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Abstract

Setinvariance plays a fundamental role in the design of control systems for constrained systems since
the constraints can be satisfied for all time if and only if the initial state is contained inside an invariant
set. This thesis is concerned with robust set invariance theory and its application to guaranteeing
feasibility in model predictive control.

In the first part of this thesis, some of the main ideas in set invariance theory are brought together
and placed in a general, nonlinear setting. The key ingredients in computing robust controllable and
invariant sets are identified and discussed. Following this, linear systems with parametric uncertainty
and state disturbances are considered and algorithms for computing the respective robust controllable
and invariant sets are described. In addition to discussing linear systems, an algorithm for computing
the robust controllable sets for piecewise affine systems with state disturbances is described.

In the second part, the ideas from set invariance are applied to the problem of guaranteeing feasibility
and robust constraint satisfaction in Model Predictive Control (MPC). A new sufficient condition is
derived for guaranteeing feasibility of a given MPC scheme. The effect of the choice of horizons and
constraints on the feasible set of the MPC controller is also investigated. Following this, a necessary
and sufficient condition is derived for determining whether a given MPC controller is robustly feasible.
The use of a robustness constraint for designing robust MPC controllers is discussed and it is shown
how this proposed scheme can be used to guarantee robust constraint satisfaction for linear systems
with parametric uncertainty and state disturbances. A new necessary and sufficient condition as well
as some new sufficient conditions are derived for guaranteeing that the proposed MPC scheme is
robustly feasible.

The third part of this thesis is concerned with recovering from constraint violations. An algorithm is
presented for designing soft-constrained MPC controllers which guarantee constraint satisfaction, if
possible. Finally, a mixed-integer programming approach is described for finding a solution which
minimises the number of violations in a set of prioritised constraints.

Keywords: robust control, constrained systems, invariant sets, controllable sets, piecewise affine
systems, predictive control, feasibility, exact penalty functions, multi-objective optimisation
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Chapter 1

Introduction

1.1 Motivation

Engineering, biological and economic systems can often be described in terms of mathematical mod-
els. These models help one to understand the behaviour of the system and how one could control
the resources or inputs in order to affect the outputs of the system. However, real systems are highly
complex and it is not possible to model every detail exactly. There is always some mismatch between
the ideal mathematical description and the physical world.

The main aim of control theory is to exploit the phenomenon of feedback to allow for the uncertainty
present in the mathematical model. The outputs of the actual system are compared with the predicted
outputs of the mathematical system and the difference is fed back to a controller which changes the
inputs to the system in an appropriate fashion. An aeroplane auto-pilot is an example of a controller
which uses feedback to account for uncertainty. The flaps and elevators are used to compensate for
any atmospheric disturbances in order to maintain a level and comfortable flight.

Most physical systems are complex and the requirements on the performance of the controller are
usually quite demanding. It is the role of the engineer to design, within budget and available time,
a controller which is guaranteed to meet the client’s specifications during testing and commerciali-
sation. This motivates the need for an effective, systematic method whereby a designer can use an
approximate model of the system to design a controller which is guaranteed to work on the actual
physical system.

All physical systems have inputs and outputs which are limited in size due to the presence of safety
or physical constraints. Furthermore, an application might also require a certain level of performance,
which can be translated into additional constraints on the controlled system.

Omitting these constraints in the controller design phase may lead to a control action that could result
in the violation of these constraints. Depending on the criticality of the constraint this violation might
result in system failure, which in turn could possibly lead to loss of human life.
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Similarly, if the effect of the uncertainty in the model is not taken into account, then the actual and
theoretical behaviour of the system will differ. It is possible that a controller which does not take
account of uncertainty would drive the system into an unsafe region. A small disturbance or fault
could then cause the system to break.

Given this need for designing safe controllers, this thesis concentrates on incorporating the effect of
uncertainty on control systems and how to design controllers which will guarantee that the constraints
will not be violated.

1.1.1 A Mathematical Framework and Computational Tools for Constrained Systems

The first part of this thesis is concerned with the development of a mathematical framework which

incorporates both constraints and uncertainty in controller design. This framework brings together
a number of ideas from the last thirty years and attempts to place them in a more general, modern
context.

The main concept behind the framework is that before a controller can be designed, one needs to
compute the largest ‘safe’ region in which the system should be kept. This region could be smaller
than the pre-specified region defined by the safety and performance constraints. The reason for this is
that the specified constraints do not necessarily take into account the actual physics of the process.

For example, the national speed limit for cars does not always take into account the conditions of the
road and if one encounters a very sharp bend in the road then this limit might not be safe. Factors
such as the age and technology used in the car, as well as the driver's experience place a practical
limit on the speed and angle with which the car can approach the bend. A more experienced driver
can be thought of as a well-designed controller that incorporates both a knowledge of the physics of
the system and an understanding of the effects of disturbances on the system.

A theoretical framework is not very useful unless it can be implemented for practical systems. Various
algorithms have been proposed for computing the safe regions for uncertain linear systems subject to
disturbances. However, even though linear systems are quite simple, many of the proposed algorithms
require large amounts of computational power. This thesis is therefore also concerned with the presen-
tation of some slightly more efficient algorithms which might allow the computation of safe regions
for larger and more complex systems, such as hybrid systems.

Many real-life systems are hybrid in nature. The term ‘hybrid’ as used here is meant to describe
systems whose inputs and states can take on discrete and continuous values. An example of a system
which only takes on discrete values is a light switch, the state being either on or off. A bathtub is an
example of a system with a continuous state, where the water level can take on any value between
empty and full.

Strictly speaking, though, a bath could be thought of as a hybrid system if one includes the state of
the plug in the system description. If the plug has been removed then the water will drain, with the
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water level dropping continuously until empty. Replacing the plug will stop the bath from draining.
The bath can then be topped up at a desired rate by setting the position of the tap anywhere between
shut and fully open. Depending on the flow rate and the state of the plug, the bath will either drain,
remain at the same level or fill up.

The presence of discrete inputs and states complicates the computation of the safe regions of a con-
trolled system. However, it is possible to extend the algorithms developed for continuous systems to a
large class of hybrid systems. In this thesis it is shown how to compute the corresponding safe regions
for the class of hybrid systems which can be modelled as piecewise affine systems.

1.1.2 Feasibility in Model Predictive Control

Model Predictive Control (MPC) is one of the most popular advanced control techniques in industry,
mainly due to the ease with which constraints can be included in the controller formulation. Though
highly successful in practice, a large number of properties of MPC are not well understood. One of
the most fundamental problems in MPC is that of guaranteeing constraint satisfaction in the presence
of uncertainty.

Furthermore, current industrial implementations of MPC do not explicitly take into account the effect
of uncertainty or disturbances on the future evolution of the system. As a result, constraint satisfaction
cannot be guaranteed.

The mathematical framework and computational tools developed during the first part of this thesis
allow one to develop new theoretical conditions and tools for guaranteeing constraint satisfaction
in MPC. The framework allows one to develop design methods for implementing MPC controllers
which are robust to a pre-specified level of uncertainty. Constraint satisfaction can be guaranteed by
computing a safe region and including it in the design of the MPC controller. The controller then only
selects control inputs for which the predicted response will remain within this safe region.

1.1.3 Recovering From Constraint Violations

If the system constraints cannot be satisfied, then a control action has to be computed which ensures
that the least damaging course of action is taken. This is further complicated by the fact that it is often
possible to prioritise the constraints and objectives. For example, it is more important to satisfy a
safety constraint rather than a performance constraint. Consequently, a control action which satisfies
the safety constraint is preferred. The last part of this thesis focuses on methods for computing a
control action which satisfies as many of the constraints as possible, while taking the priorities into
account.
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1.2 Organisation and Highlights of this Dissertation

This dissertation is organised as follows:

Chapter 2: Robust Set Invariance Theory

Set invariance is a fundamental concept in the design of controllers for constrained systems. The
reason for this is because constraint satisfaction can be guaranteed for all time and for all disturbances
if and only if the initial state is contained inside a robust control invariant set. This chapter aims to
bring together some of the important ideas from set invariance theory that have been developed during
the course of modern control theory. The results in subsequent chapters are based on this set-theoretic
framework. The unifying concept in the chapter is that many of the described sets are special cases of
the so-called “robust controllable sets” and can be computed using Algorithm 2.1.

Chapter 3: Uncertain Linear Time-Invariant Systems

If the constraints on the system are given by convex polyhedra and the system is linear and time-
invariant, then itis possible to compute all of the sets defined in Chapter 2. One can compute the robust
controllable sets not only if there are state disturbances, but also if there is parametric uncertainty
present in the model. The idea of contractive sets are introduced in Section 3.2 and Theorem 3.1 gives
a guarantee that, for uncertain LTI systems, a robust control invariant set can be computed in a finite
number of iterations of Algorithm 2.1.

Standard algorithms for computing the robust one-step set such as projection and Minkowski summa-
tion are briefly described in Section 3.3. Section 3.4 presents a result that allows one to compute the
linear map of a polyhedron in polynomial time and derive an upper bound on the number of faces of
the resultant polyhedron.

Chapter 4: Robust Controllable Sets for Hybrid and Piecewise Affine Systems

One of the classes of systems that has recently been receiving a lot of interest in the control literature
is hybrid systems. The Mixed Logic Dynamical (MLD) modelling framework of [BM99a] is briefly
introduced in Section 4.2. The motivation for the introduction of MLD systems is that hybrid systems
which can be modelled using the MLD framework have been shown to be formally equivalent to
piecewise affine (PWA) systems [BFMO0O]. The main aim of this chapter is to describe how one would
proceed in computing the robust controllable sets for these PWA systems. The main building block for
the proposed algorithm is the development in Section 4.5.1 of a method for computing the Pontryagin
difference between a non-convex polygon and a convex polyhedron. Section 4.5.2 shows how the
results from Chapters 2 and 3 can be used to complete the computation of the robust controllable set
once the Pontryagin difference has been found.
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Chapter 5: Nominal Feasibility in Model Predictive Control

Due to the finite horizon nature of Model Predictive Control (MPC), feasibility for all time cannot be
guaranteed in general, even if there are no disturbances present. This chapter is concerned only with
the nominal case where there are no disturbances and no model mismatch.

The concept of “strong feasibility” is introduced in Section 5.4. An MPC problem is said to be strongly
feasible if and only if it is feasible for all time, even if the computed solution is sub-optimal. One
way of guaranteeing that an MPC problem is strongly feasible is to add a control invariant terminal
constraint to the original problem. Theorem 5.2 gives a new sufficient condition on the feasible set
of the MPC problem such that strong feasibility is guaranteed, even if the terminal constraint is not
control invariant. The terminal constraint set condition can then be shown to be a special case of this
new condition.

Sections 5.7 and 5.8 bring together many of the results on the behaviour of the feasible set and the
feasibility of the MPC problem for different choices of horizons and terminal constraint set. In par-
ticular, Theorem 5.3 implies that if the terminal constraint is not used and the control and prediction
horizons are chosen to be equal to one another, then strong feasibility is possible if and only if there
exists a finite control horizon such that the feasible set is control invariant.

Chapter 6: Robust Feasibility in Model Predictive Control

This chapter introduces the notion of “robust strong feasibility” in MPC in order to guarantee a feasible
MPC problem for all time, despite the presence of disturbances. A new condition which is both
necessary and sufficient for an MPC scheme to be robust strongly feasible is given by Theorem 6.1.
If the MPC controller satisfies this condition, then no modifications need to be made to the original
scheme of Chapter 5 in order to guarantee strong robust feasibility.

However, sometimes the nominal MPC scheme is not robust strongly feasible for any size of distur-
bance and it is therefore necessary to modify the original scheme. Section 6.4 suggests the addition of
a “robustness constraint” to the nominal MPC problem, as proposed in [CZ99], in order to robustify
the original MPC controller against disturbances. Theorem 6.3 gives a new necessary and sufficient
condition and Theorem 6.4 contains a number of new sufficient conditions for the proposed scheme
to be robust strongly feasible. Section 6.5 shows that the robustness constraint approach can be used
to design robust strongly feasible MPC controllers for LTI systems with state disturbances and model
uncertainty.

Often the most economic setpoint for a process is on or close to the constraints. It is not always
desirable to regulate the system close to the constraints, since a disturbance could result in a violation
of a safety constraint. As a result, the setpoint is often chosen to be a safe distance away from the
constraints. Section 6.8 discusses how to compute a setpoint which is as close as possible to the
desired reference, while being compatible with the constraints and bearing in mind that there are
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unknown, but bounded disturbances on the state and output.

Chapter 7: Soft Constraints and Exact Penalty Functions

Often a disturbance comes along which makes the violation of the constraints unavoidable, resulting
in an infeasible MPC problem. The ability to recover from infeasibility is often implemented via
the use of soft constraints. In addition, it is desirable that the solution to the soft-constrained MPC
problem be equal to the solution of the original, hard-constrained MPC controller if the latter would
have been feasible.

The theory of exact penalty functions allows one to derive a condition on the weight used to penalise
the constraint violations in order to guarantee the equality of the solutions to the two problems. The
lower bound for this weight is related to the norm of the Lagrange multipliers of the solution to the
original, hard-constrained problem. The problem is complicated in MPC by the fact that the Lagrange
multipliers are dependent on the current state and the Lagrange multipliers need to be computed for
all states in the feasible set of the hard-constrained problem. Section 7.5 gives an algorithm based on
the explicit solution of the MPC control law for computing a lower bound on the penalty weight.

Chapter 8: Optimisation Subject to Prioritised Constraints

Often constraints can be prioritised and when constraint violation is inevitable, the control law has
to take this into account. A control action which results in the violation of the lower-prioritised
constraints is preferred. The recovery from constraint violation can therefore be interpreted as a
prioritised, multi-objective optimisation problem. The main result of this chapter is Theorem 8.1
which gives a condition on the cost function of a mixed-integer optimisation problem such that the
solution is guaranteed to be a prioritised-optimal solution to a multi-objective optimisation problem.

This result is then applied in Theorem 8.2 which shows how a single mixed-integer program can be set
up such that the number of constraint violations are minimised in a prioritised fashion. The same idea
is applied in Theorem 8.3 for the computation of a minimum-time, output-prioritised MPC control
law for hybrid systems which can be modelled in MLD form.

Chapter 9: Concluding Remarks

This chapter summarises the contributions made by this thesis and outlines directions for future re-
search.



1.2. ORGANISATION AND HIGHLIGHTS OF THIS DISSERTATION 7

Appendices

Appendix A briefly describes how the ideas from Chapter 2 need to be adapted to compute robust
controllable sets for time-varying systems.

Appendix B describes a simple algorithm for the removal of redundant inequalities from the descrip-
tion of a convex polyhedron.

Appendix C outlines the idea behind the process of eliminating variables from a set of inequalities
using Fourier elimination. Fourier elimination can be used to compute the projection of a convex
polyhedron onto a subspace.

Appendix D describes the principles behind an algorithm for computing the complement of a set given
by the union of convex polyhedra.

Appendix E gives a list of the functions in a Matlab toolbox which has been developed for the com-
putation of the various sets described in this thesis.
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Chapter 2

Robust Set Invariance Theory

The concept of invariant and robust controllable sets and their role in the control of constrained sys-
tems are introduced. Some set-theoretic results are given which will be useful in developing algo-
rithms for computing such sets.

2.1 Introduction

A fundamental control problem is that of determining the subset of the state space which can be steered
via an admissible control sequence to any given target set, while guaranteeing that the state constraints
will be satisfied for all allowable disturbance sequences. This is a more general interpretation of the
classical reachability and controllability problems of linear, unconstrained systems.

The problem of steering a system to a target set in the presence of input constraints and a bounded
disturbance was considered relatively early in modern control literature. In [DM69], very general
results are given for determining whether it is possible to steer a system to a given target set, despite
the presence of disturbances. The target set was said to be “strongly reachable” from a given state if
such a control existed.

The problem of steering a time-varying nonlinear system of the form

Xkp1 = Fe(Xi, Uk) + Ok(wi)

with time-varying constraints on the input, state and disturbance to a target set in a finite number of

steps is discussed in [BR71]. The problems considered are described as the “reachability of a target
set” and the “reachability of a target tube”. The results are once again very general and some com-
pactness results are given for linear time-varying systems. The problem of imperfect state observation
is also discussed. Similar results as in [BR71] are reported in [GS71], where the results are applied to
the synthesis of controllers for linear time-varying systems with time-varying constraints.

One of the most influential recent papers is [Bla94]. The idea of contractive sets is introduced and the

11
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case of LTI systems with polytopic uncertainty and bounded disturbances on the state are considered.

A thorough discussion of LTI systems in closed-loop with a linear feedback control law and bounded
disturbances on the state is given in [KG98], where the work of [GT91] is extended for deriving
practical results on the computation of the “maximal output admissible set”.

A very comprehensive survey of papers on set invariance is given in [Bla99]. This chapter does not
attempt to duplicate the discussion in the survey, but aims to consolidate some of the generality of the
work of the early researchers with more recent ideas, terminology and notation.

