints in the final solution.

8.3.1 Prioritised Constraints

Often a hierarchy of priorities can be assigned to the set of constraints, e.g. it is more important

to satisfy the constraintg1(θ, x) ≤ 0 than the constraintg2(θ, x) ≤ 0. A solution which violates



146 CHAPTER 8. OPTIMISATION SUBJECT TO PRIORITISED CONSTRAINTS

g2(θ, x) ≤ 0 but satisfiesg1(θ, x) ≤ 0 is therefore preferred. For the purpose of rigorously defining

and implementing these priorities, the following definitions are given:

• The set of indices of the constraints is given byC , {1,2, . . . , c}. If the set of indices of the

soft constraints is given byS, then the set of indices of the hard constraints isH , C\S;

• There arer priority levels, ordered such that leveli has a higher priority than leveli + 1. The

set of indices of constraints on priority leveli is given byPi ⊆ C, with Pi ∩P j = ∅, i 6= j , i.e.

a constraint cannot be associated with more than one priority level.

Let ci be the number of constraints associated with priority leveli , i.e. c =∑r
i=1 ci ;

• The vector of slack variablesε ∈ Rs is defined asεm(θ, x) , maxk∈Sm(gk(θ, x),0), whereSm

is the set of indices of soft constraints associated with slack variableεm. Si ∩ S j = ∅, i 6= j

andS =⋃s
m=1Sm.

For a given(θ, x), each slack variable represents the largest constraint violation of a set of

constraints, hence [εm(θ, x) = 0]↔∧
k∈Sm

[gk(θ, x) ≤ 0].

All constraints associated with a slack variable have to be associated with the same priority

level, i.e.∀Sm, ∃Pi such thatSm ⊆ Pi .

Let si be the number of slack variables associated with priority leveli , i.e. s=∑r
i=1 si ;

• Each element of the vector of logic variablesδ ∈ {0,1}t is associated with one or more slack

variables on the same priority level such that

[δn = 0]↔
∧

m∈Tn

[εm = 0] , (8.9)

whereTn is the set of indices of theslack variablesassociated withδn andTi ∩ T j = ∅, i 6= j ,

i.e. a set of slack variables (and the associated set of soft constraints) cannot be associated with

more than one logic variable.

The set of indices ofconstraintsassociated withδn is given byDn ,
⋃

m∈Tn
Sm and∀Dn, ∃Pi

such thatDn ⊆ Pi , hence

[δn = 0]↔
∧

k∈Dn

[gk(θ, x) ≤ 0] . (8.10)

Let ti be the number of logic variables associated with priority leveli , i.e. t =∑r
i=1 ti .

Remark 8.3.From the definitions above, it can be seen thatc ≥ s≥ t ≥ r .

Example 8.2. A given problem has c= 10constraints:

C = {1,2,3,4,5,6,7,8,9,10} ,
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where the first eight are allowed to be softened and the rest are to remain as hard constraints:

S = {1,2,3,4,5,6,7,8}
H = {9,10} .

The soft constraints can be ordered in a hierarchy of r= 4 priority levels, from highest to lowest:

P1 = {1,2},P2 = {3,4},P3 = {5,6,7},P4 = {8} .

Each constraint is associated with its own slack variable, except constraints 5 and 6 (hence s= 7),

since they cannot be violated simultaneously and introducing an additional slack variable is therefore

unnecessary:

S1 = {1},S2 = {2},S3 = {3},S4 = {4},S5 = {5,6},S6 = {7},S7 = {8} .

A logic variable is associated with each slack variable, except slack variables 3 and 4, which share a

logic variable:

T1 = {1}, T2 = {2}, T3 = {3,4}, T4 = {5}, T5 = {6}, T6 = {7} .

Hence, the indices of the constraints associated with the t= 6 logic variables are:

D1 = {1},D2 = {2},D3 = {3,4},D4 = {5,6},D5 = {7},D6 = {8} .

It can be seen that eachDn andSm is a subset of somePi . There are two logic variables and two slack

variables associated with priority level 1, one logic variable and two slack variables with priority level

2, two logic variables and two slack variables (but 3 constraints) with priority level 3 and, finally, one

logic variable and one slack variable with priority level 4.

Note that if a solution has been found andδ3 = 1, then one cannot deduce whether only one or both

of constraints 3 and 4 are violated - one would have to look at the values of the associated slack

variables. Ifδ4 = 1, then either constraint 5 or 6 is violated, but not both. However, if it were possible

for constraints 5 and 6 to be violated simultaneously, then one also cannot tell whether one or both

constraints have been violated. Since they both share the same slack variable, one cannot gain any

information from examining it.

These definitions have been given for the sake of rigour. It will become clear later on how they are

used to set up prioritised, soft-constrained problems.

8.3.2 Setting up a Soft-Constrained Problem

The slack variables are used to soften the constraints. However, the following assumption is made in

order to guarantee that the scalarρ, which is used later in (8.16a), has a finite lower bound.
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Assumption 8.2. All the slack variablesε(θ, x) are bounded above:

0≤ εm(θ, x) ≤ Mm . (8.11)

This is a realistic assumption, since in most applications the constraints are associated with a physical

parameter which is bounded. One can now proceed to define the soft-constrained problem.

Problem 8.2 (Soft-constrained mp-MINLP). Solve

(θ∗s (x), ε
∗(x), δ∗(x)) = arg min

θ,ε,δ
f̃ (θ, x, ε)+ ρW′δ (8.12)

subject to the inequalities

gk(θ, x) ≤ εm (8.13a)

gl (θ, x) ≤ 0 (8.13b)

0≤ εm ≤ Mmδn (8.13c)

k ∈ Sm (8.13d)

l ∈ H (8.13e)

m ∈ Tn (8.13f)

n ∈ {1,2, . . . , t} (8.13g)

where it is desired that the logic variableδ∗(x) ∈ {0,1}t indicates whether any of the associated

constraints have been violated in the sense of(8.10)andε∗m(x) = εm(θ
∗
s (x), x) represents the largest

violation in the m’th subset of constraints. The weightsρ ∈ R+ and W ∈ Nt+ should be chosen to

minimise constraint violations in g(θ∗s (x), x), while satisfying the given priorities.

SinceF is bounded and the slack variables are bounded, the feasible set of parametersx for Prob-

lem 8.2, denoted byXFS, is also bounded (XFS ⊇ XF H ). One has to choose a compact subset of states

X0 ⊆ XFS, with X0\XF H 6= ∅, for which one would like to design a prioritised, soft-constrained op-

timisation problem.

Obviously, a good choice would beX0 = XFS or X0 ⊃ XF H . However, for computation ofρ ∈ R+
this might not always be practical and some trade-off in the size ofX0 has to be made. The role ofρ

will become clearer in subsequent sections.

Before proceeding, since the original definition of the slack variableεm(θ, x) , maxk∈Sm(gk(θ, x),0)

results in a non-smooth optimisation problem, one would like to pose it as an easier problem.

Lemma 8.1. If ‖ · ‖ is a suitably defined norm, then the size of the largest violation in the m’th subset

of constraints is given by

εm(θ, x) = arg min
α∈R
‖α‖ , (8.14a)
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where the optimisation is subject to

gk(θ, x) ≤ α, ∀k ∈ Sm (8.14b)

0≤ α . (8.14c)

Using this result, one can choose the cost function of the soft-constrained problem such that the

components of the optimalε are equal to the sizes of the constraint violations.

Lemma 8.2. Let

f̃ (θ, x, ε) = f (θ, x) +
s∑

m=1

‖εm‖ , (8.15a)

where‖ · ‖ is any suitably defined norm. If the optimal solution to Problem 8.2 has been found, then

the vectorδ∗(x) reflects which sets of constraints have been satisfied or violated in the sense that[
δ∗n(x) = 0

]⇔ ∧
k∈Dn

[
gk(θ

∗
s (x), x) ≤ 0

]
. (8.15b)

Furthermore,ε∗m(x) represents the size of the largest violation in the m’th subset of constraints.

Proof. If (8.15b) does not hold, then the only other possibility is that the constraints are satisfied with

the associated logic variable equal to 1. This contradicts the optimality assumption, since it is possible

to set the associated slack vectors and logic variables to 0 for all satisfied sets of constraints, resulting

in a lower cost. If any of the constraints associated with a logic variable are not satisfied, then the

logic variable has to be equal to 1.

For the givenθ∗(x), by application of Lemma 8.1 and the optimality assumption, it can be seen that

ε∗m(x) = εm(θ
∗(x), x) represents the size of the largest violation in them’th subset of constraints.

8.3.3 Prioritised-Optimal Soft-Constrained Problems

The following problems will be considered in the sequel. The first problem is the same as the one

defined in Chapter 7, of guaranteeing that the hard- and soft-constrained solutions will be equal for a

given subset ofXF H .

Problem 8.3 (Exact penalty function). Set up Problem 8.2 such that∀x ∈ X0∩XF H, θ∗s (x) = θ∗(x)
of Problem 8.1 and hence all constraints in g(θ, x) � 0 are satisfied.

The next problem is related to the above problem, but also addresses the case whenx /∈ XF H . No

prioritisation is required.

Problem 8.4 (Minimum number of constraint violations). Set up Problem 8.2 such that∀x ∈ X0

the solution is such that the minimum number of constraints in g(θ, x) � 0 are violated.
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The next two problems require the solution to be prioritised-optimal. Problem 8.4 can be seen to be a

special case of Problem 8.5, which in turn is a special case of Problem 8.6.