2.1.1 Nonlinear Discrete-Time Systems Subject to State and Input Constraints
The discussion in this chapter assumes the following uncertain, discrete-time dynamic system:
Xer1 = T (X, Uk, wi) (2.1)
wherek € 7Z, x is the system statey is the control input and
wk € W C RY
is an unknown disturbance. If the system does not have a control input or there is no disturbance, then

with a slight abuse of notatiox, 1 = f (Xk, wk) or Xk 1 = f(Xk, Ux) will be used to denote this.

The system is subject to pointwise-in-time constraints on the control inputs and/or the states:

u € UcR™ (2.2a)
X € X CR" (2.2b)

The sefU is compact, whilé& andW are closed. Itis assumed that the system and constraints are time-
invariant. The systemf (x, Uk, wy) is uniquely defined oveX x U x W. Exact state measurement
is available.

An admissible control input, sequenoelaw is one which satisfies the input constraifits The ele-

ments of arallowable disturbance sequenaee contained ifW. From this point on, it is understood

that the control law and states are subject to the constraints in (2.2) and that the disturbance sequence
is allowable.

2.1.2 Distinguishing Between the Nominal and Robust Sets

If there is a disturbance present and the calculation of the resulting set took this fact into account, a
tilde and the word “robust” will be used to indicate this, e@.(X) is the maximal robust control
invariant set. If there is no disturbance or the disturbance is ignored in the calculation of the set,

Iappendix A gives a brief discussion on how the algorithms can be modified in order to account for a time-varying
system with time-varying constraints.
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i.e. xkr1 = f(X, ux) was used as the system model, then the use of the tilde and “robust” will be
dropped, e.9C(X) is the maximal control invariant set. The latter case with no disturbance will also
be referred to as theominalcase.

This chapter is largely an extension of the definitions for invariant sets in [KM0Oa, Sect. 2] to the
more general case of including a disturbance in the system description. The notation and results in
this chapter are consistent with [KMO0Oa].

2.2 Input and Output Admissible Sets

It is of interest to determine which subset of a given set is compatible with the input and output
constraints. This section defines the concept of the input and output admissible sets.

If the system is in closed-loop with the control faw
Uk = h(x) ,

then a superscript will be used to emphasise this fact. The input admissible set is the subset of a given
Q in which the control law satisfies the input constraints.

Definition 2.1 (Input admissible set). Given a control lawux = h(xy), theinput admissiblesubset
of @ € R"is given by

Q"2 (x e Q| h(x) € U}. (2.3)

The closed-loop system is then given by
X1 = T (X, h(Xk), wi)
and the constraints on the state can be replaced by
X« € X" £ {x € X | h(x) € U}.

Statements about systemvithout control inputs will also apply to closed-loop systems, bearing in
mind that the state constraints should be replaced by the input admissible subset, where necessary.

If the disturbance acts directly on the input of the system it is usually possible to redefine the system
such that the disturbance acts directly on the state of the system. It is therefore assumed that the
disturbance does not act on the input.

2Note that if the constraints on the inglitare given as a hyper-rectangle and the control law is given by an appropriate
saturation functiomy = sai-), as is often the case, thel = @ (provided the control law is defined ov&). If the system
is LTI andug = sa(Kxy), whereK € R™*", then the resulting closed-loop system can be treated as a piecewise affine
system, as in Chapter 4.
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In a similar fashion as with (2.3), if the output constraints of the system can be given by
Yk = ¢ (%, wx) € Y C RP, (2.4)
then one can define the output admissible slsfe®.

Definition 2.2 (Output admissible set). If the output constraints on the system are given by (2.4),
then theoutput admissiblsubset of2 C R" is given by

Q% 2 (x e Q| O wi) €Y, Vwy, € W}. (2.5)

The subset of2 which is both input- and output admissible is therefore given by
QL QhnQ?.
Note that the constraints (2.2) can be modified by replagingith X¢ or X"¢ in all calculations.

The case of a system with constraints on the output therefore reduces to a problem with modified
constraints on the state. Output constraints will not be considered as a separate case

2.3 Robust One-step Set and Reach Set

There are two sets which are used throughout the controllability and reachability analysis of systems.
The first set that will be introduced is the robust one-step set.

Definition 2.3 (The robust one-step se©(2)). [Bla94] The setd(Q) is the set of states i" for
which an admissible control input exists which will guarantee that the system will be drivrinto
one step, for all allowable disturbances, i.e.

O(Q) 2 (X e R" | Jug € U: (X, Uk, wy) € 2, Ywy € W}. (2.6)

For closed-loop system&"(Q) is the set of states ift" from which the system is guaranteed to
evolve to2 at the next time instant, given any allowable disturbance, i.e.

ONQ) £ {xc € R"| f (X, h(X), wy) € Q, Ywy € W}.

An alternative, equivalent definition of the robust one-step set is

() 2 (X e R" | Jug € U: (X, Ug, W) C Q}.

3Note that this definition of the output admissible set is different from the one given in [GT91, KG95, KG98]. The
definition of the latter includes the additional condition that the output admissible subset be a robust positively invariant set.
4If the output is of the formyx = ¢x(Xx) + ¢w (wk), then it is possible to compute the output admissible subset of
X as the Pontryagin difference betwepg € X | ¢x(Xx) € Y} and¢y, (W). The Pontryagin difference is discussed in
Section 2.10.1.
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Proposition 2.1. For all 1, 25,
Q1S Q= O(Q) S OQ).

Proof. This proof is similar to the proof in [VSLS99, Prop. 2], where the operatofsPre= O($2)N2
is defined. The results follows from the fact tivag € O(2;), Jux € U such thatxc 1 € Qq, Vwy €
W. SinceQ; C @, it follows that the samey results inxy, 1 € Q, Ywx € W, thereforexy €
A(Q). U

The next set to be introduced is the reach set.

Definition 2.4 (The reach seﬂi(Q)). The setR () is the set of states iR" to which the system will
evolve at the next time step given axye 2, admissible control input and allowable disturbance, i.e.

RV 2L X1 €R" | I e QU € U, wx € W Xwr = F (X, Uk, wi)} - (2.7a)

For closed-loop systen&" () is the set of states iR" to which the system will evolve at the next
time step given anyy € € and allowable disturbance, i.e.

RMQ) 2 (X1 € R" | Ixe € Q, we € W2 Xiepr = T (%, N, wio)} (2.7b)

An alternative, equivalent definition of the reach set is
R(Q) £ (X1 € R" | Xipr € F(Q,U, W)}
Remark 2.1.If no disturbance is present in the model, then
Q) £ (X € R" | Ju e U: f(x, Uy) € 2}
and
R(Q) 2 X1 € R" | I € QU € Ut X1 = F (X, W)} -

The reach set as defined in (2.7a) is not always practically useful. The reach set with no disturbances
R(2) or the reach set of a closed-loop systé*?rsz) are used more often.

Proposition 2.2. If @ is given by the union
o2 o, (2.8)
i
then

Q) = Jow. (2.9)
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Proof. If xx € Q(R2), then there exists By € U such thatxc,; € Q. Butxc1 € ©; for somei,
therefore x, € Q(2;) for somei, hencexy € | J; Q(€2i). This proves tha@(2) < [ J; Q(X).

If xc« € U, Q(2), then there exists @& € U such thatx.; € @; for somei. ButQ; € €, therefore
Xk+1 € Q and hencey € Q(2). This proves tha@(2) 2 |J; Q(). O

Remark 2.2.1t is important to recognise that the one-step set and the reach set operate in different
directions. The one-step set is the set of sthtas which the system can be driven to a given set. The
reach set is the set of stateswhich the system can be driven from a given set. No explicit relation
exists between the two sets.

2.4 Robust Positively Invariant Sets

Given a sef2 and an initial stateg € €, it is of interest to determine whether the evolution of the
system will remain inside the set for all time, despite the presence of disturbances.

Definition 2.5 (Robust positively invariant set). [Bla99] The set2 c R" is robust positively in-
variant for the systemx,,1 = f (Xx, wy) if and only if VX €  andvVwy, € W, the system evolution
satisfiesx, € Q, Vk € N.

In other wordsg2 is robust positively invariant if and only if

Xk € 2 = Xyy1 € Q,Vwg € W,

The following result follows immediately from the definition.
Proposition 2.3. The union of two robust positively invariant sets is robust positively invariant.

Remark 2.3.The same statement cannot be made about the intersection of two robust positively in-
variant sets, even in the absence of disturbances.

In general, a given s&? is not robust positively invariant. However, often one would like to determine
the largest robust positively invariant set containe€in

Definition 2.6 (Maximal robust positively invariant set). The sel0.(2) is themaximal robust po-
sitively invariant setontained inQ for the systenmxy,1 = f (Xx, wy) if and only if O (RQ) is robust
positively invariant and contains all the robust positively invariant sets contair@d in

Remark 2.4.1t can be shown that the maximal robust positively invariant set is unique.

This definition implies that a s is robust positively invariant only if

®CO(Q) CQ.
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Remark 2.5.Based on the discussion in Section 2.2, the maximal robust positively invariaritiset
the closed-loopsystemxx,1 = f(Xk, h(Xx), wy) will be denoted by@Qo(Q) and is defined as the
maximal robust positively invariant set contained in the input admissible28gi.e. (7)20(9) =
Oso (92" for the system 1 = (X, h(X), wio).

2.5 Robust Control Invariant Sets

In a similar fashion as with robust positively invariant sets, one would like to determine whether given
a setQ and an initial stateg € €, it is possible to choose a control law such that the state evolution
remains in for all time, despite the presence of disturbances.

Definition 2.7 (Robust control invariant set). [Bla99] The set2 c R" is arobust control invariant
set for the systemy,1 = f (Xk, Uk, wy) if and only if there exists a feedback control layw = h(xy)

such thak is a robust positively invariant set for the closed-loop system = f (Xx, h(xx), wy) and
ug € U, Vx¢ € Q.

In other words, a se® is robust control invariant if and only if

Xk € = 3u € U: X¢y1 € L, Vwg € W,

The following result is a direct consequence of the above definition.
Proposition 2.4. The union of two robust control invariant sets is robust control invariant.

Remark 2.6.The same statement cannot be made about the intersection of two robust control invariant
sets, even in the absence of disturbances.

In general, a given s&® is not robust control invariant. However, often one would like to determine
the largest robust control invariant $ebntained irc.

Definition 2.8 (Maximal robust control invariant set). [Bla94] The setC+(2) is themaximal ro-
bust control invariant setontained ir2 for the systenxy,1 = f (X, Uk, wy) if and only if Coo () iS
robust control invariant and contains all the robust control invariant sets contaiged in

Remark 2.7.As with the maximal robust positively invariant set, it can be shown that the maximal
robust control invariant set is unique.

It is obvious thatd is robust control invariant only if

@ C () CQ.

5This definition for the maximal robust positively invariant set is analogous to the definition of the “maximal d-invariant
set” for LTI systems with no control input as given in [KG95, KG98]. The maximal d-invariant set is the extension of the
“maximal output admissible set” of [GT91] to the case with bounded state disturbances.

6A conceptual algorithm for computing the maximal robust control invariant set is given by Algorithm 2.3.
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The following result follows immediately from the definitions and is the reason why invariant set
theory plays a fundamental role in the study of constrained systems.

Proposition 2.5. Given the uncertain syste(2.1), there exists an admissible control law such that
the state constraint§2.2b) can be satisfied for all time k& N and for all allowable disturbance
sequences if and only if the initial statg & Coo(X) € X.

Remark 2.8.An equivalent statement regarding closed-loop systems and the corresponding maximal
robust positively invariant seﬁ)go (X) can be made.

The following is an important, well-known geometric condition for a set to be control invariant and is
used throughout the thesis in the derivation of many of the results.

Theorem 2.1 (Geometric condition for invariance). [DH99] The set c R" is a robust control
invariant sef if and only ifQ € ().

Proof. Proving the contrapositive for both the necessary and sufficient pasistf (2 ¢ 9(Q) then
Ix, € © which is not an element ad(Q), i.e. Vx € Q\Q(Q), Au, € U such thaix 1 € 2, Yy €
W, henceg is not a robust control invariant set«() If € is not a robust control invariant set then
Ixc € Q for which Auy, € U such thatx 1 € Q, Ywyx € W, i.e. Ix, €  which is not an element of
(), henceQ ¢ O(Q). O

It follows immediately that the se® is robust control invariant if and only @(Q) N Q = 2, since
2N =Q s QCOQ).

Most algorithms which test whether a given s$etis robust control invariant is based directly or
indirectly on Theorem 2.1. Testing for invariance can be summarised as follows:

1. Computed(Q);
2. Test whethef2 € O(Q);

3. If Q@ € O(Q), thenQ is robust control invariant. 12 ¢ 9(R), thenQ is not robust control
invariant.

2.6 Robust Controllable Sets

The problem of finding a control law such that a target set is reached in a finite number of steps, despite
disturbances on the state, is fundamentally linked with the problem of findirglblist controllable
sets.

"The same statement holds for robust positively invariant sets.

8The concept of a robust controllable set is equivalent to the “reachability of a target tube” of [BR71, GS71]. However,
in this paper the woraontrollable is used to define these sets and distinguish them fromethehablesets as defined
in [Las93]. The use ofontrollableandreachableas used in this thesis is more consistent with modern control literature.
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Definition 2.9 (Robust controllable set). Thei-step robust controllable se€; (2, T) is the largest
set of states if2 for which there exists an admissiltiene-varyingstate feedback control law such
that an arbitrary terminal sét c R" is reached irexactly isteps, while keeping the evolution of the
state inside for the firsti — 1 steps, for all allowable disturbance sequences, i.e.

Ki(Q,T)2 {x € R" | I{ug = he(x) € Ul {x € )57, x € T,V {wx € Wiy}, (2.10a)

Given a suitable topology such as the Hausdorff topology, the limit, if it exists, defina¥ithite-time
robust controllable set

Kso(2,T) £ lim £ (22, T). (2.10b)

Remark 2.9.The definition here is very subtle and should not be misinterpreted. One is interested in
finding the largest set of initial states for which there existgre-varying feedback lawhich will

ensure that the states of the closed-loop system reach the target set for all allowable disturbance se-
guences. This definition includes the more conservative problem of finding the set of states for which
the samepen-loop sequencegill drive the system to the target set irrespective of which disturbance
sequence occurs. The latter problem would have the definition

KNQ.T) £ {xo e R" [3{uc e Ulg ™ : i € Qg . x € T,V {w € Wi}

By including the constraint that the control input be dependent on the state as well as time, a funda-
mentally different set results. A better understanding of this problem can be gained in studying the dif-
ference between “open-loop” and “feedback” robust MPC, as discussed in Section 6.3 and [MRRSOQ0,
Sect. 4].

Remark 2.10.t is interesting to observe that if there are no disturbances present, then
Ki(2,T) = K(Q,T).

Remark 2.11.1t can be shown that il is robust control invariant, then tame-invariant feedback

control law will also ensure that the state islirafter exactlyi steps. This follows from the fact that

by definition a time-invariant control law can be chosen suchThiatrobust positively invariant for

the resulting closed-loop system. A time-invariant control law can then be chosen such that the system
entersT in the minimum amount of time.

By noting that
Ki(Q.T) = QM N
one can proceed to develop a conceptual algorithm for computing robust controllable sets.

Algorithm 2.1 (Robust controllable sets). [BR71] The robust controllable sets of a system can be
computed via the following iterative procedure:

Ko(Q,T)=T (2.11a)
Ki1(Q,T) = O (/E;i (@, T)) ne. (2.11b)
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If Ki1(R2, T) = Ki (22, T), then terminate the algorithm and $6t. (22, T) = K; (2, T).
The main procedures required to implement Algorithm 2.1 are:

1. Computation of the robust one-step €kt);
2. Computation of the intersectiad(-) N Q;

3. Testing for the set equalit{ii .1 (22, T) = K; (2, T).

These three operations are easily implemented for LTI systems subject to linear inequality con-
straints [Bla94, DH99, GT91, KG87, KG98] and will be discussed in more detail in Chapter 3.
In [VSLS99] quantifier elimination is proposed to compute the robust one-step set. Quantifier elimi-
nation can also be used, for example, when the constraints are defined by polynomials.

Though the conceptual algorithm presented here is difficult to implement for general nonlinear sys-
tems, there exist some classes of nonlinear systems for which the building blocks already are in place,
such as piecewise affine systems and some classes of hybrid systems [BTM00a]. Some work on devel-
oping algorithms for computing robust control invariant sets for hybrid systems has also been carried
out by the authors of [VSLS99]. A routine for computing the robust controllable sets for piecewise
affine systems is described in Chapter 4.

The following definition is adapted from [GT91] and is the basis of the termination criterion in Algo-
rithm 2.1.

Definition 2.10 (Finitely determined set). The setK..(2, T) is finitely determinedf and only if
3i € N such that(Q2, T) = K;i(2, T). The smallest element € N such thatC.(Q,T) =
Ki«(£2, T) is called thedeterminedness index

This definition will play an important role in Chapter 5 in obtaining results on the size and invariance
properties of the feasible set of an MPC controller.

In general,lﬁoo(fz, T) is not finitely determined. However, a sufficient condition for the finite-deter-
minedness of the infinite-time robust controllable set is:

Lemma2.1. If 3i € N such thatK; (2, T) = Ki11(22, T) then K (2, T) is finitely determined.
Furthermore,/@oo(sz, T) is robust control invariant.

Proof. If (2, T) = Ki;1(2,T), then by constructionC; »(2,T) = O(Ki1(2,TH NQ =
9K (2, T)) N Q. However,Ki,1(Q2,T) = OKi(Q,T)) N 2, henceKi»(Q, T) = Ki(L,T).
This continuesad infinitum henceK (2, T) = Ki (22, T).

The robust control invariant property follows by noting that,1(22, T) = Q(Ki(Q2,T) N Q C
AKi(2,T)). If Ki(2,T) = Kiz1(Q, T), thenO(Ki (2, T)) = O(Ki1(22, T)). These two facts
combine to givei 11 (2, T) € Q(Ki1(2, T)). O



2.7. ROBUST STABILISABLE SETS 21

It follows that if i+ (2, T) = Ki»11(2, T), then

Ki(Q,T) = Kuo(R2,T), Vi >i*.

Some properties of robust controllable sets are as follows:

Proposition 2.6.

1. Fori > 0, if Iﬁi (22, T) is robust control invariant, then so I§i+1(§2, T). In general, the reverse
statement does not hold.

2. If x¢ € I€i+1(§2, TO\Ki (2, T) # #, then there exists an admissible control input which will
ensure that for all allowable disturbances the state at the next time instankig {2, T);

3. If % € Ki (22, T)\Ki+1(2, T) # 0, then there does not exist an admissible control input which
will ensure that for all allowable disturbances the state at the next time instantis(i, T);

4. There does not exist an admissible control law which will ensure that the system réachies
steps or less for all allowable disturbance sequences if and only if

x¢ | JKj@.T).

j=0
Proof. The proof of the first property is given here. The other properties are a consequence of the

definition of robust controllable sets.

Ki (2, T) is robust control invariant if and only if; (2, T) € O(K; (2, T)). In addition, ifK; (2, T)
is robust control invariant, thel; (2, T) € €. This implies thatC; (22, T) € O(K; (2, T)) N K.

By construction,Ki41(2, T) = O(Ki(2,T)) N Q. As a result,Ki (2, T) € Ki11(22,T) and by
Proposition 2.19(K; (2, T)) € O(Ki,1(Q, T)).

Combining this with; 1 1(22, T) € O(Ki (2, T)), it follows thatKi1($2, T) € O(Ki;1(R2, T)) and
henceK;.1($2, T) is robust control invariant.

Example 5.1 includes a counter-example for the reverse statement. O

2.7 Robust Stabilisable Sets

If the target set is a robust control invariant set, then the robust controllable sets take on special
geometric properties. To emphasise this special case, the following definition i§.given

9The use of a robust control invariant target set in the calculation of robust controllable sets for LTI systems is also
described in [MS97].
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Definition 2.11 (Robust stabilisable set).The setS; (22, T) is thei-step robust stabilisable sebn-
tained in2 for the systenmx,,1 = f (Xk, Uk, wy) if and only if T is arobust control invariantsubset

of Q andS; (22, T) contains all states if for which there exists an admissible time-varying feedback
law which will drive the state of the systemTin i steps or less, while keeping the evolution of the
state inside for all allowable disturbance sequences, i.e.

Si(2,T) 2 {xeR" | IHux = he(x) € UJg ™ N < 1 {x € Q172
x eTcQ\.TSOD}. (2.12)

Remark 2.12 If the notations; (2, T) is used T is a robust control invariant subset®@f If K; (2, T)
is used,T can be any arbitrary subsetRf.

The reason for the choice of the wosthbilisableto distinguish it fromcontrollable sets is because

in most practical applications the target set is either a bounded robust control invariant set or a robust
positively invariant set for a Lyapunov-stable closed-loop system. If the initial state is contained inside
a robust stabilisable set, then one can design a control law which guarantees that the target set will be
reached in a finite number of steps. Once inside the target set one can switch to the Lyapunov-stable
controllef?. This results in “ultimately bounding” the states of the closed-loop system.

In light of this discussion, the largest possible region of attraction to the target set is equal to the
maximal robust stabilisable set.

Definition 2.12 (Maximal robust stabilisable set). The setS, (2, T) is themaximal robust stabil-
isable setontained irf2 for the systemx, 1 = f (Xk, Uk, wy) if and only if Soo(€2, T) is the union of
all i-step robust stabilisable sets containe@in

In general, the maximal robust stabilisable S@t(Q, T) is not equal to the maximal robust control
invariant seC., (%), even for linear systemsS‘oo(Q, T) < C,(S2) for all robust control invariant.

The setC. (2)\S~ (2, T) includes all initial states from which it is not possible to robustly steer the
system to the stabilisable regidh, (2, T) (and hence td). It might only be possible to bound the
norm of the stategxg|| as in the case of a limit cycle or to drive the system to an alternative stable
equilibrium.

If T, # T, are two robust control invariant sets, th8n (2, T1) andS. (2, T) are not necessarily
equal. Similarly,Soo(Q, {0}) is not necessarily equal 6..(2, T) if 0 € T, since it is not always
possible to drive some systems to the origin

Some properties of robust stabilisable sets are:

10For the reader familiar with model predictive control, this is the same idea as used in dual-mode MPC [MM93].

11The regionSs (R", {0}) can be seen to be the generalisation to nonlinear systems of the ANCBI (asymptotically null-
controllable with bounded inputs) region for controllable LTI systems with no state constraints and no disturbances [Las93].
The maximal stabilisable sé& (X, {0}) is a generalisation to nonlinear systems of the “maximal admissible set” defined
in [KG87] and the feasible region of the predictive control scheme defined in [PNOOa].



2.7. ROBUST STABILISABLE SETS 23

Proposition 2.7. [MS97, Thm. 2]

1. Each ser§i (22, T) is robust control invariant;
2. Each set contains all previous sets:

Si(Q,T) 28(Q,T);
3. For each set

S@m=]J%®@m;
j:O

4. If xc € Si41(Q2, T), then there exists a control input which will drive the stat$ite2, T) at the
next time instant for all allowable disturbances;

5. There does not exist a control law which ensures that the system réaamésteps or less for
all allowable disturbance sequences if and only,if&S; (22, T).

Since robust stabilisable sets are special cases of controllable sets, the same procedure as in Algo-
rithm 2.1 can be followed to compute the respective sets.

Algorithm 2.2 (Robust stabilisable sets).Algorithm 2.1 can be used to compute the i-step robust
stabilisable setsS; (2, T) contained in® by noting that

SQ,T)=K(Q,T). (2.13)
If $,11(22, T) = S (22, T), then terminate and sé. (2, T) = S (Q, T).

The notion of a finitely determined maximal stabilisable set once again carries through as with the
infinite-time robust controllable set. However, in this case, the condition is both necessary and sulffi-
cient.

Theorem 2.2. The setS.. (2, T) is finitely determined if and only #i € N such thatS; (2, T) =
Si2(Q,T).

Proof. (Only if) By Proposition 2.7,8.(2,T) 2 ... 2 §.1(Q,T) 2 S(Q,T) 2 ... O T.
If Su(Q,T) = S(2,T), thenS11(2,T) = S (2, T) must follow, otherwise there would be a
contradiction. The reverse follows from Lemma 2.1. O
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2.8 Robust Admissible Sets and the Computation of the Maximal Ro-
bust Control Invariant Set

Given a set, it is also of interest to determine the set of states for which one can find a control law
to keep one inside the set for a specified number of steps. The resulting sets are a special case of the
robust controllable sets with the target set equal to the giveR2 aed the following definition is given

to distinguish this from the general robust controllable sets.

Definition 2.13 (Robust admissible set) The i-step robust admissible sét($2) contained in< is
the set of states for which an admissible time-varying feedback control law exists such that the evolu-
tion of the state remains insidefor i steps, for all allowable disturbance sequences, i.e.

Ci(R2) 2 {xo e R" | 3{ug = hi(x) € Ul ™ : {xi € 2,V {w € Wit} . (2.14)
From the definition of robust admissible sets, it is easy to show the following:
Proposition 2.8. [Ber72]
1. The(i + 1)-step robust admissible set is contained in all previous sets:

C1(Q) CCG(Q);
2. For each set

G =[G
j=0

3. There does not exist an admissible control law which will ensure that the state evolution remains
within € for i steps for all allowable disturbance sequences if and only if the stage& ($2);

4. If the state k € C; (2)\Cxo(2) # @ then there does not exist an admissible control input which
will ensure that the state at the next time instant i§ji¢f2) for all allowable disturbances.

The following result is used in developing an algorithm for computing the maximal robust control
invariant set. It is an immediate consequence of the definitions of the robust admissible sets and the
maximal robust control invariant set.

Proposition 2.9. If there exists an ie N such thatCi .1 () = G (), thenC» () = Ci ().
Proof. See the proof of [VSLS99, Thm. 2]. O

As with robust controllable sets, the problem of determining the robust admissible sets is equivalent
to the “reachability of a target tube” of [BR71], with the target et Q:
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Algorithm 2.3 (Robust admissible sets).The i-step robust admissible €&t$2) and maximal robust
admissible sef..(£2) can be computed using Algorithm 2.1 by noting that

G(Q) =K (Q,9Q). (2.15)

If G;(Q) = @, then terminate and sét, (Q) = @.
If Ci11(2) = Gi (), then terminate and s€t.(Q2) = G ().

This method for computing the maximal robust control invariant set was first described in [Ber72].
[Ber72] applies the ideas of [BR71] to the problem of computing a “strongly reachable” subset of a
given set. Convergence questions are addressed and it is shown that certain compactness and conti-
nuity conditions are sufficient in order to guarantee convergence of the sequence of robust admissible
sets to the maximal robust control invariant set. Relatively weak assumptions on the system and
constraints guarantee convergence of the sequ&iie® to the maximal robust control invariant set.

Proposition 2.10 (Convergence to the maximal robust control invariant set)[Ber72]

Assuming the system is of the forgpx=fyu(Xk, Ux) + wy and thatC..(Q) is non-empty. 1f2 andU
are compact and the function,{xx, uy) is continuous, then given any bounded operdsstich that
C» () C @, there exists a positive integer<i oo such thatC. () < G (Q) C ®.

A necessary and sufficient condition for the finite-determinedness of the maximal robust control in-
variant set can be derived.

Theorem 2.3. C..(Q) is finitely determined if and only #i € N such thatC; () = C;1(S).

Proof. (Only if) By Proposition 2.8((2) € ... € C11(Q) € C(Q) C ... C Q. If C(Q) =
Gi (), thend+1(Q) = C; (2) must follow, or else there would be a contradiction. The reverse follows
from Lemma 2.1. O

In general, the maximal robust control invariant set is not finitely determined. However, for LTI
systems it is possible to guarantee finite determinedness for some very simple cases where the control
is unbounded [VSLS99].

An interesting class of systems for which finite determinedness is guaranteed, is the class of finite
state machines with bounded constrdifitSince the number of possible states are finite, termination
of Algorithm 2.3 is guaranteed.

2.9 Sets for Closed-loop Systems and Systems without Control Inputs

All the definitions and properties regarding robust controllable, stabilisable and admissible sets also
apply to closed-loop systems, but with “robust control invariant” substituted with “robust positively

12The framework in this chapter needs to be extended slightly to deal with the class of hybrid systems, where some of the
state variables can only take on values from a countable set [VSLS99].
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invariant”. As mentioned in Section 2.2 care has to be taken in calculating the sets by replacing the
original state constraints with the input admissible set. To further distinguish the fact that the system
is in closed-loop with a control law, = h(x) or does not have a control input, the notati®h and

O will be used, respectively.

Obviously, the use of the worbntrollabledoes not make sense for systems with no available input.
However, the following two definitions are given.

Definition 2.14 (The seth(’)ih(Q, T)). The set/CNOih(Q, T) for the systemx 1 = f (X, Ux, wy) in
closed-loop with the control law, = h(xy) is defined as

KONQ,T) 2 K", T)
for the systemxy 1 = f (X, h(X), wy).

Remark 2.13If T is robust positively invariant for the closed-loop system, u@?émh(sz, T) is robust
positively invariant as well.

Note that the input admissible subset of the target set is not included in the above definition. This is
to allow one to develop general results without introducing too much additional notation, as will be
seen in Chapter 5.

If the target set is equal to the input admissible subsét,dhen the following definition applies.

Definition 2.15 (The robust admissible se@ih(Q)). Thei-step robust admissible set for the system
Xkr1 = (X, Uk, wg) in closed-loop with the control lawy = h(xy) is defined as

ONQ) £ ¢ Q"
for the systenx,,1 = f Xk, h(X), wy).
Remark 2.14.Note that
o) = K@, o = Kol @, o) .

The sets introduced in this section can be computed using Algorithm 2.1.

Though most of the sets defined in this chapter is not guaranteed to be finitely determined, it is possible
to obtain a determinedness result for autonomous LTI systems hisrgiven by linear inequalities.

Proposition 2.11. [KG98] Assume the system is given py Xx= AX« + Ewx, Yk = ¢ (Xx) = CX,
Y and W are convex, compact polyhedra containing the origin 8nd O, (X?) # @. If the eigen-
values of A are all contained inside the unit disk ai@ A) is observable, thed.,(X?) is finitely
determined.

This result allows one to guarantee that if the output constraints for an observable LTI system are
bounded and one has designed an asymptotically stabilising state feedback controller, then the max-
imal robust positively invariant set contained inside the input-output admissible set is finitely deter-
mined, assuming it exists.
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2.10 Some Set-theoretic Concepts

For practical implementation, it is necessary to develop a procedure for computing the robust one-
step set. Two set-theoretic concepts which will be useful in developing such an algorithm are the
Pontryagin difference and the Minkowski sum. The support function is another tool which helps one
to develop a number of algorithms for working with sets. The application of these ideas to specific
classes of systems will be illustrated in Chapters 3 and 4.

2.10.1 The Pontryagin Difference

On close investigation of the literature on robust invariant set theory, it will be noted that before the
robust one-step se&d(2) can be computed, an intermediate set has to be computed if there is an
additive state disturbance present. This set is the Pontryagin difference.

Definition 2.16 (The Pontryagin Difference). Given the set$2 ¢ R" and® c R", the Pontryagin
difference betwee® and® is defined as

Q~02{weR"|w+y €Q,Vy € D} . (2.16)

The Pontryagin difference, sometimes referred to as the Minkowski difference [MS97], is useful in
various aspects of geometry and control theory. A detailed discussion of the properties of the Pon-
tryagin difference is given in [KG98].

Remark 2.15 Note that

Ohed=Q~dCQ.

A result which allows one to compute the Pontryagin differen¢e i a convex polyhedron, is given
in Section 3.3.3.

Disturbance Acting on the State and the System Structure

Often the system (2.1) can be written as
Xr1 = Fa X, Uk, wi) + fs(wy) (2.17)

where the disturbance consists of a compomghtvhich acts on the system structure and a component
wy Which acts additively on the state:

wy = (wg, wg) € WA x W, (2.18)

If one defines

D2 fo(WS) (2.19)
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and provided2 ~ D # @,
Oa(Q~D) £ {x e R" | Jug € U: falXc, U, w) € Q ~ D, Vwe € W2} (2.20)
is equal to the robust one-step set that one is interested in computing, i.e.

O(Q) = QAR ~ D). (2.21)

Algorithm 2.1 is now modified by substituting (2.11) with
Ko(R,T) =T (2.22a)
Kis1(Q,T) = Oa(Ki (2, T) ~D)N Q. (2.22b)

A procedure for computin@a (2 ~ D) for LTI systems with parametric uncertainty is briefly de-
scribed in Section 3.3.3.

Disturbance Acting on the State

Often the system dynamics (2.1) can be split into two parts, with the disturbance acting only on the
state:

Xkr1 = Fxu(Xi, U) + i (wy) - (2.23)

If this is the case, then the computation of the one-step set can be done as before, by first calculating
the intermediate s&2 ~ D, where

D2 f,(W).

Once the Pontryagin difference ~ D has been computed, the robust one-step set can be found by
calculating thenominalone-step se@(2 ~ D):

Q=0 ~D) 2 {x eR" [T € U, Xy1 € 2~ D Xepr = Fru(X U} - (2.24)

Algorithm 2.1 can now be modified by substituting (2.11) with
Ko(Q,T) =T (2.25a)
Kis1(Q,T) = QKi(Q,T) ~D) N (2.25b)

To complete the computation of the robust one-step set, one needs to develop an algorithm which
eliminates the existential quantifier in (2.24). One way of achieving this is by notingtfa} is the
orthogonal projection of the set

W2 {[x u] € R™™ | (. k) € Q@ ~ D, u € U} (2.26)
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onto the subspace spanned by the firsbordinates, i.e.
Q(Q) = MV,

wherellgn is the projection operator.

An alternative way of computing the robust one-step set, provided the system has a special structure,
is as the inverse map of a Minkowski sum.

2.10.2 The Minkowski Sum
In many cases (2.23) can be split further into three distinct parts:
Xerr = Fx (i) + fuue) + fu (i) - (2.27)

The Minkowski sum can then be used to get an alternative expression for the robust one-step set.