Problem 8.5 (Uniquely prioritised constraints). Given a set of constraints with each constraint as-

sociated with a different priority level, set up Problem 8.2 such that∀x ∈ X0 the solution minimises

the number of constraint violations in g(θ, x) � 0 in a prioritised-optimal fashion.

Problem 8.6 (Multiple constraints with the same priority). Given a set of constraints with subsets

of constraints associated with the same priority level, set up Problem 8.2 such that∀x ∈ X0 the

solution minimises the number of constraint violations on each level in a prioritised-optimal fashion.

Some applications often have lower and upper bounds on a variable. For a givenθ andx, either both

constraints are satisfied or only one violated. It is not possible for both to be violated at the same time.

One can exploit this structure by putting both constraints on the same priority level and associating a

single slack variable with the constraints. This is the motivation for the following problem.

Problem 8.7 (Exclusive constraint violations).Given a set of constraints with subsets of constraints

which cannot be violated at the same time but that are associated with the same priority level as other

subsets of constraints, set up Problem 8.2 such that∀x ∈ X0 the solution minimises the number of

constraint violations in g(θ∗s (x), x) in a prioritised-optimal sense.

8.4 Main Results

The next result gives a condition on the scalarρ such that the solution which minimises the cost

function in Problem 8.2, also minimisesW′δ.

Lemma 8.3. Let W∈ Nt+ and

ρ > sup
θ,x,ε

f̃ (θ, x, ε)− inf
θ,x,ε

f̃ (θ, x, ε) (8.16a)

where it is assumed that the optimisations are bounded from above and below, subject to

x ∈ X0 (8.16b)

gk(θ, x) ≤ εm (8.16c)

gl (θ, x) ≤ 0 (8.16d)

0≤ εm ≤ Mm (8.16e)

k ∈ Sm (8.16f)

l ∈ H (8.16g)

m ∈ Tn (8.16h)

n ∈ {1,2, . . . , t} . (8.16i)
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If (θ∗s (x), ε∗(x), δ∗(x)) is an optimal solution to Problem 8.2 and x∈ X0, then there does not exist

another feasible solution(θs(x), ε(x), δ(x)) such that W′δ(x) < W′δ∗(x).

Proof. Assume that(θ∗s (x), ε∗(x), δ∗(x)) is an optimal solution to Problem 8.2 and that there exists

another feasible candidate solution(θs(x), ε(x), δ(x)) with W′δ(x) < W′δ∗(x).

Let V∗ = f̃ (θ∗s (x), x, ε∗(x))+ρW′δ∗(x) andV ′ = f̃ (θs(x), x, ε(x))+ρW′δ(x) be the values of the

cost function in (8.12) for the two feasible solutions.

Sinceρ is given by (8.16a), it follows that

ρ > | f̃ (θ∗s (x), x, ε∗(x))− f̃ (θ(x), x, ε(x))|, ∀x ∈ X0 .

This allows one to proceed as follows:

V∗ − V ′ = f̃ (θ∗s (x), x, ε
∗(x))+ ρW′δ∗(x)− f̃ (θ(x), x, ε(x)) − ρW′δ(x)

= f̃ (θ∗s (x), x, ε
∗(x))− f̃ (θ(x), x, ε(x)) + ρ(W′δ∗(x)−W′δ(x))

≥ f̃ (θ∗s (x), x, ε
∗(x))− f̃ (θ(x), x, ε(x)) + ρ, sinceW′δ∗(x)−W′δ(x) ≥ 1

> f̃ (θ∗s (x), x, ε
∗(x))− f̃ (θ(x), x, ε(x)) + | f̃ (θ∗s (x), x, ε∗(x))− f̃ (θ(x), x, ε(x))|

≥ 0 .

This implies thatV ′ < V∗ and that(θ(x), ε(x), δ(x)) results in a lower cost function. This contradicts

the assumption that(θ∗s (x), ε∗(x), δ∗(x)) is an optimal solution, thereby concluding the proof.

The following theorem gives conditions onW and tells one how to set up Problem 8.2 such that the

problems of Section 8.3.3 can be solved. Without loss of generality, it is assumed that all constraints

are softened and ordered from highest to lowest priority.

Theorem 8.2. With the given f̃ (θ, x, ε) as in Lemma 8.2 andρ as in Lemma 8.3, assuming the

optimal solution to Problem 8.2 can be found, one can set up Problem 8.2 to solve a number of related

problems:

1. If W ∈ Nt+, then Problem 8.3 is solved;

2. Associate a unique slack variable, logic variable and priority level with each constraint, i.e.

Pi = {i }, Sm = {m}, Tn = {n},Dn = {n} and hence c= s= t = r . If

W = 1t , (8.17a)

then Problem 8.4 is solved;
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3. Associate a unique slack variable, logic variable and priority level with each constraint, i.e.

Pi = {i }, Sm = {m}, Tn = {n},Dn = {n} and hence c= s= t = r . If

W =



2t−1

...

2t−i

...

20


, (8.17b)

then Problem 8.5 is solved;

4. Associate a unique slack variable and logic variable with each constraint and include the pos-

sibility that multiple constraints are associated with the same priority level, i.e.Pi is given by

the constraints associated with priority level i ,Sm = {m}, Tn = {n}, Dn = {n} and hence

c = s= t ≥ r . If

W =



w11t1
...

wi 1ti
...

wr 1tr


, (8.17c)

with

wi ≥ 1+
r∑

j=i+1

t jw j (8.17d)

andwi ∈ N+, then Problem 8.6 is solved;

5. Associate a unique slack vector with each subset of constraints on the same priority level which

cannot be violated at the same time. Associate a unique logic variable with each slack variable

and include the possibility that multiple subsets of constraints are associated with the same

priority level, i.e. Pi is given by the constraints associated with priority level i ,Sm andDn

are given by the constraints associated with slack vector m and logic variable n,Tn = {n} and

hence c≥ s= t ≥ r . If W is chosen as in(8.17c), then Problem 8.7 is solved;

Proof.

1. If x ∈ X0 ∩ XF H , thenθ∗(x), the optimal solution from Problem 8.1, satisfiesg(θ∗(x), x) �
0 and hence(θ∗s (x), ε∗(x), δ∗(x)) = (θ∗(x),0,0) is a feasible solution to Problem 8.2. By

considering Lemma 8.3,(θ∗(x),0,0) is also a candidate optimal solution, sinceW′δ∗(x) = 0.

This implies that the optimal solution has to satisfyδ∗(x) = 0 and that(θ∗s (x), ε∗(x), δ∗(x)) is

a solution to Problem 8.2 with the added constraintsδ∗(x) = 0 andε∗(x) = 0.
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The new Problem 8.2 is now equivalent to Problem 8.1, hence the optimal solution to Prob-

lem 8.2 is given by(θ∗s (x), ε∗(x), δ∗(x)) = (θ∗(x),0,0). This solves Problem 8.3, by showing

that the solution to the soft-constrained problem is equal to the solution of the hard-constrained

problem.

2. If x ∈ X0 ∩ XF H , then the proof is as above and all constraints are satisfied. For proving the

result whenx ∈ X0\XF H , note that ifW = 1t , thenW′δ =∑t
n=1 δn.

By application of Lemma 8.2 and the fact that each constraint is associated with its own logic

variable,W′δ∗(x) is equal to the number of constraintviolationsin g(θ∗s (x), x).

Lemma 8.3 implies that if the optimal solution has been found, then there does not exist another

feasible solution with a lowerW′δ∗(x), hence the optimal solution also minimises the number

of constraint violations.

3. Since each constraint is associated with a unique priority level and logic variable, the optimal

δ∗(x) indicates whether or not the associated priority level has been satisfied. As in Section 8.2,

let vi (θ(x)) represent the number of violated constraints on priority leveli for a givenθ(x),

thenvi (θ
∗
s (x)) = δ∗i (x).

Assume that the solution is optimal, but not prioritised-optimal. By Definition 8.2, this implies

that there exists a(θs(x), ε(x), δ(x)) with δi ∗(x) < δ∗i ∗(x), wherei ∗ is the index of the first

element whereδ(x) andδ∗(x) differ, i.e. δi ∗(x) = 0 andδ∗i ∗(x) = 1.

By noting thatW′δ = ∑t
n=1 2t−nδn and that(δn(x) − δ∗n(x)) ∈ {−1,0,1}, one can show the

following:

W′δ(x)−W′δ∗(x) =
t∑

n=1

2t−n
(
δn(x)− δ∗n(x)

)
=

t∑
n=i ∗

2t−n
(
δn(x)− δ∗n(x)

)
= 2t−i ∗ (δi ∗(x)− δ∗i ∗(x)

)+ t∑
n=i ∗+1

2t−n
(
δn(x)− δ∗n(x)

)
≤ 2t−i ∗ (δi ∗(x)− δ∗i ∗(x)

) + t∑
n=i ∗+1

2t−n

< 2t−i ∗ (δi ∗(x)− δ∗i ∗(x)
)+ 2t−i ∗

= 2t−i ∗(−1+ 1)

= 0 .

This implies thatW′δ(x) < W′δ∗(x). The assumption thatδ∗(x) is part of the optimal solution

is contradicted, as implied by Lemma 8.3, hence the optimal solution is also prioritised-optimal.
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4. Since each constraint is associated with a unique logic variable, the optimalδ∗(x) indicates

whether the associated constraint has been satisfied. However, more than one constraint can be

associated with a given priority level. As in Section 8.2, letvi (θ(x)) represent the number of

violated constraints on priority leveli for a givenθ(x), thenvi (θ
∗
s (x)) =

∑
n∈Pi

δ∗n(x).

Assume that the solution is optimal, but not prioritised-optimal. By Definition 8.2, this implies

that there exists a(θs(x), ε(x), δ(x)) with vi ∗(θs(x)) < vi ∗(θ
∗
s (x)), wherei ∗ is the index of the

first element wherev(θs(x)) andv(θ∗s (x)) differ.

By noting that

W′δ =
r∑

i=1

∑
n∈Pi

wi δn =
r∑

i=1

wi

∑
n∈Pi

δn =
r∑

i=1

wivi (θs) ,

one can show the following:

W′δ(x)−W′δ∗(x) =
r∑

j=1

w j

[
v j (θs(x))− v j (θ

∗
s (x))

]
=

r∑
j=i ∗

w j

[
v j (θs(x))− v j (θ

∗
s (x))

]
= wi ∗

[
vi ∗(θs(x))− vi ∗(θ

∗
s (x))

]+ r∑
j=i ∗+1

w j

[
v j (θs(x))− v j (θ

∗
s (x))

]
= wi ∗

[
vi ∗(θs(x))− vi ∗(θ

∗
s (x))

]+ r∑
j=i ∗+1

w j

∑
n∈P j

(δn(x)− δ∗n(x))

≤ wi ∗
[
vi ∗(θs(x))− vi ∗(θ

∗
s (x))

]+ r∑
j=i ∗+1

w j

∑
n∈P j

1

≤ wi ∗
[
vi ∗(θs(x))− vi ∗(θ

∗
s (x))

]+ r∑
j=i ∗+1

w j t j

< wi ∗
[
vi ∗(θs(x))− vi ∗(θ

∗
s (x))

]+ wi ∗

= wi ∗
{[
vi ∗(θs(x))− vi ∗(θ

∗
s (x))

]+ 1
}

≤ 0, sincewi ∗ ≥ 1 andvi ∗(θs(x))− vi ∗(θ
∗
s (x)) ≤ −1.

This implies thatW′δ(x) < W′δ∗(x). The assumption thatδ∗(x) is part of the optimal solution

is contradicted, as implied by Lemma 8.3, hence the optimal solution is also prioritised-optimal.

5. The proof in the previous result can easily be extended for this case. The new objective that is

introduced is that all the constraints associated with some single logic variable be satisfied. All

of the constraints associated with the logic variable will be satisfied, if possible. If this is not

possible, only one of them will be violated for a givenθ∗s (x) and the violation of that constraint

implies the satisfaction of the other constraints associated with the logic variable.
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Remark 8.4.Note that (8.17a) and (8.17b) are special cases of (8.17c).

Remark 8.5.Problem 8.7 can also be solved by treating it as a special case of Problem 8.6. However,

treating Problem 8.7 as a special case of Problem 8.6 would introduce more slack variables and logic

variables than are necessary.

Remark 8.6.It is trivial to extend Theorem 8.2 to the case where more than one slack variable is

associated with a single logic variable, if the application requires this. The weightW remains as

in (8.17c). However, if one of the constraints associated with the logic variable is violated, one cannot

guarantee that the other constraints associated with the logic variable are satisfied, unless the violation

is exclusive as in Problem 8.7.

8.5 Special Cases and Simplifications

Up to now, the case of a general mp-MINLP has been considered. In general it is difficult to implement

and compute the resulting soft-constrained problem if the cost function and constraints do not take on

a special form. This section discusses the special case of when the original problem is an mp-MIQP

or mp-MILP, as occurs when setting up MPC problems, and how one could proceed in computing a

value forρ.

8.5.1 The Model Predictive Control Problem as an mp-MIQP or mp-MILP

Since integer variables can be represented by an appropriate number of binary variables, it is assumed

from this point on thatθ ∈ Rd1 × {0,1}d2 andx ∈ Rp1 × {0,1}p2. The class of MPC problems with

quadratic costs and linear inequality constraints results in optimisation problems of the form

f (θ, x) = 1

2
θ ′Hθ + x′F ′θ , (8.18a)

where the cost function is convex in the decision variableθ , i.e. H � 0, and the linear part is dependent

on the parameterx, which is usually the current state of the plant. Furthermore, the constraints can

often be written in the form:

G1θ � g2+ G3x , (8.18b)

with G1 ∈ Rc×(d1+d2), g2 ∈ Rc andG3 ∈ Rc×(p1+p2). Note that the right hand side is dependent onx.

This is a hard-constrained mp-MIQP (multi-parametric Mixed-Integer Quadratic Program) and a soft-

constrained mp-MIQP can be set up as in Sections 8.3 and 8.4 by introducing appropriate norms for

the slack variables and additional logic variables such that

f̃ (θ, x, ε) = 1

2

[
θ

ε

]′ [
H 0

0 S2

][
θ

ε

]
+
[

Fx

S1

]′ [
θ

ε

]
, (8.19)
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where S1 ∈ Rs and S2 ∈ Rs×s are determined from the (weighted) norm used in penalising the

constraint violations.

Even in this simple form, the computation ofρ in (8.16a) is not easy, since the cost functionf̃ (θ, x, ε)

is not necessarily convex inθ , ε andx, even if H � 0 andS2 � 0, as can be seen by rewriting (8.19)

as:

f̃ (θ, x, ε) = 1

2

θx
ε


′ H F 0

F ′ 0 0

0 0 S2


θx
ε

+
 0

0

S1


′ θx
ε

 . (8.20)

It is easy to find values forF that result in a Hessian which is not positive semi-definite.

If H = 0 andS2 = 0 the soft-constrained problem becomes that of an mp-MILP (multi-parametric

Mixed-Integer Linear Program). However, the computation ofρ is still not easy, since the cost func-

tions in (8.16a) are still indefinite quadratics inx.

In both the mp-MIQP and mp-MILP, unless some structure about the problem is known, the most

practical solution might be to make a conservative guess at the value ofρ.

8.5.2 Decomposing the Soft-Constrained Problem

If the computation ofρ is difficult and it is crucial that the subset of parameters for which one can

guarantee that the solution is prioritised-optimal is maximal, i.e.X0 = XFS, then one can decompose

Problem 8.2 into two (or more) steps. The first step would be to solve for

(θ̃(x), ε∗(x), δ∗(x)) = arg min
θ,ε,δ

s∑
m=1

‖εm‖ + ρW′δ (8.21)

subject to the original soft constraints (8.13) in Problem 8.2. This step finds a solution which is

prioritised-optimal in terms of the number of satisfied constraints. The next step would be to solve for

θ∗s (x) = arg min
θ

f (θ, x) (8.22)

subject to (8.13), but with the solutionsε∗(x) andδ∗(x) to the first part substituted into the constraints.

In this case, since the slack vectors are known to be bounded, it is easy to find

ρ >

s∑
m=1

‖Mm‖ . (8.23)

Whether the constraint violations should be penalised in the first or second step is problem-dependent -

the sameδ∗(x) will result. However, it can be seen that by penalising the violations in the second step

instead of the first, i.e. minθ,δ,ε W′δ followed by minθ,ε f (θ, x)+∑s
m=1 ‖εm‖, that it isnot necessary

to calculate a value forρ. In addition, the restriction thatwi ∈ N+ can also then be relaxed towi ∈ R+,

as in Theorem 8.1.
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One does not need to have slack variables for the solution to be prioritised-optimal with respect to

the number of constraint violations. If̃f (θ, x, ε) = f (θ, x) +∑s
m=1 ‖εm‖, then a trade-off between

f (θ, x) and the size of the constraint violations has to be made. Adding slack vectors also adds

decision variables to the optimisation problem, thereby increasing the computational effort. Remov-

ing the slack variables and not caring about the size of the constraint violations, amounts to setting

f̃ (θ, x, ε) = f (θ, x) and replacing (8.13a) and (8.13c) with

gk(θ, x) ≤ Mmδn .

By decomposing the problem as in the above two approaches, one can guarantee that the solution is

prioritised-optimal in terms of constraint satisfaction for allx ∈ XFS.

8.6 Model Predictive Control of Hybrid Systems

The MLD modelling framework mentioned in Section 4.2 allows one to design MPC controllers for

hybrid systems. The following problem has to be solved in order to compute an MPC controller for

an MLD system:

Problem 8.8. [BM99a] Given the initial state xk and a control horizon N, find (if it exists) the control

sequenceπN
k , {û0|k, û1, . . . , ûN−1|k} which transfers the state from xk to xf and minimises the

performance index

V(θ, xk) ,
N−1∑
l=0

‖ûl |k − u f ‖2Q1
+ ‖δ̂l |k − δ f ‖2Q2

+ ‖ẑl |k − zf ‖2Q3
+ ‖x̂l |k − x f ‖2Q4

+ ‖ŷl |k − yf ‖2Q5

(8.24a)

subject to

x̂N|k = x f (8.24b)

and the MLD system dynamics(4.1), where‖α‖2Q , α′Qα, Qi = Q′i � 0, i = 1 . . . 5 are given

weight matrices, and xf , u f , δ f , zf , yf are given offset vectors4 satisfying(4.1b) and (4.1c). The

decision variableθ is made up of all thêul |k, δ̂l |k andẑl |k.