Definition 2.17 (Minkowski sum). [GS93] Given two set$2 ¢ R" and® c R", the Minkowski
sum (vector sum) of2 and® is defined as

QPPE(XeR"|FIweQ,pecd: X=w+9¢)}. (2.28)
Remark 2.16.Note that if 0 ®, then the set inclusion
Q~P)DDPCQ
always holds, but

0eD»- (Q~D) DD =Q.

By defining
V é - fU(U)v
from (2.24) it follows that

QQ~D) ={x eR"|Fu € U, X1 € R~ D : X1 = Fu(x) + fu(ui)}

={
={X €R" | € U, X1 € Q~D: (%) = X1 — fu(U)}
= {x € R" | fx(x) € (2 ~ D) & (— fu(U))}

= {x e R" | fx(x) € (2 ~D) &V}

and hence

O(Q) = {x e R"| fx(x) € (Q~D)®V} . (2.29)

In other words, the robust one-step set can be computed as the inverde hiap of the Minkowski
sum of 2 ~ D andV.
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2.10.3 The Support Function

The support function[Grii67] is another concept which has proven itself to be useful when using
a set-theoretic framework in control and information theory [Sch73, Wit80, KG98]. The support
function will be used in Chapter 3 in developing algorithms for computing the Pontryagin difference
and Minkowski sum of two convex polyhedra.

Definition 2.18 (Support function). The support functiorof the set2, evaluated afy € R", is de-
fined as

ho(n) £ supyw. (2.30)

we2
The domain on which the support function is defined igjdbr which n'w is bounded from above on
Q. If Qis bounded, then the domainig'.

From this point on, it is assumed that the support function is always defined and that the supremum is
a maximum.

Geometrically, ifp'n = 1, thenhg(n) is the distance from the origin to a support hyperplan&of
with a normal in the direction.

Remark 2.17 Note that ifQ2 is a closed, convex polyhedron, then the support function can be com-
puted by noting that the optimisation in (2.30) is a linear program.

It can be shown [Hny69] that an equivalent expressiofor the polyhedron
Q2 {weR"| Qw =< q}
in terms of its support function is given by
Q2 {weR"| Quw =< H(Q, )}, (2.31)

where thé 'th component ofH (Q, ) is given by the value of the support function®f evaluated at
i, the transpose of theth row of Q:

Hi(Q, ) £ hqo(Q)). (2.32)
Note also that
H(Q, ) =H(Q,2) =q.
It follows immediately that if the polyhedron igedundant?, then
q=H(Q, Q).

For a more detailed discussion on how the support function can be used to obtain an equivalent ex-
pression of a polyhedron, see |7, Hny69] and [Sch73, App. G].

13An inequality representation of a polyhedron is irredundant if and only if none of the inequalities describing the poly-
hedron are redundant [G87, GS93].
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2.11 Summary

This section brought together a number of ideas, definitions and results from set invariance theory.
The concept of invariant sets were introduced and it was shown that a set is control invariant if and
only if it is contained inside its robust one-step set. This condition forms the basis of a test for set
invariance and is often used in the derivation of results on invariance.

Robust stabilisable and admissible sets were introduced and these were shown to be special cases
of the robust controllable sets with different target sets. These sets and the maximal robust control
invariant and maximal robust stabilisable sets can be computed using the iterative procedure of Algo-
rithm 2.1. The key ingredients for implementing this algorithm are procedures for computing

e the robust one-step séX(-),
e the intersectior®(-) N Q and

e whether the equalityCi,1(Q2, T) = K; (2, T) holds.

Some set-theoretic concepts were introduced which will be useful in implementing the above algo-
rithm. It was shown that the Pontryagin difference could be used to compute an intermediate set if
there are state disturbances present. If the disturbance does not act on the system structure then the
robust one-step set can be computed by computing the nominal one-step set to the computed Pontrya-
gin difference. If the system is of the form (2.27), then the Minkowski sum can be used to complete
the computation of the nominal one-step set to the Pontryagin difference. Finally, the support function
was introduced and it was shown that a polyhedron has an equivalent expression in terms of its support
function.






Chapter 3

Uncertain Linear Time-Invariant
Systems

This chapter deals with linear, time-invariant systems subject to linear inequality constraints. Para-
metric uncertainty and state disturbances are assumed. Results are given which allow the development
of algorithms for computing invariant sets for such systems.

3.1 Introduction

Consider the uncertain, discrete-time, linear time-invariant (LTI) system:
Xkt+1 = A(ka) Xk + B (u)kA) Uy + Ewﬁ (3.1)

with k € Z, x¢ is the system stateyy is the control input andvx = (wg, wg) € WA x WS is an
unknown disturbance withy acting linearly on the state via the matlx € R"%, similar to the
discussion in Section 2.10.1. The state is assumed to be measured. If there is no disturbance, then
Xkr1 = AX + Bug. If there is no control input, ther, 1 = A(wi)Xk + Ewg.

The system is subject to linear inequality constraints on the control inputs and/or the states over the
whole time horizork € N:

UL£{ueR™| Gu=<g} (3.2a)
X&2{xeR"|Hx=<h} (3.2b)

whereh € R andg € R’? define the constraints, with, and ng denoting the number of state
and input constraints respectiveli4 € R™" andG € R"*™ are the state and input constraint
distribution matrices. Since the sets in (3.2) are given as the intersection of a finite number of half-

33
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spaces ant andg are positive]U andX are closed, convex polyhedreontaining the origin in their
interior. Additionally, it is assumed thét is compact.

For the case of the disturbances that act linearly on the state, it is assumé&tiStimfa compact
set given by linear inequalities, as with (3.2), with the origin contained in the interido further
assumptions regarding the state disturbances are made.

It is assumed that there are parametric uncertainties [Bla94, De 94, De 97, KBM96] in the mathemat-
ical model of the system. More specifically, it is assumed that the actual system matrc@s'™ "
andB € R™™ are contained in the convex hull of a setpMatrix pairs, i.e.

(A,B) e A, (3.3)
where
A £ conv{(A1, By, ..., (Ap. Bp)} . (3.4)

This means tha (wg), B (wy) andw} satisfy

(3.5)

This relation defines the s&t“. Note that ifp = 1, then there is no uncertainty ivandB.

3.2 Contractive Sets

Contractive sets are related to robust control invariant sets. The main idea behind contractive sets is
that one is interested in computing a set for which an admissible control exists which will guarantee
that the state at the next point in time is inside a subset of the original set.

One of the more useful results from contractive set theory and the reason for including the discussion
on contractive sets in this chapter, is given by Theorem 3.1. The result allows one to compute an
arbitrarily close inner approximation of the robust control invariant set if the latter is not finitely
determined.

Definition 3.1 (C-set). [Bla94] A C-Set is a convex and compact set containing the origin.

Given a C-set, one would like to know whether there exists a control that will allow one to drive the
system to a specified subset of the given set:

Lin order to distinguish between bounded and unbounded constraints, a polytope is defined to be a bounded polyhedron,
while a polyhedron can be bounded or unbounded.
2|t is not assumed that/2 contains the origin in its interior.
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Definition 3.2 (Contractive set). [Bla94, Bla99] AC-set2 ¢ R" is contractivefor a discrete-time
system of the form (3.1) if and only if there exista@nlinearfeedback lawu, = h(xx) and a positive
A < 1such that ifx, € Q, thenxr = A(wg) X + B (wf) h(x) + Ew§ € A< for all allowable
disturbanceswy, wy) € W2 x Ws.

The fact that a given C-set is contractive, allows one to construct a controller with a given rate of
convergence. See [Bla94, FG97] for more details on how to construct such a controller.

Remark 3.1.It is important to note that if a set is contractive, then it is also robust control/positively
invariant. Hence, from this point on statements regarding robust control/positively invariant sets also

apply to contractive sets. The properties of the robust “admissible”, “stabilisable” and “control invari-
ant” sets can also be applied to contractive sets. A supergonjit be used to denote that a given set
is contractive.

One can define the-contractive controllable setéi*(fz, T) as in Chapter 2. The following algorithm
can be used to construct these sets.

Algorithm 3.1. For a givenx, the maximal.-contractive controllable sdﬁgo(sz, T) contained inQ
can be computed via the iteration:

Ky, T)y=T (3.6a)

Kia@. D =0 (* @ D) ne. (3.6b)

If (2, T) = ¢, then terminate and s&t’_ (2, T) = ¢.
If 0 ¢ KX(2, T), then terminate and s& (2, T) = #.

If K

(2, T) = K}, T), then terminate and séf’ (2, T) = K (2, T).

As can be seen above, the only difference with respect to Algorithm 2.1 is that thﬁ:{s(@, T) is
used instead oﬁﬁ(Q, T) in the calculation of the new set.

Proposition 3.1. If IQO(Q, T) is finitely determined, theﬁﬁo(sz, T) is a convex polyhedron.

As in Chapter 2 with the maximal robust control invariant set, one might also be interested in deter-
mining themaximali-contractiveset. It can be computed in a fashion similar to the maximal robust
control invariant set, using Algorithm 3.1 and noting that

Cl@) =K@, Q).

Similarly, one can start with a-contractive target séf and compute thenaximal A-contractive
stabilisablesetS? (2, T) by noting that

SHR,T) =KHQ,T).
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Remark 3.2.Note that in generak’ (2, T), S% (2, T) andC%, () are not polyhedra, nor are they
guaranteed to be finitely determined. It is not clear whether the converse of Proposition 3.1 holds,
even ifX andU are both compagt

Together with the next result which allows one to compute a contractiv&,sky computing the
stabilisable sets one can approximate the maxitr@dntractive set arbitrarily closely.

Theorem 3.1. [Bla94] Assume thaf2 is compactﬁgo(Q) isa C-setand < A < 1. For everyA*

such thath < A* < 1, there exists an*i < oo such tha@(Q) is A*-contractive for all i > i*.

In general, the maximal robust control invariant and maximebntractive sets are not finitely deter-
mined. Theorem 3.1 is useful since it gives a guarantee that the algorithm will terminate after a finite
number of iterations. OnceJd-contractive set has been foufid= C?*(Q), then one can compute a
number of theS:i“(Q, T) in order to find a largek*-contractive set. Hence one can approximate the
corresponding maximal*-contractive set arbitrarily closely.

Theorem 2.1 provides the basis for a test to determine whether a given set is contractive.
Corollary 3.1 (Geometric condition for contractiveness). The C-set2 < R" is A-contractive if
and only ifQ € Q(A Q).

If a given set isk-contractive, then the following result also holds:

Corollary 3.2. If a C-setQ is A-contractive, withh < 1, then it is alsok-contractive for alli with
A< i<l

Proof. If » < X, thenAQ € AQ. By Proposition 2.19(A1Q2) € O(i£). SinceQ < O(AQ), it
follows that2 € O(A2) and by Corollary 3.152 is i-contractive. 0

For uncertain LTI systems, it is possible to say something more specific regarding the topological
properties of the robust one-step €HiQ2).

Proposition 3.2.
1. If Q is compact, then the s€(2) is closed:;
2. If Q is convex, then the s€}() is convex;
3. If Qs a polyhedron, then the sé() is also a polyhedron;
4. If p=1, Ais non-singular and? is compact, then the s€}(2) is compact.
Proof. The proofs are standard. See [Bla94] for the first three results. See [BR71, Sect. 4] for the last

result. The last result follows because the image of a compact set under the continuous mMapping
is compact. O

3The author is not entirely convinced by the argument presented in the proof of [KG87, Thm 4.2 )6, {0}) of
controllable systems.
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3.3 Computing the Invariant and Contractive Sets

The practical feasibility of computing the various sets and applying the theory described in Chapter 2
and Section 3.2 to controller design is dependent on algorithms existing for the calculation of the set
9(R), the intersection of two sets and testing for equality or whether a set is a subset of another.
The invariance and contractiveness tests can be implemented by recalling the inclusion conditions of
Theorem 2.1 and Corollary 3.1.

These procedures are relatively straightforward and routine for uncertain LTI systems subject to poly-
hedral constraints on the states and control inputs. This section describes some well-known results,
while Section 3.4 describes some less well-known results.

The presentation of this chapter is more along the lines of a description of the results that allow one
to develop algorithms, rather than a detailed description of the algorithms themselves. In many cases,
the algorithmic details follow immediately from the theoretical result and writing out the individual
steps does not contribute significantly to the discussion.

A more abstract approach to algorithm development is adopted here and the practical implementation
is not discussed. Appendix E contains a brief description of the functions in a Matlab toolbox that has
been developed for the computation of the various sets discussed in this chapter.

3.3.1 Intersection of Two Polyhedra

The computation of the intersection of two polyhedral sets which are described by linear inequalities
is trivial. Given the two set® £ {x e R" | Qx < q} and® £ {x € R" | Sx < s}, the intersection of
the sets is found by appendirfgjandg to Sands, respectively. The intersection is then given by

[2} x < m } . (3.7)

Often some of the inequalities in (3.7) are redundant and could be removed, if required.

Qﬂ(b:{xeR”

Proposition 3.3. The intersection of two convex polyhedra is a convex polyhedron.

Furthermore, the support function of the intersection of two polyhedra [BR71, App. 1] is given by

hane (n) = min{hq (), he(n)} .

3.3.2 Equality and Subset Testing

An equality test is used in all the algorithms to determine whether the iterations should continue. In
principle, given polyhedral descriptions of the two s@t€ {x ¢ R" | Qx < g} and® £ {x € R" |
Sx < s} one can compare the elements@fandq with Sands. However, the sizes of the matrices
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and vectors might be different and two differently scaled matrices and vectors can describe the same
set. A different approach is therefore needed.

Provided all elements af ands are non-zero and all redundant constraints have been removed, one
can obtain equivalent descriptions of the sets in the normalised @ypm=< 1 andS$x < 1. One can

test for equality by individually comparing the rows @ with all the rows ofS and removing the
matching rows until the sets of rows are empty.

Depending on the numerical robustness of the method used to generaféﬁeml’ﬂ‘) this approach

may work. The author has found that the above two approaches are good enough in many cases.
Normalisation is seldom needed, since the matrices and vectors which describe the old and new sets
often correspond exactly.

Another equality test can be derived by noting that two sets are equal if and only if each set is a subset
of the other, i.e.

P=Qc dCQand C d. (3.8)

Using the support function as defined in Section 2.10.3, testing for inclusion is easy if the sets are
convex polyhedra.

Proposition 3.4 (Subset test) [KG98] If 2 is given by the M linear inequalities
Q= {xeR"| Qx=q},
and @ is any subset dR" then
PCQehe(Q)<q,Vi=1...M,
where Q is the i'th row of Q and gis the i'th component of g.

Remark 3.3.If @ is also a convex polyhedron, then this condition can be checked by solving a se-
guence ofM linear programming problems, since the support functiombodan be computed by
solving a linear program.

Remark 3.4.Testing whether a polyhedro® is a subset of another polyhedrénhis equivalent to
testing whether all the constraints@nhare redundant with respect to the constraint$in

Remark 3.5.The idea of checking whether all the new constraints are redundant is also used in [GT91,
KG98, VSLS99] to test whether the computation of the maximal invariant set should terminate. It
follows from Proposition 2.8 tha(fiﬁrl(X) C C*(X). When calculating the maximakcontractive set,

one therefore only needs to test whetfg€X) < C7-,;(X) to check whethe€/(X) = €%, , (X).

An elegant method for determining when to terminate the computation ahthémal stabilisable
setis to fix some tolerance parameter and terminate when the new set is “close” to the true maximal
stabilisable set. The authors of [GC87] show, via a compactness argument, that when computing the
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maximal stabilisable sef., (X, {0}) for controllable LTI systems wittf2 and U compact, for any
givene > 0 there exists @ = t(¢) such that for all > t,

Si(€2,{0}) € So(2,{0D) S 1+ )i (2, {0}). (3.9)

An algorithm for computing is given in [CG86]. Algorithm 2.2 is modified to terminate whieis
larger thanr.

It is possible that a similar argument can be made if the terminall'ssta control invariant set
containing the origin and the system is stabilisable. However, it is not clear how to proceed. In
addition, X is not necessarily bounded, thereby violating the assumptions made in [GC87]. It would
be interesting to determine whether it is possible to derive a similar result if there are disturbances
present.

Approximations for Equality and Subset Testing

Sometimes, due to numerical errors, problems can be experienced when testing for set inclusion. The
following definitions can be used to test whether a given subset is a subset of another within a given
tolerance:

Definition 3.3. The setd ¢ R" is a subset of the s& c R" within a given tolerance > 0 if and
onlyif ® C (1+¢).

Based on the approximate subset test, the following definition is given to allow one to determine
whether two sets are equal within a given tolerance:

Definition 3.4. The setd ¢ R" is equal to the se ¢ R" within a given tolerance > 0 if and only
if ®C (1+€e)QandQ C (1+¢€)P.

Remark 3.6.These definitions can be loosely interpreted as a relaxation of the Hausdorff metric de-
fined for two sets. The computation of the Hausdorff metric is computationally difficult to implement,
whereas the conditions defined here are very quick and easy to check.

It is arguable as to whether these are good measures for set equality and subset testing and whether
some other metric should not be used to define how “close” one set is to another. However, the
definition above is intuitive and easy to implement in computing both the maximal robust control
invariant set and maximal robust stabilisable sets. An inner approximatiégm, T) and an outer
approximation oﬁgo(sz) will result if these methods are used for termination.

However, it is not desirable to obtain anter approximation of@o(Q), since one cannot guarantee

that the resulting set is at least 1-contractive. The most elegant, known way to obtain an approxima-
tion of C~§o(Q) was discussed earlier and is given by Theorem 3.1. This approach has the benefit of
guaranteeing that the algorithm will terminate after a finite number of iterations wkienantractive
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inner approximation offgo(Q) has been found, wheve < A* < 1. An arbitrarily close approxima-
tion to CNQO(Q) can be found by choosing # 1, but sufficiently close to 1 and terminating when the
computed set i&*-contractive for any. < A* < 1.

3.3.3 The Robust One-step Set

Before proceeding, it is useful to recall the discussion and definitions from Section 2.10. It was shown
that if part of the disturbance acts directly on the state, then an intermediate set needs to be calculated
in order to obtaind(12), namely the Pontryagin difference. If one defines

D £ {xg e R" | 3wy € W°: x7 = Ewg}
and the modified one-step set as
QA2 ~D) £ X € R" [Jux € U: A(wg) X + B (w) Uk € AQ ~ D, Ywe € WA}, (3.10)
then

OOQ) = QA(AQ ~ D). (3.11)

The next section describes how one can compute the Pontryagin difference. Given this set, one can
then use a projection method or the Minkowski sum method to complete the computation of the robust
one-step set.

The Pontryagin Difference

If the two sets under consideration are given by linear inequalities, then the Pontryagin difference can
be computed as follows:

Proposition 3.5 (Pontryagin difference). Given two polyhedra
Q= {xeR"| Qx=q)
and
D2 {xeR"| Sx=<s}
with Q e RM*" q e RM, Se RN*M and se RN, the Pontryagin difference ~ D is given by
AM2~D={xeR"|Qx=iq—H(Q, D}, (3.12)

where the i'th element of HQ, D) is the value of the support function bf evaluated at the i’th row
of Q, i.e.

Hi(Q,D) £ hp(Q)) = m%XQiX- (3.13)
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If D = EWS, then

Hi(Q. D) = max Q Ew. (3.14)

Proof. See [KG98, Thm. 2.3] O

Remark 3.7.Note that the Pontryagin difference requires solving no more khd¢inear programming
problems. It is also not necessary to compute the mappiig thereby reducing computation time.
Furthermore, some of the constraintsiift ~ D might be redundant and these can be removed by
solving M additional LPs.

The following result follows immediately and states that the complexity of the Pontryagin difference
is independent of the number of inequalities descriffing

Corollary 3.3 (Pontryagin difference). If the polyhedra2 andD are given by M and N linear in-
equalities, respectively, then the Pontryagin differea€e ~ D is given by (at most) M linear in-
equalities.

The next step in the calculation of the robust one-stefse£2), givenAQ2 ~ D), is to calculate the
modified one-step s&dA (A2 ~ D), either via a projection operation or, if there is no uncertainty in
the plant matrices, via a Minkowski summation.

Remark 3.8.1f there is no control input to the system, then the second step of projection or Minkowski
summation is not necessary and the algorithm reduces to those described in [GT91, KG98]. One can
still have parametric uncertainty iA, which is not considered in [GT91, KG98], but is discussed

in [De 97].

Computing the Robust One-Step Set via Projection
By linearity and convexity, if the control input is such that, = Ax + Bu, € AQ ~ DD for all
(Aa B) € {(Ala Bl)a--- ’ (Apa Bp)}

then the same control input guarantees fiat = Axc + Buy € AQ ~ D for all

(A, B) € conv{(A1, By, ..., (Ap Bp)} .

By this argument, it follows that

A2 ~D) £ {x € R" | Jug € U: A(w) X + B (wi) Uk € AQ ~ D, Vu € W4}
={X€R"[3uc € U: A% + Buc € AQ ~ D, V(A, B) € A}
={x%€R" | eU: Axc+BiucerQ~D,Vi=1...,p}.
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Hence, one way of computing (A2 ~ D), given
AQ~D={xeR"| Qx =< g}
where
4=21q-H(Q,D),

is as the orthogonal projection of the polyhedron

x ,
qjé{[Uk}eR”+m|ukeU,AanJrBiUkEm”Dv' =L....p
k

QA QB q

1R ey N A
Uy QA, QBp | [Y q

0 G g

onto the subspace spanned by the firsbordinates [Bla94, Sect. V], i.e.

QA ~D) = {x e R"|T[x;, u ] € ¥} .
There are two popular ways of computing this projection:

e If W is bounded one can compute the verticedofThe setQ, (A2 ~ D) is then the convex
hull of the projection of the vertices ob. This is the technique implemented in tN&tlab
Geometric Bounding Toolbd¥KV *] function PROJECT.

e By systematically eliminatinglx from the inequalities inv. A popular method for solving a
set of linear inequalities is theourier-Motzkin elimination methofChv83, KS90], for which a
division-free algorithm is given in [KG87]. The intuitive argument behind Fourier elimination
is briefly described in Appendix C.

The vertex-based method can become computationally intractable, since the number of vertices can
become quite large with an increase in the dimension and number of plants describing the uncertainty
set [Chv83, Cha. 18]. It is also not possible to give a practically useful bound on the geometric
complexity of the resulting set. The implementation of efficient, numerically robust algorithms for
finding all the vertices and computing the convex hull of the projections is tricky and therefore not
always the preferred approach.

4This toolbox only works with simple polyhedra, i.e. the number of edges attached to each vertex is no more than the
dimension of the subspace in which the polyhedron is contained. Small, random perturbations are added to the polyhedron’s
components to overcome this limitation. As a result, the problem quickly becomes ill-conditioned.
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Because of its simplicity and ease of implementation, Fourier elimination is quite popular. Although
Fourier elimination is very simple it could be inefficient, since many redundant inequatitiegen-

erated when solving foxc,. These inequalities need to be removed at each step in order to reduce
the size of the problem in future iterations. Fourier elimination is therefore always followed by the
removal of redundant inequalities fro@(1C; (22, T)) N Q2 or O(AS; (22, T)) N Q using the algorithrh
described in Appendix B. However, Fourier elimination does suffer from the fact that the number of
redundant constraints could increase exponentially in the worst case [Sch86]. As a result, this method
cannot guarantee computation of the robust one-step set in polynomial time or give a good bound on
the geometric complexity of the resulting set.

Remark 3.9.Note that projection does not require that any of the matrigebe invertible. The
vertex-based method will only work i# is bounded. Fourier elimination may or may not worklif
is unbounded, but is guaranteed to workiis bounded.

Computing the Robust One-Step Set via Minkowski Summation

If one assumes that there is no uncertainty in the @&iB), then the following approach which does
not rely on projection, can be used to comp@e.Q ~ D) [BR71, GS71]. IfA~! is theinverse map
of A, then recalling the discussion in Section 2.10.2 it follows that
O(AQ) = QU ~ D) = {x € R" | Juk € U: Xy1 = A% + Bug € AQ ~ D}
= {x €R" [ U € U, Xs1 € AQ ~ D X = A (Xey1 — Bu)}

= A (A2~ D)o (-BU)),
where(AQ ~ D) @ (—BU) is the Minkowski sum ok ~ D andV £ —BU.

The Minkowski sum can be computed by finding the vertices of the corresponding sets and computing
the convex hull of their sums [GS93], i.e.

A2~D) BV E X e R"[Txe1 €AQ ~ D, v € VI X = Xey1 + v }

= conv{xc € R" X1 € VertaQ ~ ), v € vert(V), X = X1 + vk}

whereV can either be computed using a projection algorithm or, more efficiently, as suggested by
Propositions 3.6 and 3.7.

AssumingA is invertible, then the robust one-step set can be computed in a similar fashion to the
computation of the Minkowski sum, i.e.

Q(AQ ~ D) = conv{xy | Xi1 € VertaQ ~ D), uy € vert(U), xx = A "x1 — A" By} .

5In [CS00] an algorithm which is based on finding the minimal generators of a cone [Las86] is used to compute the
projection. Anad hocway of avoiding redundancies is described in [DDD89, Sect. 6]. However, it is possible that the
number of inequalities could still be exponential in the worst case.

6In the later stages of Fourier elimination the linear inequalities encountered arise from the original constraints in a
special way. If this is cleverly exploited, the redundant inequalities can be detected and removed with a minimum of
computational effort [Chv83, Cha. 16].
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This vertex-based method is adopted in [GC87, Alg. 4.4] and [MS97], where the Geometric Bounding
Toolbox [VKV*] was used in the latter to perform the vertex and convex hull computations.

Note that the invertibility assumption can be dropped. If the hyperplane representation of the Min-
kowski sum

X e R" | Tx <t} £ (AQ ~ D) & (—BU)
has been computed, then
Q) =02 ~D) = {x € R" | Jux € U, X1 € A2 ~ D : AX = Xyp1 — By}

={X €R"| A € A2 ~ D) ® (—BU)}

={X € R" | TAx <t}.
By careful choice of algorithm the conversion from hyperplane- to vertex-representation, and vice-
versa, can be achieved in polynomial time [GS93, Sect. 2.3.3]. However, as the dimension of the
systemn grows the number of vertices increases quite rapidly compared to the number of hyperplanes

required to describe the various sets. The vertex-based method can therefore still become impractical
for large systems.

The Minkowski sum can also be computed using a projection method such as Fourier elimination.
Though Fourier elimination has worst-case exponential complexity this is not always a problem, since
the matrix is often quite sparse and many redundant constraints can be removed at each step. More
work needs to be done, however, in order to determine the suitability of using Fourier elimination

in computing the Minkowski sum. It is possible that a mix of different inequality- and vertex-based
methods might be best suited for the job.

3.3.4 Computation of the Reach Set
The reach set, as defined in Section 2.3, can also be computed using the projection method or via
Minkowski summation if there is no uncertainty in the pel, B).
For example, if2 is a polyhedron, then recalling that
R(2) £ {Xr1 € R" | Ik € Q, Uk € U Xey1 = Ax + Bu},
it follows that R (2) is the projection of the polyhedron
W2 X, X U € R*™Mx € @, uy € U, Xy = A + Bug}
onto the subspace spanned by the firsbordinates.
Alternatively,
R(Q) = AQ @ BU,

where AQ2 and BU can either be computed using a projection algorithm or, more efficiently, as sug-
gested by Propositions 3.6 and 3.7.
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3.4 Some Efficient Algorithms

This section describes some less well-known algorithms for subset testing and the computation of the
linear map of a polyhedron. Depending on the size of the problem, these algorithms could be more
efficient than algorithms based on the methods described in Section 3.3.

3.4.1 Subset Testing

The following necessary and sufficient condition for a polyhedron to be a subset of another is an
extension of Farkas’ lemma [Sch86].

Lemma 3.1 (Extended Farkas’ lemma).[DH96, Bla99] Given two polyhedra
Q=2 {weR"| Quw=q}
and
P £ {peR"|Sp<s},
with Q e RM*" q e RM, Se RN*"and se RN, then
dCQ
if and only if there exists a non-negative matrixe®R">*N (i.e. R; > 0, Vi, j) such that
PS=Q
and
Ps=<q.
The existence of the matrife can be checked by determining whether a solution to a feasibility

problem exists. This can be set up as an LP where the decision variables are the elerReaits of
the constraints ar® S= Q andPs < q. A feasible solution exists if and only # C Q.

This implies that instead of having to sol LPs to check whethed is a subset of2 as in Propo-
sition 3.4, only a single LP is sufficient. The difference is that with Proposition 3.4 each &fl the
LPs haven decision variables and inequality constraints, while with Lemma 3.1 the LP is< N
decision variables and ®1 x n) + M inequality constraints.

Depending on the problem and the LP solver that is used, either method could be faster. If an interior-
point method is used, then the time complexity is polynomial in the number of decision variables
and constraints, whereas if a simplex-based method is used, the complexity is worst-case exponential,
even if termination occurs in polynomial timan average An efficient practical algorithm would
compare the sizes dfl, N andn before deciding which algorithm to adopt.

This result can easily be extended to allow for the testing of set equality and approximate set equality
using a single LP as well.
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3.4.2 Linear Mapping of a Polyhedron

This section gives two results on how to compute the polyhednif the number of columns of
B is less than or equal to the number of rows. This is a realistic assumption, since in most physical
systems the number of control inputs does not exceed the number of states

Proposition 3.6 (Invertible matrix). [BR71] A polyhedron
Q2 {weR"| Qu=q}
with Q e RN*" and qe RN is given. If Be R™" is invertible, then
BQ={xeR"| QB x=<q}. (3.15)
Proof. By definition,
B2 (xeR"|dwe Q:x=Bw}.
SinceB~! exists, one can write = B~!x. Therefore
BQ={xeR"|BxeQ)
and by substituting: = B~!x into the definition ofQ the result follows:
BQ={xeR"| QB x=<q}.
]

Remark 3.10.No LPs are needed to compuB£2. B~! can be computed using standard numerical
methods in polynomial time.

It is trivial that for a given scalag # 0 and sef2 £ {w € R" | Quw < q}, that

aQ:{weRn

1
—QwﬁCJ}-
o

The next result follows immediately from Proposition 3.6 and states that the number of inequalities
describing the imag8¢2 is no more than the number of inequalities descrilsing

Corollary 3.4 (Invertible matrix). If B is invertible andS2 is given by N linear inequalities, then
BQ is given by (at most) N linear inequalities.

If B is not invertible, then the following result can be used to compute the majgsing

’In many cases the number of inputs is more than the numbmitpfits However, even then the number of inputs very
seldom exceeds the numbergiates If the number of columns oB is greater than the number of rows Bf then the
mappingBQ can be computed via a projection.
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Proposition 3.7 (Singular matrix). [MB76] A polyhedron
Q2 {weR"| Qu < q)
with Q e RN*M and qe RN is given. If Be R™™M is given with m< n and r = rank(B), then
BQ={xeR"| B, x=0QBx=q}, (3.16)

where the rows of B € R™">" form a basis for the subspace Bf which is orthogonal to the
subspace spanned by the column vectors of B. The matrixB™<" is any matrix with the property
BB = In.

Proof. A proof is given here, since [MB76] does not contain one.
Define
L2 ({(xeR"|B,x=0QBx=<q}.

It is obvious that KeB is orthogonal to InB’ . Since ImB’, is chosen to be orthogonal to 1By i.e.
B, B = 0, and the column vectors oB[ B] spanRR", it follows that

KerB, =ImB.
This allows one to conclude thate Im B if and only if x € KerB_, i.e.
Bx=0&3weR":x=Bw.
This implies that
d={xeR"|JweR":x=Bw, QB X <q}.

Recalling thatB, B = I, and by substitutingk = Bw into Q B X < q, it follows that
®={xecR"|JwecR":x=Bw, Quw < q}.

The proof is completed by comparing this to the definitiorB§t and the fact thaQw < q, i.e.

BR={xecR"|JwecR":x =Bw, Qw <q}.

]

Remark 3.11.Standard numerical methods can be used to computén polynomial time. The
matrix B, is the solution to a set aih? equalities inm x n unknowns and can therefore also be
computed in polynomial time using standard numerical linear algebra methods.
This result allows one to give a bound on the number of inequalities desciiiing
Corollary 3.5 (Singular matrix). If B € R™™ m < n, r = rank(B) and 2 is given by N linear

inequalities, then R is given by (at most) N- 2(n — r) linear inequalities.

This is attight bound, since it is easy to find a problem where the number of non-redundant inequalities
is equal toN + 2(n — r). Note that Corollary 3.4 is a special case of Corollary 3.5 for the case
rank(B) = n =m.
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3.5 Summary

This chapter deals with linear systems with parametric uncertainty in thé4a) and disturbances

acting linearly on the state. The concept of contractive sets was introduced and Theorem 3.1 was
given for guaranteeing that the computation of a robust control invariant set will terminate after a
finite number of steps.

Some well-known algorithms were described for implementing the three main ingredients identified
in Chapter 2 for computing the robust controllable sets. Section 3.3 discussed how to compute the
intersection of two polyhedra and test whether one polyhedron is a subset of another (and hence also
be able to test for equality and invariance).

It was shown that the Pontryagin difference between two convex polyhedra can be computed using a
finite number of LPs. This set can then be used in a projection operation or Minkowski summation to
compute the robust one-step set.

Finally, Section 3.4 gave some less well-known results on subset testing and the linear mapping of a
polyhedron. The latter result allows one to derive a non-conservative upper bound on the number of
inequalities needed to describe the linear map.



Chapter 4

Robust Controllable Sets for Hybrid and
Piecewise Affine Systems

This chapter describes how to compute the robust controllable sets for piecewise affine systems. The
result is based on computing the Pontryagin difference between the union of convex polyhedra and a
convex polyhedron.

4.1 Introduction

In many control applications existing today, there is a high level of interaction between subsystems
with continuous dynamics and subsystems with discrete dynamics. These systems are often referred
to as hybrid systems.