As shown in [BM99a, Sect. 5], this problem is an mp-MIQP. Solving the problem is equivalent to

minimising an appropriate cost function in the form (8.18a) subject to constraints (8.18b), with the

parameterx = xk. It is also possible to add additional performance or safety constraints on the states

and inputs of the system, i.e.x̂l |k ∈ X andûl |k ∈ U
4These vectors correspond to a steady state which is compatible with the constraints. An MIQP can be set up for

computing these values [BM99a, Sect. 6.1].
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Since the constraints in the problem are dependent on the current state, it is possible that a disturbance

could drive the system outsideXF H , resulting in it being impossible to compute a solution to the

original hard-constrained problem. Assuming it is still possible to drive the system tox f in N steps

when some or all of the performance constraints have been relaxed, one would like to design a soft-

constrained problem which prioritises the soft constraints. The procedure described in Sections 8.3–

8.5 allows one to construct such a problem.

Remark 8.7.When dealing with MPC problems, it is relatively easy to get a conservative lower bound

for ρ, as the expressions in the cost function represent physical variables which are bounded. Since

each‖ · ‖2Qi
is convex, it is relatively easy to obtain an upper bound on the maximum and likewise

when introducing slack variables. Additionally, the cost function is also always bounded below by 0.

Various priorities can usually be assigned to the soft constraints on the inputs and states. For example:

• It might be less desirable to violate the performance constraints on a given output than con-

straints on other outputs and therefore the soft constraints associated with the first output have

a higher priority than the soft constraints of the other outputs.

• Another design requirement might be that if the performance constraints on an output have to

be violated, that it be brought back into the desired region as soon as possible, regardless of

the satisfaction by other outputs of their corresponding performance constraints. In this case,

constraints in the future have a higher priority than constraints closer to the current time. In

addition, all the constraints on the output have a higher priority than constraints on the other

outputs.

• A third case would be where redundant hardware has been installed for safety purposes and

one would like to use the hardware only to prevent a fault from developing into plant failure.

Constraints on inputs and outputs associated with the redundant hardware therefore have higher

priority than all other performance constraints.

If there are a large number of inputs and outputs and a large horizonN and one tries to associate a

separate priority level with each constraint, the weights inW will become very large and the problem

ill-conditioned. However, in practical situations one can rarely associate a large number of distinct

priority levels with all the inputs and states, and this is therefore not a serious problem. It is also

possible to include time priorities without the need for separate weights for each time constraint and

this will be discussed next.

8.6.1 Minimum-Time Output-Prioritised Solutions

Assume that the system has only one output and that one prioritises the constraints on the output such

that a constraint at timek+ 1 has a higher priority than a constraint at timek, and one chooses theW

appropriately to reflect this priority. If the only constraints that have been softened are the performance
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constraints related to the output, then it can be seen that the solution isminimum-timeoptimal in the

sense that the duration of constraint violations has been minimised. The same minimum-time optimal

solution will result if one adopts the approach of [VSJ99], [TM99, Sect. 3.2] or [BM99a, Sect. 5.1]

for a MISO system.

However, if one has a MIMO system and the inputs and states are prioritised then the problem becomes

the following:

Problem 8.9 (Minimum-time output-prioritised). Set up a soft-constrained problem for which the

solution is output-prioritised-optimal with respect to the duration of constraint violations over the

horizon N.

Note that the problem has changed from trying to find a solution which is prioritised-optimal in the

numberof constraint violations to minimising thedurationof constraint violations subject to the pri-

oritisation. These are two different problems and adopting the unmodified approach of Sections 8.3

and 8.4 does not solve the latter problem. One has to redefine whatv(θ) represents in order to under-

stand why this is the case.

Let vi (θ) now represent the sum of thedurationsof constraintrelaxation for the inputs and states

associated with priority leveli . The solution is therefore required to be prioritised-optimal with respect

to v(θ). For example, assume that the soft-constrained problem has been set up such that [δk
j = 1]

is true if the associated constraint on thej ’th input or state at timek has beenrelaxed5. Let k∗j =
maxk∈{0,... ,N} k such that [δk

j = 1], thenk∗j is the duration of constraint relaxation of thej ’th state or

input on priority leveli . If this is the case, thenvi (θ) =∑ j k∗j .

In light of this, it can be seen that the original problem is such that [δ∗(x) = 1] is true if and only if

the desired input or state constraint has been violated, not just relaxed. By forcing higher-prioritised

constraints to be satisfied, it could result in a ‘water bed’ effect where constraints on lower-prioritised

states or inputs cannot be satisfied, thereby possibly increasing the duration of constraint violation for

those inputs or states. The same effect will occur when the approach in [VSJ99] is used.

All that remains is to modify Problem 8.2 such that [δ∗(x) = 1] is true if the associated input or state

constraint has been relaxed, but not necessarily violated. The solution should be such that the duration

of constraint relaxation is prioritised-optimal. A modification of the approach in [TM99, Sect. 3.2]

and [BM99a, Sect. 5.1] allows one to do just this. Additionally, it will be shown that it is sufficient

for all constraints and logic variables associated with the state or input on priority leveli to have the

same weightwi .

Theorem 8.3 (Minimum-time output-prioritised). Let the upper and lower bounds of the r outputs

of the MLD system(4.1)be given byy and y, respectively.

5Note that a relaxed constraint is not necessarily violated. If a constraint has been relaxed, it implies that violation is

allowed, but satisfaction is still possible. For example, a constraintg(θ) ≤ 0 has been relaxed if it has been replaced by

g(θ) ≤ M, whereM is some positive number.
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Let the violation of output i at time k+ l be given byε l
i and the maximum allowed violation of the

constraints of the i ’th output be Mi . Furthermore, the outputs are such that output i has a higher

priority than output i+ 1.

A control sequence which minimises the duration of output constraint violations in an output-pri-

oritised fashion and optimally transfers the state from xk to xf in N steps is found by solving the

following MIQP:

min
θ,ε,δ

J(θ, xk)+
N−1∑
l=1

‖ε l‖2Q6
+ ρW′δ (8.25a)

subject to

y− ε l � ŷl |k � y+ ε l , l = 1, . . . , N − 1 (8.25b)

0≤ ε l
i ≤ Mi δ

l
i , i = 1, . . . , r, l = 1, . . . , N − 1 (8.25c)

δl+1
i ≤ δl

i , i = 1, . . . , r, l = 1, . . . , N − 2 (8.25d)

x̂N|k = x f (8.25e)

and the MLD system dynamics(4.1), with Q6 � 0.

The prioritised logic vectorδ ∈ {0,1}r (N−1) is defined as

δ ,


δ1
...

δr

 (8.25f)

with

δi ,


δ1

i
...

δN−1
i

 . (8.25g)

The priority weight vector is defined as

W ,



w11N−1
...

wi 1N−1
...

wr 1N−1


(8.25h)

with

wi ≥ 1+
r∑

j=i+1

(N − 1)w j (8.25i)
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andwi ∈ N+.

The vector of constraint violationsε is defined as:

ε ,


ε1

...

εN−1

 (8.25j)

with

ε l ,


ε l

1
...

ε l
r

 . (8.25k)

The optimisation in

ρ > max
θ,ε,δ

J(θ, xk)+
N−1∑
l=1

‖ε l‖2Q6
(8.25l)

is subject to the same constraints as above.

Proof. If the constraints (8.25d) are removed, then it can be seen that the solution solves a special case

of Problem 8.6. All the constraints associated with outputi have the same priority, i.e.ti = N − 1.

If these constraints weren’t included, then the solution would minimise the number of constraint

violations in an output-prioritised fashion. With the addition of the constraints (8.25d) the problem is

slightly modified.

The constraints (8.25d) are equivalent to the propositional logic statements

[δl
i = 0]→ [δl+1

i = 0], i = 1, . . . , r, l = 1, . . . , N − 2

and imply that if the constraints of outputi are satisfied at timek+ l , then the constraints of outputi

are satisfied from timek+ l + 1 to k+ N − 1.

If [ δl
i = 1], then this implies that [δ j

i = 1] for j = 1, . . . , l − 1 and hence the constraints for outputi

have beenrelaxed6 from timek+ 1 to timek+ l .

With the above choice ofρ andwi and the fact that the cost function is always non-negative, it follows

from the same argument as in the proof of Lemma 8.3 that the optimal solution also minimisesW′δ.

Note that
∑N−1

l=1 δl
i is now equal to the duration of constraint relaxation for outputi . If one defines

vi (θ) ,
N−1∑
l=1

δl
i ,

6It is stressed again that thisdoes not implythat the constraints have beenviolated.
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then

(wi 1N−1)
′δi = wivi (θ) .

By Theorem 8.1 and the fact thatW′δ is minimised, it follows that the optimal solution minimises the

duration of constraint relaxations (and hence theduration of constraint violations7) in a prioritised-

optimal fashion. The problem of minimising the duration of constraint relaxations of outputi takes

higher priority than the minimisation of the duration of constraint relaxations of outputi + 1.

This result illustrates how constraints can be added to include time priorities, but reduce the size of the

components inW. Variations on this theme are possible by combining it with ideas from the previous

sections.