A system is said to baybrid if it has state variables which can take on values fronuagountable

set and state variables which can take on values framuatableset. State variables whose set of
valuations is countable is often referred todiscreteand variables whose valuations come from an
uncountable set, such as a Euclidean spaamraguous The evolution of the system is usually given

by equations which depend on both types of variables, where the dynamics can be continuous-time,
discrete-time or sampled-data.

Classical control theory has mainly been concerned with continuous systems and the field of computer
science has mainly been concerned with systems with discrete dynamics. As systems are becoming
more complex and the interaction of continuous and discrete dynamics is increasing, it is necessary to
develop tools for analysing and synthesising controllers for such systems.

At present, there are two main approaches to dealing with hybrid systems; a general, system-based
approach [BBM98, LTS99] and a more specific, piecewise-affine (PWA) description [RJ00, BFMO0O].
Though various theoretical results regarding the undecidability of the controllability and reachability
problem for general hybrid systems have been published [BT99, BT00], the reachability problem has

49



50 CHAPTER 4. CONTROLLABLE SETS FOR HYBRID AND PIECEWISE AFFINE SYSTEMS

been shown to be decidable for some classes of continuous-time, linear hybrid systems [LPY99].

An approach based on game theory is described in [LTS99] for the computation of reachable sets for
continuous-time hybrid systems. The authors of [VSLS99] propose the use of quantifier elimination
theory for computing robust invariant sets for discrete-time hybrid systems.

In [BTMOOa] a procedure which uses mixed-integer programming is described which can be used for
computing the reachable sets for discrete-time PWA systems where there is either no control input or
no disturbance. The discussion in this chapter is concerned with the computation of robust controllable
sets for discrete-time PWA systems, where there is both a control input and a disturbancé .present

4.2 Mixed Logic Dynamical Systems

The MLD modelling framework, introduced in [BM99a], allows one to represent systems which can
be described by interdependent physical laws, logical rules and operating constraints. It allows a large
class of systems to be described such as

e constrained linear systems;

e finite state machines;

e some classes of discrete-event systems;

e systems with discrete states and/or inputs;

e nonlinear systems which can be approximated by piecewise affine functions;

e any combination of the above interacting with each another.

The general MLD form is given by

Xk+1 = AXx¢ + Biuk + Bodk + Bz (413.)
Yk = CX« + Diug 4+ D2dk + D3z (4.1b)
E,ék + Egzk =< Equk + Egx¢ + E5 (410)

wherex, € R x {0, 1}™ are the continuous and binary state variablgse R™ x {0, 1}™ are the
inputs, yx € RP x {0, 1}P the outputsgy € {0, 1}" andz € R'e represent binary and continuous
auxiliary variables. The latter are introduced when propositional logic statements are transformed
into linear inequalities. All the constraints on the state, inputand z, are contained in (4.1c).

The description in (4.1) only appears to be linear; the variablesre constrained to be binary. It

1The method described in this chapter is self-contained and does not rely on the results of [BTM00a]. However, it is
possible to integrate some of the ideas in [BTMO00a] for improving the efficiency of computing the one-step set.
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is assumed that the system is completely well-posed [BM99a] in the sense thatcaugu, are
assignedxy,1 andyy are uniquely defined.

As mentioned above, the variablksandz, are introduced when converting statements to inequalities.
For example, the statement

z=46Ff(X)
is equivalent to
z<M$
—z<-—md

z< f(X)—m@—-9)
—z<—f(x)+M(@1-9),
wherem (M) is a lower (upper) bound of (x) over some bounded set. As another example, the
propositional logic statement
[63=1] < [61 = 1] A [82 = 1]
is equivalent to

—81+83<0
—8,+83<0
81+62—083<1.

This ability to convert statements involving logic variables continuous functions to inequalities is what
gives the MLD formalism the flexibility to deal with a large range of systems.

A number of controller design techniques has been developed for MLD systems. Controller design
can be achieved by

o formulating an MPC problem and solvingdh-line using a mixed-integer quadratic program
(MIQP) solver [BM99a] or via a performance-driven reachability analysis [BGTOO];

o formulating an MPC problem as a multi-parametric mixed-integer linear program (mp-MILP)
and computingoff-line a piecewise linear (PWL) optimal control law [BBMO0Oa, BBMOOb,
BBMOOc];

e obtaining the PWA equivalent form of the MLD model [BFMO0O] and computing a piecewise-
linear (PWL) control law by solvingff-line a set of linear matrix inequalities (LMIs) [MFMOQ].
This method is based on that of [RJ00] of computing piecewise quadratic Lyapunov functions,
but for discrete-time, rather than continuous-time PWA systems.

For further details on propositional logic and how hybrid systems can be modelled in the MLD frame-
work, the reader is referred to the references cited in this section. The reason for introducing MLD
systems here is because they have an equivalent PWA description.
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4.3 Equivalence Between MLD and Piecewise Affine Systems

In [BFMOOQ] it is shown in a constructive manner that MLD systems are formally equivalent to PWA
systems. This fact allows one to use results which have been developed for PWA systems and ap-
ply them to a large class of linear hybrid systems which can be modelled as MLD systems, and vice
versa. The PWA equivalent form allows one to develop observability and controllability tests for
hybrid systems [BFMOOQ], synthesise controllers [MFMOQ], perform a verification and reachability
analysis [BM99b, BTMO0O0a], compute controllable, stabilisable and admissible sets [BTMO00a], con-
struct a state estimator and fault detector [BMM99, FMMO0Q] and identify a model from input-output
data [FMLMOOQ].

Piecewise affine systems are described by the state-space equations:

) . . . i X
Xer1 = A'xe + B'ug + E'wy + f',if [ k}eé’d, (4.2)
Uk

where{X; }f‘;& is apolyhedralpartitior? of the state and input space. Eakhis given by

AR

and the f' are suitable constant vectors. Each subsystem defined by the 4cfiple', E', '),

i €{0,1,...,s— 1}, is termed aomponenbf the PWA system (4.2). If all thé' = 0, then the
system (4.2) is said to be piecewise linear (PWL) and i##lk= 0, B' = 0, E' = 0 then the system
is piecewise constant. It is still required that the states and inputs s&tefylU. It is assumed that
0 € W and thatW is a compact polyhedron (polytope).

Remark 4.1.A disturbancewy € W has been added to the description of the PWA system. The
disturbance affects the state via the maffix but the partitioning still only depends on the state and
the input. In [BFM00, BM99b, BTM00a, BTMOOb] it is assumed that there is no control iBpet 0

or that there is no disturbané = 0.

Remark 4.2.Note that even thougky € R", ux € R™ andwy € RY, this model is general enough

to represent the discrete variables present in the MLD model; the matrix update equations are well-
defined when converting from MLD to PWA form and the state evolution will be well-defined for
well-defined initial conditions. For example, consider the simple PWA system

16 ifxx>8
X1 = 12% 1fO<x <8.
0 if xc <0

If xg € {0, 1, 2, 4, 8, 16}, then future evolutions of the state variable will take on values from the same
discrete set.

2The interiors of all theY; are pair-wise disjoint and the uninjis;é A covers a polyhedral region of interest in the
state and input space [BBMOOc, Def. 4].
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The common boundaries df are calledguard-lines Without additional continuity assumptions on

the PWA system, (4.2) is not well-posed in general, since the function is multiply defined on the guard-
lines. This will not affect the computation of the Pontryagin difference as discussed in Section 4.5.1,
but might affect the computation of the one-step set as discussed in Section 4.5.2. This is a technical
issue which can be avoided in practice. For example, given the ill-posed system

0.8xx ifxx>1
Xk+1 = ]
0.5xc ifxx<1

it can be seen that ¥, = 1, thenxy,1 € {0.8, 0.5}. By redefining the system as

0.8xx ifxx>1
Xk+1 = ]
05xc ifxk<1l-—¢
wheree > 0 is a sufficiently small number (typically machine precision), the state evolution is well-
defined. When converting a well-posed MLD system to PWA form, the resulting description will have
a similar form as the latter, thereby guaranteeing that the evolution of the states of the PWA system is
well-defined.

See [BFMO0O] for more details on how to convert from MLD form to PWA form. Converting from
PWA form to MLD form is trivial and is discussed in [BM99a].

4.4 \erification and Reachability Analysis of PWA Systems

The following problem is addressed in [BTMOOCc] (see Figure 4.1).

Problem 4.1 (Reachability analysis problem).Given a system in MLD or PWA form and a set of
initial conditions Xo, a collection of disjoint target setsZy, Z,, ..., Z., a bounded set of inputs
and a time horizon T,

1. determine whether there exists an input sequénges U}g‘l such thatZ; is reachable from
Xowithint < T steps;

2. if such a sequence exists, then compute the subset of initial conditigref X, from whichZ;
can be reached within T steps;

3. foragiven ¥ € Xz, compute an input sequenf € U}E{l, where t< T, which drives ¥to
any x € Zj.

Remark 4.3.Note that it is assumed in this problem that there is no disturbance in (4.2 i.0.
A similar problem can also be formulated for the case when there is a disturbance but no control input,
i.e. B' = 0 [BTMOOa]. The latter problem is typically known as therification problem [BM99b].

3strictly speaking, it is not necessary for tBe to be disjoint.
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Target Set
Initial States _—— T 7

Figure 4.1: Reachability analysis problem

Without wanting to get into too much detail, the point that is being made is that the algorithm presented
in [BM99b, BTM00a, BTMO0Oc] can be used with very little modification to compute many of the sets
described in Chapter 2. In addition, the iterative procedure of Algorithm 2.1 is not necessary and
the sets can be computed more efficiently in a single pass with the algorithm of [BM99b, BTMOOc,
BTMO0Oa]. However, this algorithm is applicable only if the PWA system has either no control input
or no disturbance.

When there are both control inputs and disturbances present and one would like to compmbiaghe
controllable sets, a new algorithm is needed. An iterative procedure based on Algorithm 2.1 and the
computation of the Pontryagin difference of non-convex sets is discussed next.

4.5 Robust Controllable Sets for PWA Systems
As discussed in Section 2.10, if the system is of the form

Xer1 = Fxu(, W) + fu (wi) , (4.4)
as is the case with PWA systems, and one defines

D2 f,(W), (4.5)
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then therobustone-step se©(€) is equal to thexominalone-step se® (2 ~ D), i.e.

Q) =0 ~D) 2 {x eR" [k € U, Xiy1 € 2~ D& Xeyr = Fru(X, U} - (4.6)

This implies that in order to develop an algorithm for computing robust controllable sets for a given
PWA system, it is sufficient to develop procedures for computing the Pontryagin diffefeneéd,
the nominal one-step s€(2 ~ D) and the intersectio®(2 ~ D) N Q. Given a target set, the
iterative procedure of Algorithm 2.1 can then be used to compute the robust controllab|€$eT).

For PWA systems, even T is a convex polyhedron, all thé; (X, T) are not guaranteed to be convex
polyhedra. As a result, the algorithms described in Chapter 3 cannot be applied directly. However,
if T is a convex polyhedron, then all tiig (X, T) can always be described as the union of a number

of convex polyhedra. This chapter presents the building blocks of an algorithm for computing the
robust controllable sets for PWA systems. Methods for computing the Pontryagin diffeeenc®

and the nominal one-step $8(Q2 ~ D), whereQ is given as the union of a finite number of convex
polyhedra, will be described in Sections 4.5.1 and 4.5.2.

Before proceeding, the following assumption is made.
Assumption 4.1. E' = E,Vi =0,... ,s— 1.
In other words,

OeD=EW.

4.5.1 Pontryagin Difference

This section describes a method for computing the Pontryagin differ@nee D, where is a
(possibly non-convex) set which can be described as the union of a set of convex polyhedra, i.e.

N
a2 g, (4.7)
j=1

where2; are convex polyhedra.

Recall the definition of the Pontryagin difference:

Q~D=2{xeR"| X+ € Q,Vd € D}.

The following result states that {2 is given by the union of disjoint sets, then the Pontryagin dif-
ference is given by the union of the Pontryagin difference of gach- D. If this is the case, then
Proposition 3.5 can be used to compute allfhe~ D, since all the®2; are convex polyhedra.

Proposition 4.1. If 0 e D andQ = U;\':l Qj, where all the2; are pairwise disjoint, thei®2 ~ D =
UjLy(2) ~ D).
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Proof. If x e U:-\lzl(Qj ~ ), thenx, € Q; ~ D for some2;. This implies thak +d € 2, Vdg €
D. Combining this result with the fact th&t; € , it follows thatx, + d¢ € @2, Vdk € D and hence
Xk € Q ~ D.

This allows one to conclude thaﬂszl(Qj ~ D) € Q@ ~D. The factthatz2 ~ D C UjN:l(Qj ~ D)
will be shown by contradiction.

Assume tha2 ~ D ¢ (J}L,(Qj ~ D).
If X € (2 ~ D)\U}\l:l(gj ~ D), then eithex, € 2;\2; ~ D for some2; or xi ¢ Q.

If xx ¢ @, thendx = O results inxx + d¢ ¢ Q. This implies that? ~ D € Q and hence that the
former is the only other possible case. Assuming this is truexi.e. Q;\Q; ~ I for someg2;, then
one can always chooseda € D such thaix, + dg € 9<.

However, there also exists an> 0 such that it is possible to chooselac D such thatdy + ¢ € D
andxy + d¢ 4+ € ¢ Q. This follows from the fact that all th; are disjoint, i.e¥j, xx € 0%2j, there
exists are > 0 such thai, + € ¢ Q. The casex € 2;\Q; ~ D is therefore also not possible and
hence(2 ~ D)\ UL, (@) ~ D) = 4.

This implies that the assumptidh ~ D ¢ U}\I:l(Qj ~ D) is false, thereby concluding the proofl]

However, in general all th; are not disjoint and as a resu?, ~ D # U}\Izl(Qj ~ D), but

N
Q~DD U(sz,- ~D).
j=1
From this point on, it is assumed that there eflst2;,i # j such that2; N Q; # @.

Before proceeding to describe the algorithm, the following set is defined:
() = X eR" [3dk e D : x + i € 2} . (4.8)
Proposition 4.2. The Pontryagin difference is given by
Q~D=[2 (%] . (4.9a)
Proof. From the definition of the Pontryagin difference it follows that

(QND)C={XkGRn|E|dk€]D)ZXk+dk€Qc}.

This set is the same set @) (Q2€). The proof is concluded by taking the complement. O
Remark 4.4.Note that this result does not require that @.

Because of the earlier assumption that D, the Pontryagin differenc& ~ D can therefore be
computed by determining all states@hfor which a disturbance exists which will take the system to
Q¢ and then taking the complement.
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To summarise, given a st which is the union of a finite number of convex polyhedra, and a compact
polyhedronD, the Pontryagin difference can be computed as follows:

1. Given

compute the complemefi® as described in Appendix ¢ is then given by

where eachb; is an open polyhedron;

2. Given the polytop&, compute

(@ )

The last step is a consequence of Proposition 2.2. As in Chapter 3Ga6h;) can be com-
puted using a projection algorithm or as the Minkowski s@m(®;) = ®; & (—D);

Compute D (2°]° as described in Appendix D. This gives the Pontryagin difference as the
union of a finite number of closed polyhedra:

L

Q~D2| Jz.

j=1

Remark 4.5.If the Q; are closed sets, then tiig are all open sets. Open sets are difficult to work with
in computers with finite precision arithmetic. When implementing the algorithm in a computer, the
®; can be substituted with their closures to simplify the coding and improve the numerical condition.

Similarly, when computing @, (2°)]°, the closures of the sets could be used without affecting the
result.

Remark 4.6.Note that the procedure described here is not dependent on the system dyqamies
fru(Xc, ) and thatE' = E. This implies that the Pontryagin difference is not dependent on the

partitioning of the state and input space. The Pontryagin differéhee D for a given2 is unique,
even if the PWA system is not well-posed.
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4.5.2 Computation of the One-step Robust Controllable Set

When computing the one-step set, the result is dependent on the system dyxamiesfy,(Xk, Uk)
and hence also on the partitioning of the state and input space. This section describes how to compute
the one-step set for well-defined PWA systems, given the Pontryagin difference.

If the Pontryagin difference is given as the union of convex polyhedral sets, as in the previous section,
L
a~D2| Jz. (4.10)
j=1

then Proposition 2.2 allows one to write

_ L

2@ =09@~D) =]z

j=1

Here the seQ(Z;) has to be computed while taking the partitioniyg f;g into account. As a result

L s-1
o =0@~D=JJaz.
j=1i=0
where
Qi(Z) 2 X eR" | Iu € U, Xw1 € 2 [X U]’ € X Xiern = Axie + Blug) (4.11)

In principle an algorithm which is based on this expression will work, but it will require the com-
putation ofs x L one-step sets at each step. This could be computationally expensive. To reduce
the number of computations, one can compute which combinatiolsoft; are non-empty. The
one-step robust controllable set is computed by noting that

Ki(X, Q) = K1(X, Q ~ D)

L
=JaeE)nx

j=1

L s-1

=JUaeE)nx

j=1i=0

L
=U U Q(Z)HNX.

J=1{i[XNX; £0)

The Q; (Z;) can be computed using a projection algorithm The&g€K, Q) is a non-convex, possibly
disjoint set, given by the union of a finite number of convex polyhedra.

4sinceX ¢ R" andx; < R"M, with a slight abuse of notatiali N A £ X N {x | Ju : [x up]’ € A}
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Remark 4.7.1f @ ~ D is given by a set of convex polyhedral sets as above, then the one-step robust
controllable set can also be computed using the algorithm in [BM99b, BTM0Oc, BTM00a]. The
algorithm is initialised withXy; = X and target sef’ = Q2 ~ . The output from the algorithm will

be £1(X, 2 ~ ). Some benefit in efficiency might be obtained by exploiting the MLD structure

in order to determine whicl®; (Z;) need to be computed. This might involve setting up a mixed-
integer feasibility program as in [BM99b, BTM00c, BTM00a]. Furthermore, a convexity recognition
algorithm such as the one described in [BFTO0O0] could also be used to reduce the number of polyhedra
needed to describe the resulting robust controllable sets.

To summarise, the one-step robust controllableksgK, 2) for a PWA system can be computed as
follows:

1. ComputeZ £ {i | XN X, # @}.
2. Given
L
Q~D2| Jz
j=1
and using an appropriate method from Chapter 3, com@uw€;) N X for j =1,...,L and
ieZ.

The robust controllable set is given by

L

Lo =JJaeE)nx. (4.12)

j=lieZ
4.6 Example

Consider the following well-posed PWA system

A1Xk + Bluk + Elwk, if |:1 ]_] X <0
Xk+1 = )
A% + B2uy + E%wy,  if [—1 —1] X« <0

A1=12 A2:34 81:82:10 E1:E2:10
3 4|’ 5 6|’ 0 1|’ 01

and the constraints

with

X £ {x e R?| Xl < 10}

U2 {ueR?||ulle < 5}
W2 (weR?| wle < 1}.
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The polyhedral partition of the state and input space is

XFHL('jeR“ 110 O]B(jfo}
XFHEE}GR“ [-1 -1 0 9 Bﬂso}.

The one-step robust controllable felt(X, Q) is to be calculated, where

2
Q2| |,
j=1
with
[0 1 6]
1 0 5
Q1 = {x € R? X <
! K 0 —1| %" |4
1 0
1 1 1
Q={xeR?| 1 o|x=<|5|!}
0 1 4

Q is shown in Figure 4.2.

4.6.1 The Pontryagin Difference

The complement of2 is computed as in Appendix D. A description of this set is given by

with
o, = Ix e R?|[1 o]xk<—5}
@, = [x e R?|[0 —1]xk<—6}

®s = |x € R? :o 1]xk<—4}

o, =[x e r?|[ -1 o]xk<—5}

Ps={xeR?| -1 0 |x=<]|oO
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Figure 4.2: The shaded area represents | J°_; ©;

Q¢ is shown in Figure 4.3.

With D = W, the sets

Op(®)=d & (-D), 1=12345

are computed in order to obtain

5
(2% = (¥1) .

i=1

The complementQp (2°)]¢ is computed as in Appendix D, giving the Pontryagin difference
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10

-2

-4

-6

-8

-10

Figure 4.3: The outer, shaded area repres@fits- Ule ®@;, while the inner, shaded area represents
the Pontryagin difference ~ D = (J5_; Z;

with

(1 0] [ 4 ]
0 1 5
Z, = {x € R? X <
N 0o -1~ |3
1 0 -1
[0 1 [0
Zo=Ix eR?|| -1 0 |[x=<]1
|1 1] 1
[—1 17 [ 1]
Za=IxeR?|| 1 0 |x=<]| 4
| 0 1] | 3

Q ~ D is shown in Figure 4.3.
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4.6.2 The One-step Set

Since the partitior{ Xy, X1} is not dependent ouy, the Minkowski sum can be used to compute the
six Qi (Z;). They are given by

(1 0] 10
11 0
Z1) = {X € RZ X, <
Qo(21) = { % A e
1 2 4
(1 0] [10]
11 0
3 4 5
Zp) = { Xk € RZ X <
Qo(22) K I R
1 2 6
-3 -4 7
-1 0] [10]
1 1 0
Qo(Z3) =dxeR?|| -3 —4|x <] 8
3 4 8
1 2| | 7]
and
1 0] 10
-1 -1 0
Ql(Zl) = { Xk € RZ 5 6 [ x=<1]10
-5 -6 8
i 3 4 ] _4_
1 0] [10]
-1 -1 0
Zy) = 1 X € Rz X <
Q1(2») K s 6 %%
-3 -4 6
(1 0] [10]
1 1 0
Z3) = { Xk € RZ X <
Q1(Z23) K s 6 %% g
3 —4 7

The robust one-step controllable set
3

1
Lo =JJaE)nx

j=1i=0
is shown in Figure 4.4.
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Figure 4.4: The shaded area represents the robust one-step controlldb€seR)
4.7 Summary

This chapter started by briefly describing MLD systems. The reason for introducing MLD systems

in this chapter is that a large class of hybrid systems can be described using the MLD formalism.
Furthermore, MLD systems are equivalent to PWA systems. This implies that if one can compute
robust controllable sets for one class of systems, then the same sets can be used in the analysis and
synthesis of controllers for the equivalent system. This chapter was concerned with computing the
robust controllable sets for PWA systems.

In general, the sets are non-convex at each stage of the iteration in the computation of the robust
controllable sets. As a matter of fact, they are given by the union of a set of convex polyhedra.

The main building block in the computation of the robust controllable set is the computation of the

Pontryagin difference of the union of convex polyhedra and the disturbance set. The computation
of the Pontryagin difference involves computing the complement of the union of a set of polyhedra
twice. This appears to be the main bottleneck of the proposed approach.

Nevertheless, it is possible to proceed and complete the computation of the robust controllable set
using the results obtained in the previous two chapters. Though this chapter only describes the com-
putation of one step of the algorithm for the robust controllable sets, by repetitively applying the
algorithm one can compute all the robust controllable sets. With the appropriate choice of target
set, one can also compute the maximal robust control invariant and maximal robust stabilisable sets,
provided they are finitely determined.
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Chapter 5

Nominal Feasibility in Model Predictive
Control

The nominal MPC regulation problem is introduced. The feasible set of the MPC scheme is defined
and the causes of infeasibility in MPC are given. The notion of strong feasibility is introduced and

a new sufficient condition is derived for guaranteeing strong feasibility. The effect of the choice

of horizons and terminal constraint set on the feasible set and feasibility of the MPC problem is
investigated.

5.1 Introduction

This chapter briefly introduces Model Predictive Control (MPC) and proceeds to address some nomi-
nal feasibility issues related to solving the MPC problem.

It is assumed that there are no disturbances present, i.e.
Xkl = f (X, Uk) .

The MPC control action is determined by solving the following finite horizon optimal control problem
at each time step:

Problem 5.1 (Nominal MPC Regulation Problem). Solve
P-1
V¥ (%) = min F(Xpp) + Z L (i, Gijk) (5.1)
Tk

i=0

67
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subject to
Xk = F R, Giw), Kok = Xk (5.2a)
)}Z”kGX, 0||kGU, [ =O,... ,P—l (52b)
Ok = h(XiK), l=N,...,P-1 (5.2¢)
Rp € T C X. (5.2d)

The decision variable in the MPC problem is the control sequence

N A ~ ~ A~ /
T = [UOlk, u;_lk, cee u/Nfl|k] (53)

and it is assumed that no disturbances are present. The nofgiand 0, denote estimates of
the state and input at timke+ |. The variablesN and P are the control and prediction horizons,
respectively, and it is assumed tHat> N > 0. Note that ifP = N, then constraint (5.2c) is
removed.T is the terminal constraint set and=0T C X.

N, P, F(), L(,, ), h(-) andT are the design variables arfd-, -), X andU are fixed.X andT are
closed andJ is compact. Itis assumed th@, 0) € X° x U° and 0= f (0, 0). The aim of the control
action is to regulate the states and control input®©:@).

Since the optimisation is over a finite horizon, in the design of the terminaFo@stx) and the stage
costL (X, G, it is assumed thal;x = h(X k) is a Lyapunov stabilising control law defined on
X that will be applied on the infinite horizon fér> P. It is assumed thalt (-, -) is a continuous,
non-negative, time-invariant function defined¥n« U andF (-) is a continuous, non-negative, time-
invariant function defined oK.

At each time instank, the current state, of the system is measured. The new control input to be
applied to the system is the first element of the (not necessarily optimal) saflioto Problem 5.1,
ie.

A A
Kk (X) = Ugy -

Herex (x) implicitly defines the MPC control law, with the closed-loop system being givexx by=

f (Xk, k(Xk)). Feedback is incorporated into MPC by repeating the state measurement and control
input calculation at the next time instant. Due to the finite prediction horizon, the computed control at
the next time instarlﬁg|k+l is in general not equal to the previously compufgﬁj.

Remark 5.1.Note that the constraintgx € X is included in (5.2). Strictly speaking, this is not
necessary since this constraint does not affect the resulting control action, but only affects the region
of feasibility. The constraint can be removed to enlarge the region of feasibility of the MPC controller.
However, by including this constraint the notation and presentation of the results in this chapter are
simplified.

Remark 5.2.The above formulation is the one most commonly adopted in the literature and is similar
to those of [May00, MRRSO0Q], but with a prediction horizon which is allowed to be different from the
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control horizon. There is some benefit to be gained by including a separate prediction horizon, such
as increasing the size of the feasible sét i a control invariant set. Section 5.8 discusses the effect
of the prediction horizon on the properties of the feasible set.

5.2 Nominal Feasibility in MPC

Often one is interested in obtaining the set of states for which the MPC problem is feasible. Before
proceeding, itis necessary to assume that the set of orderedxpairg’) which satisfy the constraints
in (5.2), is non-empty.

The feasible sétX¢ of the MPC problem is the set of statgsfor which a feasible control sequence
7N to Problem 5.1 exists, i.e.

Xe(T,N, P) £ {x € R" | 3m : (%, 7,") satisfies (5.2) . (5.4)

Xg can therefore be interpreted as the orthogonal projection of (5.2) onto the first coordinate. Note
also that the input admissible set of the MPC controller is, by definiftn: Xe.

If a projection algorithm is available then the feasible set can be computed. However, as discussed in
Chapter 3, projection is not the most efficient or easiest way to proceed in calculating the feasible set.
An alternative method is to compute tNestepnominalcontrollable set tdCO*F‘,fN (X, T). Depending

on the problem and the algorithms used, the iterative approach might be more efficient.

Theorem 5.1. The feasible séXr (T, N, P) of the MPC regulation problem is given by

Xe(T, N, P) = Kn(X, KOB_ (X, T)). (5.5)

Proof. From the constraints (5.2) the solution to the MPC problem has to satisfy X and( =
h(Xx € U,VI = N,..., P —1, thereforeX i XM, vl = N,...,P —1. Itis also required that
Rp € T, thereforexyx € KO%_\ (X, T).

Furthermore, the constrainfgx € X and(;x € U have to be satisfied for all= 0,... ,N — 1.
Because the problem does not include the effect of any disturbances, it follows that there exists a
control sequence of lengtN such that these constraints can be satisfied if onby if= Xoix €
Kn (X, KO\ (X, T)). O

Remark 5.3.As mentioned earlier, the constraifx € X can be removed. If this constraint has
been removed, then the feasible set is equal to the one-step sei i thé)-step controllable set to
KOB_y(X, T),i.e.Xg (T, N, P) = Q (Kn_1 (X, KOB_y (X, T))).

It is useful to note that the feasible set is equal to the one-step controllable set to the feasible set of the
MPC problem with a control and prediction horizondf— 1 andP — 1.

10ccasionally, the argument®, N, P) in Xg (T, N, P) will be dropped for simplicity of notation.
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Corollary 5.1.

Xe(T,N, P) = Q(Xg(T,N -1, P — 1)) N X (5.6a)
= K1i(Xg(T,N —1, P — 1)). (5.6b)

Proof. This follows by observing that
Xe(T, N, P) = Kn(X, KOB_((X, T)) = Q(Kn-1(X, KOB_\ (X, T)) N X
and

Xe(T,N -1, P —1) = Kn_1(X, KOB_ (X, T)).

Furthermore, ixy, € X (T, N, P), then after implementing the resulting control the state at the next
time instant will be contained in the feasible set of the MPC problem with a control and prediction
horizon ofN — 1 andP — 1:

Lemma5.1.

XOlk S XF(T, N, P) = )21“( € XF(T, N—-—1P— 1) . (57)

Proof. Similar to the proof of Theorem 5.1, it can be shown thgt € Kn_1(X, ICO*,L_N(X, T)) =
Xe(T,N — 1, P — 1). Alternatively, it could be argued that one can drive the system fkgm
to ICOE,?N(X, T) in N steps only if it is possible to drive the system frofqy = f (Xox. Uok) tO
KO (X, T)in N — 1 steps. O

This result provides one with a possible way of recovering from infeasibility without the need for soft
constraints.

Corollary 5.2. If there are no disturbances present and the MPC problem with horizons N and P is
feasible at time k, but infeasible at timetkl, then the MPC problem with horizons Nl1and P— 1
is feasible at time k- 1.

This process can be repeated uiil= 0, if necessary, at which point the state will lie inside the
sethO';_N(X, T) and one could switch to the control law = h(xy), in a fashion similar to dual-
mode MPC [MM93]. However, so far no assumptions about the invarian@iehafs been made and
constraint satisfaction for all time cannot be guaranteed.
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MPC as a Minimum-time Control Scheme

Another interesting interpretation of the above result is thit # P, then by decreasing the horizon
at each time step one can drive the systeffi i@ N steps. This behaviour is similar to the “minimum-
time” control algorithms described in [KG87, MS97].

However, in the latter the controllable setsToare computed off-line. It is determined on-line
for which pair of setsxx € KCn(X, T)\Kn_1(X, T). A control is then computed such that,; €
Kn_1(X, T). This process is repeated fiNrsteps, at which point,,n € T.

ProvidedT is control invariant, the same minimum-time behaviour and constraint satisfaction for all
time can be achieved using MPC without having to compute the controllable sets off-line and having
to search through all controllable sets in memory.

5.3 Causes of Infeasibility in MPC

An important fact to recognise is that infeasibility can occur even if there are no disturbances and no
model mismatch. This problem of guaranteeing nominal feasibility is inherent in the MPC formula-
tion.

As was mentioned earlier, due to tfikite-horizonnature of MPC, the control at the next time instant
could be different from the previously computed value. There are basically two ways in which the
MPC problem could become infeasible:

e A bad choice of design variables (horizons and cost function) could result in a solution with
>A<’1"|k € X\XE. Sincexx,1 ¢ Xg, the MPC problem will be infeasible at the next time instant;

o If Xp\Coo(X) # @it is possible thaﬁ{lk € Xg\Co(X), which will result inXg,1 ¢ Coo(X).
Since there does not exist a control sequence which will satisfy the constraints if the state is
outside the maximal control invariant set, the MPC problem will become infeasible at some
future time, even though it will be feasible at tirker 1.

The use of soft constraints [SR99, Mac01] is one way of solving the infeasibility problem and will be
discussed in Chapter 7. However, this is not the best approach to addressing nominal feasibility. State
constraints will be violated at some future time, even in the absence of disturbances if the solution to
the soft-constrained problem resultsfdm< € X\Co (X). This chapter addresses the nominal feasibil-

ity issue by providing conditions oN, P andT under which feasibility (and hence state constraint
satisfaction) can be guaranteed for all time, without the need for soft constraints.

Another important issue to consider is the fact that the solution to Problem 5.1 might be sub-optimal.
Schemes which rely on the optimality of the solution to guarantee feasibility and stability lose their
guarantee of feasibility if the solution is sub-optimal. For example, in [BTMO0Ob] a method is de-

scribed for analysing the feasibility and stability of a given MPC scheme. It is assumed that either
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the on-line computed control input is optimal or that the MPC control law has been computed off-line
as described in Section 7.4. Sub-optimality of the control law might invalidate the analysis results,
depending on the values used TN andP.

Finally, the choice ofF(-) and L(., -) also affects the feasibility of the resulting MPC controller.
Though it does not affect the feasible 3gt, it will affect whether the feasible set is a positively in-
variant set for the closed-loop system. Once again, a sub-optimal solution might invalidate feasibility
results based on the cost function.

Therefore, one of the aims of the approach adopted in this chapter is to derive conditions based on the
standard MPC framework of Problem 5.1 whidb not rely on the cost function or optimality of the
solution

Before proceeding, some further definitions are needed to define precisely the aspects of feasibility
that will be considered.

5.4 Fundamental Definitions and Results for Nominal Feasibility

By definition the MPC regulation problem is feasible at tikniéand only if xx € Xg # . However,
one is interested in guaranteeing that once feasible, the MPC problem will always be feasible:

Definition 5.1 (Feasible for all time). The MPC problem ideasible for all time ke N if and only if
the initial statexg belongs to the feasible set and all future evolutions of the state of the closed-loop
system belong to the feasible set, kg1 = f (Xk, k(Xx)) € Xg,Vk e N

With this definition, the first result follows from the discussion in Section 5.3 and is a necessary and
sufficient condition for guaranteeing that the MPC problem is feasible for all time:

Lemma 5.2. The MPC problem is feasible for all time if and only if & X NC,,(X) and the solution
to the MPC problem results ifo’l"lk € Xg NCpr(X) forallk > 0.