8.7 Fault-Tolerant Control Example: The Three-Tank Benchmark

In [HL99] a benchmark problem was formulated as part of the COSY (Control of Complex Systems)

project in order to compare reconfiguration strategies for fault-tolerant control. A number of solutions

to this problem are given in [LAC+00]. This section demonstrates how a prioritised optimisation

problem can be set up to determine a prioritised-optimal steady-state under the various fault scenarios

as defined in [HL99].

8.7.1 Description of the Tank System

The benchmark problem consists of three coupled tanks, as shown in Figure 8.1. The tanks are con-

nected by pipes and the flows through these pipes are controlled by switching valves (V1,V13,V2,V32)

which can only be completely opened or completely closed. The left and right tanks can be filled using

two identical pumps (P1 and P2). The continuous measurements of the levels in the tanksh1,h2 and

h3 are available. The system is hybrid by nature, since there are both continuous and discrete inputs

and states and an MLD model of the system is given in [BMM99, Mig99].

The level in each tank and the flow rate of the pumps are bounded:

• The height of each tank is 62 cm, i.e. 0≤ hi ≤ 0.62 [m], i = 1,2,3;

• The inflows into tanksT1 andT2 are limited to the range 0≤ Qi ≤ 0.1× 10−3 [m3/s], i = 1,2;

The connection pipes between the tanks are placed at the bottom of the tanks (pipes with valvesV13

andV32 and at a height of 30 cm (pipes with valvesV1 andV2). Valve V1L can be used to simulate a

leak in tankT1. If there is no water flowing through the leak, thenQ1L = 0, otherwiseQ1L > 0.
7Not thenumberof constraint violations.
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Figure 8.1: The Three-tank Benchmark Problem

The main aim of the tank system is to provide a continuous water flowQN to the consumer. In the

nominal mode of operation tankT1 is used as a buffer to control the level of tankT3 in the range

9 cm≤ h3 ≤ 11 cm. The nominal level for tankT1 is h1 = 50 cm. TankT2 and pumpP2 are not used

and act as redundant hardware.

In normal operation, a PI controller is used to control the flow rateQ1 of pump P1 in order to keep

h1 = 50 cm and valveV1 is used to controlh3. All other valves are closed and pumpP2 is switched

off, i.e. Q2 = 0.

8.7.2 The Reconfiguration Problem

For the reconfiguration problem, three different fault scenarios are given:

1. ValveV1 is blocked in the closed position, i.e.V1 = 0;

2. ValveV2 is blocked in the open position, i.e.V2 = 1;

3. ValveV1L is open, i.e.V1L = 1, thereby simulating a leak in tankT1.

The reconfiguration task, as defined in [HL99], is to automatically find a new control configuration of

the three-tank system for each one of the scenarios above such that:
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• The levelh3 remains within the nominal operating range, if possible;

• The loss of water is minimised, given the last scenario.

The reconfiguration problem involves determining the set of actuators, sensors, control laws and set-

points such that the control aims above are attainable. The use of the redundant hardware is allowed.

8.7.3 Steady-State Analysis

As can be seen in Problem 8.8, the deviations of the predicted from the steady-state values are pe-

nalised when determining an MPC control action. A steady-state value for an MLD system can be

determined with an MIQP:

min
x f ,u f ,δ f ,zf

‖yf − r ‖2 + ‖x f ‖2ρ4
+ ‖u f ‖2ρ1

+ ‖zf ‖2ρ3
+ ‖δ f ‖2ρ2

(8.26)

subject to

x f = Axf + B1u f + B2δ f + B3zf (8.27a)

yf = Cxf + D1u f + D2δ f + D3zf (8.27b)

E2δ f + E3zf � E1u f + E4x f + E5 (8.27c)

whereρi are small, positive definite weighting matrices andr is a constant reference.

It is possible that the resulting steady-state is unreachable or gives poor performance, or even that

a steady-state does not exists but that a cyclical steady-state is possible [TMFM01]. For the initial

investigation presented here, it is assumed that a reachable steady-state exists.

Furthermore, it will be assumed that an FDI (fault diagnosis and identification) routine is available

and that the fault is correctly identified and modelled. A steady-state for each of the fault conditions

can then be computed using the above MIQP.

Defining the Priorities

In many practical systems some degree of redundancy is available and it is possible that many optimal

steady-states exist. Additionally, it is often also possible that certain steady-states are preferred over

others.

In the three-tank benchmark problem it is possible to define the following constraint objectives from

highest to lowest priority:

1. Minimise the water loss. Obviously water loss is minimised when

Q1L = 0;
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2. Maintain a good rate of water flow to the consumer. Within this context it is possible to say that

a high rather than a low rate of flow is preferred. The highest priority is therefore to keep

h3 ≥ 9 cm;

3. Do not use the redundant hardware. This translates into assigning the following two constraints8

the same priority:

V32 = 0,V2 = 0;

4. Close all valves not used in steady-state9, such as valveV13 connecting tanksT1 andT3:

V13 = 0;

5. Keep the flow rate to the consumer below a certain level. This translates into keeping

h3 ≤ 11 cm;

6. Minimise the fluctuation in flow rate to the consumer. This could be achieved by keeping the

level of tankT3 at some constant value, say

h3 = h3nom= 10 cm;

7. Keep the level of tankT1 at the nominal value:

h1 = h1nom= 50 cm.

Since some of the above constraints are not defined in the original benchmark, it is possible to choose

any other sensible combination. It is felt that the above list of prioritised objectives reflect what a plant

operator would try to achieve with manual control.

The Prioritised Optimisation Problem

For each of the fault scenarios, the following prioritised MIQP can be solved for computing the opti-

mal steady-state(x f ,u f , δ f , zf ):

min
x f ,u f ,δ f ,zf ,ε,δ

‖yf − r ‖2 + ‖x f ‖2ρ4
+ ‖u f ‖2ρ1

+ ‖zf ‖2ρ3
+ ‖δ f ‖2ρ2

+ ‖ε‖2ρ5
+ ρW′δ

8The inclusion of the constraintQ2 = 0 is not necessary, since one can include‖Q2‖2 in the cost function. IfV32 = 0

andV2 = 0 then the optimal solution would be such thatQ2 = 0.
9The use of valveV1 is necessary in steady-state.
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where the minimisation is subject to the following constraints:

Q1L ≤ εQ1L

h3 ≥ 0.09− εh3l

V32 ≤ εV32

V2 ≤ εV2

V13 ≤ εV13

h3 ≤ 0.11+ εh3h

0.1− εh3 ≤ h3 ≤ 0.1+ εh3

0.5− εh1 ≤ h1 ≤ 0.5+ εh1 ,

the lower bounds on the slack variablesε , [εQ1L εh3l εV32 εV2 εV13 εh3h εh3 εh1]
′:

ε � 0 ,

the upper bounds on the slack variables which also associate the slack variables with the prioritised

logic vectorδ , [δQ1L δh3l δV32 δV2 δV13 δh3h δh3 δh1]
′:

εQ1L ≤ (Q1Lmax)δQ1L

εh3l ≤ 0.09δh3l

εV32 ≤ 1δV32

εV2 ≤ 1δV2

εV13 ≤ 1δV13

εh3h ≤ (0.62− 0.11)δh3h

εh3 ≤ max(0.62− h3nom,h3nom)δh3

εh1 ≤ max(0.62− h1nom,h1nom)δh1 ,

and the MLD steady-state equations of the faulty tank system in the form

x f = Axf + B1u f + B2δ f + B3zf

yf = Cxf + D1u f + D2δ f + D3zf

E2δ f + E3zf � E1u f + E4x f + E5 .

The physical constraints on the inputs and states (such asQ1L ≥ 0 and 0≤ hi ≤ 0.62) are included

either directly or implicitly in the MLD model and are therefore not listed above.

If the outputyk is

yk = [h1 h2 h3]′

and the referencer is

r = [h1nom 0 h3nom]′ = [0.5 0 0.1]′ ,
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Table 8.1: Results from the steady-state computation for the Three-Tank Benchmark
Fault h1 h2 h3 Q1 Q2 Q1L V1 V13 V2 V32

Condition m m m m3/s m3/s m3/s

No Fault 0.4 0.0 0.1 1.13× 10−5 0 0 open closed closed closed

V1 open 0.4 0.0 0.1 1.13× 10−5 0 0 open closed closed closed

V1 closed 0.2 0.0 0.1 1.13× 10−5 0 0 closed open closed closed

Leak inT1 0.0 0.2 0.1 0 1.13× 10−5 0 closed closed closed open

then the the scalarρ has to be chosen such that

ρ > max
x f ,u f ,δ f ,zf ,ε,δ

‖yf − r ‖2 + ‖x f ‖2ρ4
+ ‖u f ‖2ρ1

+ ‖zf ‖2ρ3
+ ‖δ f ‖2ρ2

+ ‖ε‖2ρ5

where the optimisation also has to be performed subject to the above constraints. For the three-tank

system it is possible to get a lower bound forρ simply by inspection10.

A W which reflects the priorities defined earlier is given by

W = [96 48 16 16 8 4 2 1]′ .

Note that the same weight is assigned to bothδV32 andδV2, since the associated constraints have the

same priority.

The above MIQP was formulated only as an example. Though this MIQP would solve the problem, it

was not the one that was implemented. Several computational simplifications can be made by noting

that some of the auxiliary variables will be equal to the states of the system at the optimal solution,

thereby allowing one to reduce the number of decision variables, e.g.

δ∗V2
= ε∗V2

= V2 ∈ {0,1} .

Discussion of the Steady-State Computation

Table 8.1 gives a summary of the solutions to the above optimisation problem for each of the three

fault scenarios. As can be seen, the computed steady-states satisfy both of the reconfiguration criteria

defined in Section 8.7.2, namely keepingh3 in the nominal range and minimising water loss in the

case of a leak occurring (in factQ1L = 0). ValveV13 is used only when valveV1 is blocked closed,

thereby allowing water to flow from tankT1 to tankT3.

The redundant hardware is only required in steady-state when there is a leak, with tankT2 acting as

buffer instead of tankT1. ValveV32 is used instead of valveV2, since they both have the same priority.

This configuration allowsh2 to be closer to the set-point of 0 m.

10For the actual implementation with all theρi = I , a value ofρ = 3 was sufficient.
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Note that the steady-state for the case with no fault is the same as the steady-state for when valveV1 is

blocked open. This is exactly what one would expect, since in steady-stateV1 is open for the nominal

case.

It should also be observed that even for the nominal caseh1 cannot be kept at the desired level of

0.5 m at steady-state. This is due to Toricelli’s law

Q = aS
√

2gh ,

which says that the flow rateQ through an opening with cross-sectionS is proportional to the square

root of the heighth of liquid above the opening11.

In the three-tank system, the pipes and their openings are identical. This implies that, in steady-state,

the flow rate to the consumer must be equal to the flow rate of water coming into tankT3. This in turn

implies that the level of water above the pipe with valveV1 must be equal toh3. Since this pipe is

placed at 0.3 m, one would expect the level of tankT1 to beh1 = h3 + 0.3 = 0.4, which agrees with

the computed value.

As a further consequence, one would expect the flow rate of pumpP1 to be equal to the flow rate to the

consumer. Using Toricelli’s law, one would expectQ1 = 2.80×10−5 m3/s. However, the MLD model

uses a linearised approximation of Toricelli’s law [BMM99, Mig99] and hence the computed value of

Q1 = 1.13× 10−5 m3/s is different from the ideal value, but correct for the model as implemented.

Obviously a better approximation will result in a more accurate estimate of the flow rate.

This example showed that by a careful choice of objectives and priorities a single optimisation could

be set up to calculate a sensible steady-state which satisfies as many of the objectives as possible. A

change in priorities is easily reflected by a suitable change in the weightW. The scheme proposed

in this chapter therefore allows one to add or remove constraints and change priorities in a simple,

transparent fashion.

8.8 Summary

Prioritised, multi-objective problems were introduced and it was shown how weights can be chosen

such that, for a class of problems where the cost function only takes on integer values, the solution is

prioritised-optimal. A soft-constrained mixed-integer programming problem was then formulated and

the problem of finding a solution which minimises the number of constraint violations in a prioritised-

optimal sense was posed.

The ideas from the first part of the chapter were applied to the choice of weights in the soft-constrained

problem. This was then further applied to the case of designing an MPC controller for the control of

hybrid systems, where some outputs have higher priority than others. Finally, the ideas were applied

to the problem of determining the setpoints for a three-tank system given a number of fault scenarios.

11The other terms in the equation are the gravity constantg and a flow correction terma.



Chapter 9

Concluding Remarks

In conclusion, the main contributions of this thesis are summarised and suggestions for possible future

directions are outlined.

9.1 Contributions

The central idea behind this thesis was to develop a framework for the synthesis of robust controllers

which guarantee constraint satisfaction. The main contributions of this thesis are summarised below.

Invariant Set Theory

• A number of important ideas from set invariance theory were brought together and placed in a

general, nonlinear setting. The essential ingredients required for computing robust controllable

and invariant sets were identified and discussed.

• Some less well-known results regarding the efficient computation of the linear map of a poly-

hedron and subset testing were given.

• A method for computing the Pontryagin difference between the union of a set of convex poly-

hedra and a convex polyhedron was described. It was shown how this allows one to compute

robust controllable sets for piecewise affine systems.

Model Predictive Control

• A new sufficient condition was derived for guaranteeing that a given MPC controller will be

feasible for all time, despite the possible sub-optimality of the solution at each time step. The

effect of the length of the horizons and choice of terminal constraint on the behaviour of the

feasible set and the feasibility of the MPC controller was also investigated.
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• A necessary and sufficient condition was derived for analysing whether a given MPC controller

will be feasible for all time, despite the presence of disturbances and the possible sub-optimality

of the solution at each time step. This allows one to determine whether or not it is necessary to

modify the given MPC controller in order to robustify it against disturbances.

• The robustification of the standard MPC scheme via the addition of a robustness constraint was

discussed. A new necessary and sufficient condition as well as some new sufficient conditions

were given in order to guarantee that the new controller would be robust strongly feasible. It was

also shown how to modify the controller to guarantee strong robust feasibility for LTI systems

in the presence of state disturbances and parametric uncertainty.

• Ideas from set invariance theory were applied to the problem of computing a steady-state set-

point which is compatible with the constraints, while bearing in mind that there are unknown

disturbances on the state and output.

Constrained Optimisation

• An algorithm was described for guaranteeing that the solution to a soft-constrained quadratic

program is equal to the solution to the original hard-constrained, multi-parametric quadratic

program (mp-QP) over a subset of the latter problem’s feasible set. This allows one to soften the

constraints of an MPC problem, guarantee constraint satisfaction if possible, but also guarantee

that the problem will not be infeasible if constraint violation is inevitable.

• A method was described for setting up a mixed-integer optimisation problem such that the solu-

tion minimises the number of constraint violations in a prioritised-optimal fashion. It was shown

how this method can be applied to the control of hybrid systems for recovering from constraint

violations in an optimal fashion, while bearing the priorities of the different constraints in mind.

9.2 Directions for Future Research

Some possible directions for future research are outlined below.

Invariant Set Theory

• Efficient algorithms need to be developed for the computation of robust controllable and in-

variant sets for linear and nonlinear systems. The class of systems for which these sets can

be computed should also be expanded, such as bilinear systems. As shown in Chapter 4 it is

possible to compute these sets exactly for piecewise affine systems. However, these sets are

generally non-convex and as a result the algorithms are more complex than for linear systems,



9.2. DIRECTIONS FOR FUTURE RESEARCH 171

where the sets are always convex. It might be possible to use the equivalent MLD model of the

PWA system to develop more efficient algorithms.

• Different classes of uncertainty to those discussed in this thesis should also be investigated.

The effect of uncertainty in the model for each of the regions of the PWA systems could also be

included in the computation of the invariant sets.

• The feasibility of using invariant sets in the synthesis of robust controllers for piecewise affine

and hybrid systems should be investigated.

• The possibility of obtaining robust performance guarantees from the use of invariant sets should

be investigated. It is already known that some guarantees are possible when working with linear

systems. The extension of these results to PWA systems could prove to be interesting.

Model Predictive Control

• The use of invariant sets and the robustness constraint as in Section 6.4 could provide the de-

signer with a robust performance guarantee for the closed-loop system. More results regarding

the robust stability and performance of the robustness constraint approach need to be developed.

• The case of the robust stability and feasibility of MPC with output feedback needs to be inves-

tigated. Section 6.7 briefly alluded as to how a robustly feasible output feedback MPC scheme

could be designed and a more thorough investigation into this field needs to be undertaken. The

simultaneous design of an MPC controller and observer might prove beneficial in enlarging the

region of guaranteed robust feasibility and stability.

Constrained Optimisation

• Though the problem described in Chapter 7 of finding a lower bound on the penalty weight

appears to be a difficult, non-convex optimisation problem, there does seem to be some structure

in the behaviour of the Lagrange multiplier over the region of interest. It would be useful if one

could determine whether the problem is quasi-convex or has some other property which could

be exploited in finding a more efficient algorithm for determining a lower bound on the penalty

weight.

• The choice of weights proposed in Chapter 8 is impractical for systems with many levels of

prioritised constraints. It might be possible to compute an optimal set of weights. This would

make the proposed approach feasible for large, complex systems.





Appendix A

Time-Varying Systems

If the system is time-varying

xk+1 = fk(xk,uk, wk) (A.1)

and the constraints are also time varying

uk ∈ Uk (A.2a)

xk ∈ Xk (A.2b)

wk ∈Wk . (A.2c)

then Algorithm 2.1 requires only a minor modification [BR71, GS71].

Before proceeding, the definition of the robust one-step set is modified to account for the time-varying

nature of the system and constraints:

Q̃k(�) , {xk ∈ Rn | ∃uk ∈ Uk : fk(xk,uk, wk) ∈ �,∀wk ∈Wk} . (A.3)

Given a target setT, one is interested in computing the set of states which can be robustly steered to

T in a finite number of steps. Algorithm 2.1 is replaced by the following:

Algorithm A.1 (Robust controllable sets for time-varying systems).The N-step robust controlla-

ble setK̃N can be computed via the following iterative procedure:

K̃0 = T (A.4a)

K̃i+1 = Q̃k+N−i−1(K̃i ) ∩ Xk+N−i−1 . (A.4b)

If K̃i+1 = ∅, then terminate.

In order to steer the system toT in N steps, the controluk ∈ Uk has to be chosen such thatxk+1 ∈
K̃N−1,∀wk ∈Wk. At time k+ 1, the state is measured and the controluk+1 ∈ Uk+1 has to be chosen

such thatxk+2 ∈ K̃N−2,∀wk+1 ∈Wk+1. This process is repeated forN steps.
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If the system has the structure

xk+1 = fk(xk,uk)+ gk(wk) , (A.5)

then one can use the Pontryagin difference to compute the sequence of valid control moves which will

steer the system toT in N steps. Assumingxk ∈ K̃N , the sequence of controls which satisfies

uk+i (xk+i ) ∈
{
u ∈ Uk+i | fk+i (xk+i ,u) ∈ K̃N−i−1 ∼ gk+i (Wk+i )

}
, i = 0, . . . , N − 1 (A.6)

will robustly drive the system toT in N steps [BR71, GS71]. The set of valid control inputs at time

k+ i is dependent on the actual measured statexk+i .

As can be seen, future knowledge of the time-varying nature of the system and constraints are nec-

essary and the valid set of controls needs to be re-computed on-line at each time step. Furthermore,

onceT is reached, one cannot guarantee that a control sequence will exist which will keep the system

insideT unless further knowledge about the time-varying nature of the system and constraints are

known. Concepts like invariance for time-varying systems therefore become a lot more complicated

and fall outside the scope of this thesis.



Appendix B

Removing Redundant Constraints

This appendix describes a simple redundancy removal routine which is easy to implement. For a more

efficient method, see [CMP89].

A convex polyhedron� described byN ≥ 2 linear inequalities is given:

� ,
{
ω ∈ Rn | Aω � b, A ∈ RN×n,b ∈ RN

}
. (B.1)

The problem is to remove all redundant inequalities in� to obtain anirredundantdescription8 such

that8 = �. Thei ’th inequality

A′iω ≤ bi

is redundant if and only if by removing it from the description of� the same set results, i.e.

� = �i ,
{
ω ∈ Rn | A′jω ≤ bj , j = 1, . . . , i − 1, i + 1, . . . , N

}
.

Equivalently, thei ’th inequality is redundant if and only if

@ω ∈ �i : A′iω > bi . (B.2)

The irredundant polyhedron is therefore given by

8 ,
⋂

j∈{i |@ω∈�i :A′iω>bi }
{
ω ∈ Rn | A′jω ≤ bj

}
. (B.3)

Testing whether (B.2) is true can be done by finding the maximum ofA′iω over�i . A simple procedure

for removing the redundant constraints can therefore be implemented as follows:

1. Seti ← 1, C← [ ] and d← [ ];

2. If maxω∈�i A′iω > bi , then setC←
[

C

Ai

]
andd←

[
d

di

]
;

175



176 APPENDIX B. REMOVING REDUNDANT CONSTRAINTS

3. If i < N then seti ← i + 1 and go to step 2, else terminate;

4. The irredundant description of� is given by8 = {ω ∈ Rn | Cω � d}.

The maximisation in step 2 can be implemented as an LP. The maximisation can be terminated as

soon as anω has been found such thatA′iω > bi .



Appendix C

Fourier-Motzkin Elimination

Fourier elimination can be thought of as the equivalent of Gaussian elimination for solving a set of

linear inequalities. A brief sketch behind the idea of Fourier elimination is given here. See [KG87]

for a more detailed description of the algorithm.

Let x, y, z, . . . ,u, t denote some scalar variables which are required to satisfy a set of linear inequal-

ities. The aim is to successively eliminatex, y, z, . . . from the inequalities to obtain inequalities in

which only t enters.

Each of the inequalities, in relation tox is either of the form

x ≥ A+ By+ Cz+ · · · (C.1)

or

x ≤ α + βy+ γ z+ · · · . (C.2)

Each of the constraints in the form (C.1) is taken with each of the constraints in the form (C.2) to form

new inequalities in whichx does not appear, i.e.

α + βy+ γ z+ · · · ≥ A+ By+ Cz+ · · · . (C.3)

The inequalities which containedx, y, z, . . . ,u, t are now replaced by those which contain only

y, z, . . . ,u, t . This process of eliminating the variables continues until onlyt is present in the in-

equalities.

177





Appendix D

The Complement of the Union of a Set of

Polyhedra

Given a non-convex set

� ,
N⋃

j=1

� j

where each� j is a closed, convex polyhedron, this appendix describes how to find the complement

�c ,
M⋃

i=1

8i

where each8i is an open, convex polyhedron.

A closed, convex polyhedron can be described as the intersection of a finite number of closed half-

spaces:

� j ,
{
ω ∈ Rn | Qjω � q j ,Qj ∈ RL j×n,q j ∈ RL j

}
=

L j⋂
`=1

{
ω ∈ Rn | Qj

`ω ≤ q j
`

}
,

whereQj
` is the`’th row of Qj andq j

` is the`’th component ofq j .

By De Morgan’s law

�c
j =

L j⋃
`=1

{
ω ∈ Rn | Qj

`ω > q j
`

}
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and

�c =
N⋂

j=1

�c
j

=
N⋂

j=1

L j⋃
`=1

{
ω ∈ Rn | Qj

`ω > q j
`

}
.

Rewriting this as

�c =
[

L1⋃
`=1

{
ω ∈ Rn | Q1

`ω > q1
`

}]⋂ · · ·⋂[
L N⋃
`=1

{
ω ∈ Rn | QN

` ω > qN
`

}]

one can proceed with the development of a systematic procedure for finding the complement by re-

peatedly applying the distributive law and computing the intersections. The resulting set will be the

union of a finite number of open, convex polyhedra.

Example D.1. Consider the set

(A∪ B) ∩ (C ∪ D) ,

where A, B, C and D are open, convex polyhedra. By repeatedly applying the distributive law, it

follows that

(A∪ B) ∩ (C ∪ D) = (A∩ C) ∪ (A∩ D) ∪ (B ∩ C) ∪ (B ∩ D) .

The sets A∩ C, A ∩ D, B ∩ C and B∩ D are easy to represent as convex polyhedra. Each set is

given by appending the strict inequalities which describe the corresponding polyhedra, as discussed

in Section 3.3.1.

Example D.2. Consider the very simple example of computing the complement of

� = [0,1] ∩ [2,3] .

The complement is found by applying De Morgan’s and the distributive laws:

�c = [0,1]c ∪ [2,3]c

= {(−∞,0) ∩ (1,∞)} ∪ {(−∞,2) ∩ (3,∞)}
= {(−∞,0) ∩ (−∞,2)} ∪ {(−∞,0) ∩ (3,∞)} ∪ {(1,∞) ∩ (−∞,2)} ∪ {(1,∞) ∩ (3,∞)}
= (−∞,0) ∪ (1,2) ∪ (3,∞) .

Example D.3. Consider determining the complement of

� ,
3⋃

j=1

� j
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Figure D.1: The shaded area represents� =⋃3
j=1� j of Example D.3

where

�1 = {(x, y) |−x + y ≤ 1, x ≤ 0}
�2 = {(x, y) |x ≤ 1, y ≤ 1}
�3 = {(x, y) |x ≤ 2, y ≤ 0} .

The set� is shown in Figure D.1.

The complement is found by applying De Morgan’s laws:

�c =
3⋂

j=1

�c
j ,

where

�c
1 = {(x, y) |x + y > 1} ∪ {(x, y) |x > 0}

�c
2 = {(x, y) |x > 1} ∪ {(x, y) |y > 1}

�c
3 = {(x, y) |x > 2} ∪ {(x, y) |y > 0} .
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By applying the distributive law and forming the intersections, one gets

�c =
8⋃

i=1

8i ,

where

81 = {(x, y) |x + y > 1, x > 1, x > 2}
82 = {(x, y) |x + y > 1, y > 1, x > 2}
83 = {(x, y) |x > 0, x > 1, x > 2}
84 = {(x, y) |x > 0, y > 1, x > 2}
85 = {(x, y) |x + y > 1, x > 1, y > 0}
86 = {(x, y) |x + y > 1, y > 1, y > 0}
87 = {(x, y) |x > 0, x > 1, y > 0}
88 = {(x, y) |x > 0, y > 1, y > 0} .

It is possible to simplify this further by removing redundant inequalities. This results in

81 = {(x, y) |x + y > 1, x > 2}
82 = {(x, y) |y > 1, x > 2}
83 = {(x, y) |x > 2}
84 = {(x, y) |y > 1, x > 2}
85 = {(x, y) |x > 1, y > 0}
86 = {(x, y) |x + y > 1, y > 1}
87 = {(x, y) |x > 1, y > 0}
88 = {(x, y) |x > 0, y > 1} .

The number of polyhedra in the union can be reduced by testing whether the union of some of the sets

is convex.

The resulting complement�c, which is the union of the above8i , is shown in Figure D.2. As can be

seen, the above 8 sets can be reduced to 3 convex polyhedra.
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Figure D.2: The shaded area represents�c =⋃8
i=18i of Example D.3





Appendix E

A Set Invariance Toolbox for LTI Systems

A Matlab toolbox has been developed for the computation of many of the sets described in Chapters 2

and 3 and can be downloaded from the author’s Internet site at

http://www-control.eng.cam.ac.uk/eck21/ .

The toolbox handles LTI systems with state disturbances

xk+1 = Axk + Buk + Ewk

and/or parametric (polytopic) uncertainty

(A, B) ∈ conv
{
(A1, B1) , . . . ,

(
Ap, Bp

)}
.

If there is uncertainty in the pair(A, B) then this fact can be passed to the toolbox by stacking the

vertices of the matrix polytope on top of each other1, i.e.

A =


A1
...

Ap

 , B =


B1
...

Bp

 .

The main functions in the toolbox are K1SET and KINFSET for computing all theK̃λi (�,T). As

shown in Chapter 2, nearly all of the sets can be found by computing the robust controllable sets with

different target sets.

The basic object of the toolbox is then-dimensional polyhedron given in augmented form

[C d] ,

with the function STD2AUG converting polyhedra from standard form

Cx � d
1No uncertainty in E is assumed.
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to augmented form.

The help files included with the functions are self-explanatory. Following is a list of the functions

available in the toolbox.

Initialisation of Polyhedra

STD2AUG Converts from standard to augmented form

AUG2STD Converts from augmented to standard form

DEFINEQ Converts lower and upper bounds on variables into a polyhedron

SYMINEQ Converts upper bounds to a symmetric polyhedron

NORMALISE Computes the normalised form of a polyhedron

Operations on Polyhedra

SCALESET Scales a polyhedron

POLYMAP Linear map

TRANSLATE Affine translation

INTSECT Intersection of two polyhedra

PDIFF Pontryagin difference of two polyhedra

POLYSUM Minkowski (vector) sum of two polyhedra

SUPPORT Value of the support function

INEQPROJ Projection via Fourier elimination

ISREDUNDANT True if a linear inequality is redundant

REMRED Removes redundant inequalities

LPSOLVER Uses your favourite LP solver

Computation of Various Sets

REACH Reach set

K1SET One-step robust controllable and robust one-step set

ONESTEPAUT One-step set of an autonomous system

KINFSET Thei -step robust controllable (contractive) sets

CINFSET Maximal control invariant (contractive) and admissible sets

SINFSET Maximal andi -step stabilisable (contractive) sets

OINFSET Maximal positively invariant set

OINFSETCL Maximal input admissible positively invariant set

OINFDIST Maximal robust positively invariant set

OINFDISTCL Maximal robust input-output admissible positively invariant set

Tests on Polyhedra

ISINVERTIBLE True if a given matrix is invertible

ISILLCON True if a given matrix is ill-conditioned

ISINSET True if a vector is an element of a polyhedron
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ISSUBSET True if polyhedron is a subset of another

IS0ININT True if the origin is contained in the interior

ISEMPTYSET True if empty

ISEQUALSETS True if two sets are equal

ISCTRLINV True if control invariant (contractive)

ISROBCTRLINV True if robust control invariant (contractive)

ISPOSINV True if positively invariant

ISPOSINVCL True if positively invariant for closed-loop system

ISROBPOSINV True if robust positively invariant
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F. Allgöwer and A. Zheng, editors,Nonlinear Model Predictive Control, volume 26 of

Progress in Systems and Control Theory, pages 23–44. Birkh¨auser Verlag, P.O. Box 133,

CH-4010 Basel, Switzerland, 2000.

[MB76] R.J.T. Morris and R.F. Brown. Extension of validity of the GRG method in optimal

control calculation. IEEE Transactions on Automatic Control, pages 420–422, June

1976.

[Mea94] E.S. Meadows.Stability and Continuity of Nonlinear Model Predictive Control. PhD

thesis, The University of Texas at Austin, December 1994.

[MFM00] D. Mignone, G. Ferrari-Trecate, and M. Morari. Stability and stabilization of piecewise

affine and hybrid systems: An LMI approach. InProceedings of the Conference on

Decision and Control, Sydney, Australia, December 2000.

[Mig99] D. Mignone. Moving horizon estimation and fault detection of mixed logic dynami-

cal systems. Postdiploma Thesis (Nachdiplomstudium Informationstechnik), Automatic

Control Laboratory, ETH Z¨urich, Switzerland, 1999.



196 BIBLIOGRAPHY

[MM93] H. Michalska and D.Q. Mayne. Robust receding horizon control of constrained systems.

IEEE Transactions on Automatic Control, 38(11):1623–1633, November 1993.

[MR93] K.R. Muske and J.B. Rawlings. Model predictive control with linear models.AIChE

Journal, 39(2):262–287, February 1993.

[MRRS00] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predic-

tive control: Stability and optimality.Automatica, 36:789–814, 2000.

[MS97] D.Q. Mayne and W.R. Schroeder. Robust time-optimal control of constrained linear

systems.Automatica, 33(12):2103–2118, December 1997.

[MSB92] T.A. Meadowcroft, G. Stephanopoulos, and C. Brosilow. The modular multivariable

controller: I : Steady-state properties.AIChE Journal, 38(8):1254–1278, August 1992.

[Mus97] K.R. Muske. Steady-state target optimization in linear model predictive control. In

Proceedings of the American Control Conference, Albuquerque, New Mexico, USA,

June 1997.

[PN00a] J.A. Primbs and V. Nevisti´c. Feasibility and stability of constrained finite receding

horizon control.Automatica, 36:965–971, 2000.

[PN00b] J.A. Primbs and V. Nevisti´c. A new approach to stability analysis for constrained fi-

nite receding horizon control without end constraints.IEEE Transactions on Automatic

Control, 45(8):1507–1512, August 2000.

[Rao00] C.V. Rao.Moving Horizon Strategies for the Constrained Monitoring and Control of

Nonlinear Discrete-Time Systems. PhD thesis, University of Wisconsin-Madison, USA,

February 2000.

[RJ00] A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control.IEEE Trans-

actions on Automatic Control, 45(4):629–637, April 2000.

[RR99] C.V. Rao and J.B. Rawlings. Steady states and constraints in model predictive control.

AIChE Journal, 45(6):1266–1278, June 1999.

[RWR98] C.V. Rao, S.J. Wright, and J.B. Rawlings. Application of interior-point methods to

model predictive control.Journal of Optimization Theory and Applications, 99(3):723–

757, December 1998.

[Sch68] F.C. Schweppe. Recursive state estimation: Unknown but bounded errors and system

inputs. IEEE Transactions on Automatic Control, AC-13(1):22–28, February 1968.

[Sch73] F.C. Schweppe.Uncertain Dynamic Systems. Prentice Hall, Inc., 1973.

[Sch86] A. Schrijver.Theory of Linear and Integer Programming. John Wiley & Sons, 1986.



BIBLIOGRAPHY 197

[SM98] P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive control for

constrained linear systems.IEEE Transactions on Automatic Control, 43(8):1136–1142,

August 1998.

[SMR99] P.O.M. Scokaert, D.W. Mayne, and J.B. Rawlings. Suboptimal model predictive control

(Feasibility implies stability).IEEE Transactions on Automatic Control, 44(3):648–654,

March 1999.

[SR96] P.O.M. Scokaert and J.B. Rawlings. Inifinite horizon linear quadratic control with con-

straints. InProceedings of the 13th Triennial IFAC World Congress, pages 109–114,

San Francisco, USA, 1996. IFAC.

[SR98] P.O.M. Scokaert and J.B. Rawlings. Constrained linear quadratic regulation.IEEE

Transactions on Automatic Control, 43(8):1163–1169, August 1998.

[SR99] P.O.M. Scokaert and J.B. Rawlings. Feasibility issues in model predictive control.

AIChE Journal, 45(8):1649–1659, August 1999.

[SRM97] P.O.M. Scokaert, J.B. Rawlings, and E.S. Meadows. Discrete-time stability with pertur-

bations: Application to model predictive control.Automatica, 33(3):463–470, 1997.

[TM99] M.L. Tyler and M. Morari. Propositional logic in control and monitoring problems.

Automatica, 35:565–582, 1999.

[TMFM01] Kazuro Tsuda, Domenico Mignone, Giancarlo Ferrari-Trecate, and Manfred Morari.

Reconfiguration strategies for hybrid systems. InProceedings of the American Control

Conference, Arlington, VA, USA, June 2001.

[VKV +] S.M. Veres, A.V. Kuntsevich, I. V´alyi, D.S. Wall, S. Hermsmeyer, and S.H. Sheng.

Geometric Bounding Toolbox. University of Birmingham, Edgbaston, UK. Information

available athttp://www.eee.bham.ac.uk/gbt/ .

[VSF99] J. Vada, O. Slupphaug, and B.A. Foss. Infeasibility handling in linear MPC subject to

prioritized constraints. InProceedings of the IFAC’99 World Congress, Beijing, China,

July 1999.

[VSJ99] J. Vada, O. Slupphaug, and T.A. Johansen. Efficient infeasibility handling in linear MPC

subject to prioritized constraints. InProceedings of the European Control Conference,

Karlsruhe, Germany, August 1999.

[VSLS99] R. Vidal, S. Schaffert, J. Lygeros, and S. Sastry. Controlled invariance of discrete time

systems. Technical Report UCB/ERL M99/65, Electrical Engineering and Computer

Sciences, University of California at Berkeley, Berkeley, CA 94720-1774, USA, De-

cember 1999.



198 BIBLIOGRAPHY

[Wit80] H.S. Witsenhausen. Some aspects of convexity useful in information theory.IEEE

Transactions on Information Theory, IT-26(3):265–271, May 1980.

[ZA98] A. Zheng and F. Allg¨ower. Towards a practical nonlinear predictive control algorithm

with guaranteed stability for large-scale systems. InProceedings of the American Con-

trol Conference, pages 2534–2538, Philadelphia, Pennsylvania, June 1998.