Definition 5.2 (Feasible control input). Given a state, a control inputuy is feasibleif and only if
the state-input paifxx, ux) is compatible with the constraints of the MPC problem, uieis feasible
if and only if there exists a control sequenef = [0g,, Oy, ... , Oy_y ) With dgi = Uy such that
(X, ') satisfies (5.2).

In other words, a control input is feasible if and only if it is the first element of a feasible solution to
the MPC problem. The feasible set is therefore the set of states for which a feasible control input (and
sequence) exists. Note that if a control inpuadmissibleit is not necessarilyeasible For a given

state the set deasibleinputs is a subset of tredmissiblenputs.

As discussed, the MPC problem might become infeasible at some point in timasdbsatbf initial
states contained iKr. It is desirable to design the controller such tfwatall initial statescontained
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in Xg, the MPC problem will be feasible for all time. An infeasible MPC problem can then be treated
as a process exception; the constraints should be softened in order to compute a control action and the
operator alerted that constraint violation is probable.

Definition 5.3 (Strongly feasible). The MPC problem istrongly feasibldf and only if for all xo €

Xf andfor all sequences of feasible control inputs the MPC problem is feasible for all time. Equiva-
lently, the MPC problem is strongly feasible if and only if for all € X and feasible control inputs,
Xk+1 € XEg.

If the feasible set is strongly feasible, then one can guarantee that the MPC problem will never become
infeasible if there are no disturbances or model uncertainty. It is this noti@trarig feasibility,

which is independent of optimality or the cost function, which will be used throughout to investigate
feasibility in MPC. This strong feasibility result is also guaranteed in the traditional MPC approaches
when using a control invariant terminal set [MRRSO00].

Though this definition might result in conservative guarantees for feasibility, it does provide a good
basis from which to proceed. By introducing additional assumptions, such as the optimality of the
solution or a guarantee that the cost function will decrease at each time step, one might be able to
obtain better results.

Set invariance theory immediately provides one with the following condition for guaranteeing that the
feasible set will be strongly feasible.

Proposition 5.1. The MPC problem is strongly feasible only if the feasible 3gtis a control
invariantset for the systemo; = f (X, Uy).

Itis important to note that control invariance is only a necessary condition for a strongly feasible MPC
problem. The design variables which determine whekeis control invariant aréN, P, h(xx) and

T. All the design variables, including the cost functidféx,) and L (X, ux), and the optimality of

the solution determine wheth&: is positively invariant for the closed-loop system. As discussed in
Section 5.3, the aim of this chapter is to determine feasibility conditions independent of the choice of
cost function or optimality of the solution.

The setXr is a control invariant set only K¢ is a subset of the maximal control invariant 6gt(X).

This means that the feasible set cannot be larger than the maximal control invariant set if the MPC
problem is to be strongly feasible. A design goal would therefore be to obtain an MPC control problem

with a feasible set as close as possible in size to the maximal control invariant set. The concept
of finite-determinedness of controllable sets is useful in obtaining results relating to the size of the

feasible set and will be discussed in the following sections.

One might also be interested in determining whether increasing the control and prediction horizons
or choosing a new terminal set will significantly increase the size of the feasible set. This can be
determined by calculating what fraction of the volume of the maximal control invariant set the new

feasible set is, in relation to the old feasible set. Comparing volumes might be misleading and an
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alternative is to use an approximation test for set equality as in Section 3.3.2. Relevant metrics still
need to be developed in order to determine the change in size of the feasible set.

5.5 The Need for a Terminal Constraint Set

The idea of using a terminal constraint to guarantee nominal stability (and feasibility) was introduced
in [KG88], where the terminal constraint was chosen to be the ofiigia= {0,}. However, this
constraint reduces the size of the feasible set and could result in numerical convergence problems in
the optimisation, especially when working with nonlinear models [May00].

One of the most popular methods for guaranteeing that the MPC problem is strongly feasible, is to
choose a control invariant terminakt [MM93]. By choosing the terminal constraint to be a set,
rather than the origin, the size of the feasible set is increased and most of the numerical convergence
problems are addressed.

Though the terminal constraint idea seems to have been embraced by the academic community, it still
needs to find its way into industry. This is due to a number of factors:

e The addition of a control invariant set could result in a smaller feasible set for the same control
horizon, as stated in Proposition 5.2. However, it might be possible to increase the size of
the feasible set with only a small increase in the control or prediction horizon. By increasing
the prediction horizon one could get an increase in the size of the feasible set without a large
increase in computational overhead, as discussed in [DMMSO00, ZA98];

e The computation of a sufficiently large control invariant terminal set is believed to be com-
putationally expensive. However, this computation is done off-line and computation speed is
therefore less important;

e The addition of a terminal set increases the overhead in the optimisation. With the availability
of efficient interior-point methods [RWR98, Mac01] with a time complexity independent on the
number of constraints, this will probably be less of an issue in the future;

e The invariance condition is only sufficient and it would be nice to see under what circumstances
it becomes a necessary condition or whether a better solution to the feasibility problem exists;

e By modifying the original MPC formulation and adding more mathematics such as set invari-
ance theory, some transparency is lost. The results and tools from set invariance theory therefore
need to presented in the most simplistic form possible, while still capturing the essential con-
cepts. For safety-critical applications guarantees of controller performance is required and set
invariance might be able to provide such guarantees.

For the reasons mentioned above, this chapter investigates to what extent the invariance condition on
T is necessary in guaranteeing feasibility.
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5.6 A Generalised Sufficient Condition for Strong Feasibility

The following sufficient condition can be thought of as a generalisation of the “control invariant
terminal set” condition of [MM93]. The proof differs from the traditional “shifted control” approach
generally adopted for proving feasibility for MPC schemes with a control invariant terminal set. The
main idea here is to show thatxf is in the feasible set, thex.,1 = f (X, x(Xx)) is also in the
feasible set.

Lemma 5.3. If Xg (T, N, P) is control invariant, then the MPC problem with a control horizon of
N = N + 1 and a prediction horizon oP = P + 1 s strongly feasible.

Proof. Xg (T, N, P) is control invariant if and only if

XF(Tv Nv P) g Q(XF(Tv Nv P)) .

Recall thatXr (T, N, P) = Ky (X, KO_ (X, T)) and that

Xe(T,N+1,P+1 =Kyu(X, IC(’)',LN(X, T) = QX (T, N, P)) N X.

If xx € Xg(T, N + 1, P + 1), then after implementing any feasible control input,
Xir1 € KnCK, KOB_ (X, T)) = Xe(T, N, P) € Q(Xe(T, N, P)).

Sincexy,1 must also be contained i, ;1 € QX (T, N, P)) N X. However, this implies that
Xkr1 € Xg (T, N+1, P+1), since Corollary 5.1 states th&E (T, N+1, P+1) = Q(Xe(T, N, P))n
X.

The MPC problem is therefore feasible at the next time instant. By induction, the MPC problem is
feasible for all time. Since this holds for any arbitrary element X (T, N + 1, P 4+ 1) and any
feasible control input, the MPC problem is strongly feasible. O

Remark 5.4.This result holds even Xg (T, N — 1, P — 1) and/orT are not control invariant.

This result is useful from both a theoretical and practical viewpoint, since one can choode any
and increasdé® and N to see whether the feasible set becomes control invariant for some values. If
the feasible set is control invariant then by increasing the complexity of the optimisation by a small
amount (i.e. increasing the control and prediction horizons by one), one can guarantee that the MPC
problem is strongly feasible.

The next result follows immediately.

Theorem 5.2. If Xg (T, N, P) is control invariant, then the MPC problem with a control horizon of
N > N + 1 and a prediction horizon o = P + N — N is strongly feasible.
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Figure 5.1: Plot showing that even if the terminal set is not control invariant, the MPC problem is
strongly feasible iN = P > 4

Proof. From Lemma 5.3, ik (T, N, P) is control invariant, theXs (T, N + 1, P + 1) is strongly
feasible and hence also control invariant. The result follows by induction. O

This result will be used throughout the chapter and implies that increasing the control and prediction
horizons by the same amount will result in a strongly feasible MPC problem.

Remark 5.5.A necessary and sufficient condition for the MPC problem to be strongly feasible, is
given later by Corollary 6.1.

Example 5.1. Consider the system

11 0.5
Xkl = X Uy, 5.8
k+1 |:0 1] k + |: 1 ] k (5.8)

with the input constrained tdu|, < 1 and the states constrained {&|,, < 5. The target set
T = {x € R? | |Xll« < 1} is not control invariant and the control and prediction horizons are
equal P = N. Figure 5.1 is a plot ofl' and the controllable set&n (X, T) = Xg(T, N, N) for
N=1...,64
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Recalling that a se® is control invariant if and only if2 € Q(£2) and that the inequalityCy (X, T) C
Q(Kn_1(X, T)) holds, one can determine graphically thai (X, T) and K»(X, T) are not control
invariant, but thatIC3(X, T) is. Theorem 5.2 implies that an MPC problem with the giffeand
horizons N= P > 4 will be strongly feasible, even thoughis not control invariant.

5.7 Equal Control and Prediction Horizons

The terminal controlleh(xx) does not affect the feasible set if the control and prediction horizons are
equal. The only design variables that determine the geometrical properties of the feasible set are the
control horizonN = P and the terminal constraint s&t

5.7.1 Terminal SetT = X

The following new result on the feasibility of the MPC problem considers the case when the terminal
constraint set is equal to the state constraints. This theorem tells one what happens with the feasibility
of the MPC problem if the terminal constraint set is effectively “remo¥ed”

Theorem 5.3. Let P= N andT = X:

1. The feasible set is equal to the N-step admissible set:
XX, N, N) =CyX).

The feasible set contains the maximal control invariant set:
CooX) C X (X, N, N).

The feasible set is control invariant if and only if the maximal control invariant set is finitely
determined and the control horizon is equal to or greater than its determinedness fndex i

Xe(X, N, N) € QXe(X, N, N)) 6 Coo(X) =Cir(X), N =173

2. The MPC problem is strongly feasible if the control horizon is larger than the determinedness
index i* of the maximal control invariant sét, (X), i.e. N> i* 4+ 1;

3. Alarger control horizon results in amallerfeasible set. The size of the feasible set stops
decreasing if and only if the maximal control invariant set is finitely determined and the control
horizon is larger than its determinedness index, i.e.

1" > N;g > Ny & Xp(X, N1, Np) € Xp(X, Ng, Np) .
Furthermore,

Xe(X, N, N) = Coo(X) = G+ (X), YN > i*.

2In the sense of replacirf with the original state constraints.
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Proof.

1. From Theorem 5.1 and the definitions of controllable and admissible sets, the feasible set is
given by

Xe(X, N, N) = Ky (X, KOB(X, X)) = Kn(X, X) = Cn(X) .

By constructionC..(X) C Cn(X), hencelCo(X) € X (X, N, N).

Since(; (X) contains the maximal control invariant set afdX) is control invariant only if
Ci(X) C Co(X), Ci (X) is control invariant if and only i€; (X) = C..(X). However, this is only
possible ifC., (X) is finitely determinedC., (X) is finitely determined if and only if there exists
ani such that; (X) = j11(X). As a consequenc&r (X, N, N) = Cy(X) is control invariant
if and only if C, (X) is finitely determined and\ > i*.

2. The first statement says that an MPC problem With= P andT = X is control invariant if
and only ifN > i*. Theorem 5.2 then implies that an MPC problem with control and prediction
horizonP = N > i* + 1 is strongly feasible.

3. This follows from the fact tha€y,1(X) € Cn(X). The strict inclusionCyy 1 (X) € Cn(X)
holds if and only ifN < i*, since Theorem 2.3 implies théf, .1 (X) = Cn(X) if and only if
the maximal control invariant set is finitely determined ahd- i *.

Theorem 5.3 implies that one cannot choose the design variables such that the MPC problem is
strongly feasible if and only if the maximal control invariant set is not finitely determined. In general
one cannot guarantee finite determinedness or that the determinedness index will be small enough for
the controller to be implementable. As such, one cannot choose values for the control horizon which
would make the MPC problem strongly feasible. It might be possible that a redesign of the state
and/or control constraints or the system might solve the determinedness problem, but it is in general
not clear how to proceed if this is the case.

This result also implies that if one were wanting to do without the terminal constraint and keep the
control and prediction horizons equal, then a strongly feasible MPC problem will result if the maximal
control invariant set is finitely determined and the control horizon is larger than the determinedness
index. It could therefore be argued that a terminal constraint set is necessary if the required control
horizon is too large for the available computation power. By adding a terminal set and choosing a
smaller control horizon, it might be possible to get a strongly feasible MPC controller with a suffi-
ciently large feasible set.
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Assuming the Solution is Optimal

A subset of the feasible set might still be positively invariant for the closed-loop system and this
region might be large enough for all practical purposes. However, calculating this region is diffi-
cult, even if the internal model is LTI. It is shown in [BMDPO0Oa] that for MPC problems with LTI
models and polyhedral constraints, the closed-loop system is a piecewise-affine (PWA) function. A
method for computing a region of attraction of the origin for PWA systems is described in [BTMO00a].
In [BTMOODb] this procedure is used to calculate a positively invariant subset of the closed-loop sys-
tem, where it is assumed that the optimal solution will be obtained at each time step.

Another approach which is based on findiagriori a lower bound for the control horizon which
guarantees that the finite and infinite horizon costs are equal, given a set of initial states, is described
in [CM96]. With the appropriate assumptions on the system and the cost function, if the finite and
infinite horizon costs are equal, then the origin of the closed-loop system is an asymptotically stable
fixed point (and feasibility for all time is guaranteed). A similar idea is described in [PN0OOa, PNOOb],
but allowing for a difference between the finite and infinite horizon costs. Though an explicit terminal
constraint is not present in all of these formulations, the results rely on guaranteeing that the terminal
state lies in some control invariant set.

5.7.2 Control Invariant Terminal Set

The following theorem contains the well-known control invariant terminal constraint condition [MM93,
MRRSO00].
Theorem 5.4. Let P = N and the terminal constraint set becantrol invariantsubset ofX, i.e.
TC T NX:
1. The feasible set is equal to the N-step stabilisable set:
Xe(T, N, N) =Sn(X, T).
The feasible set is control invariant and contained within the maximal control invariant set:

Xe(T, N, N) € Coo(X);
2. The MPC problem is strongly feasible;

3. Alargercontrol horizon results in éargerfeasible set. The size of the feasible set stops increas-
ing if and only if the maximal stabilisable set is finitely determined and the control horizon is
larger than its determinedness indéxi.e.

i*> N; > Nz < Xg(T, Ng, Np) D Xg(T, Nz, Np) .
Furthermore,

Xe(T,N, N) = 8 (X, T) = 5i«(X, T), YN > i
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Proof.

1. From Theorem 5.1 and the definitions of controllable and stabilisable sets, the feasible set is
given by

Xe(T, N, N) = Ky (X, KOBX, T)) = Kn(X, T) = SN(X, T).

SinceT is control invariant, it follows from the first property in Proposition 2.7 tRRi(X, T)
is control invariant. The sefy (X, T) = Xg (T, N, N) is control invariant only ifSy (X, T) €
Coo(X).

2. SinceXg (T, N, N) is control invariant for allN > 0, it follows from Theorem 5.2 that the
MPC problem withN = P > 1 is strongly feasible.

3. This follows from the second property in Proposition 2.7. The strict set incldgion(X, T) D
Sn(X, T) holds if only if N < i*, since Theorem 2.2 implies th&f 1 (X, T) = Sy(X, T) if
and only ifS,, (X, T) is finitely determined antN > i*.

0

In addition to the above result, the following result implies that by changing the terminal constraint
set fromT = X to T c X, given the same control horizon, the feasible set will be contained within
the original feasible set:

Proposition 5.2. Let T be a control invariant set. If N= P, then the feasible set of an MPC problem
with T C X is contained within the feasible set of an MPC problem Witk X, i.e.

Xe(T, N, N) € Xeg(X, N, N).

Furthermore, ifS,, (X, T) is not finitely determined of..(X, T) is finitely determined with deter-
minedness index iand N < i*, then

Xe(T,N,N) C Xe(X, N, N).

Proof. RecallCn(X) = X (X, N, N) and if T is control invariant, they (X, T) = Xg (T, N, N).
SinceSN(X, T) C Coo(X) andCoo(X) € Cn(X) it follows that Sy (X, T) € Cn(X). This gives the
first inclusion.

N < i*ifand only if S\(X, T) € Sny1(X, T). Combining this with the fact thafy1(X, T) C
S (X, T) C Coo(X) € Cn(X) givesSn (X, T) ¢ Cn(X). This gives the second inclusion. O

Theorem 5.4 and Proposition 5.2 imply that if the maximal stabilisable set is finitely determined, then
one could determine the size of the control horizon which will maximise the feasible set. It also tells
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one that an increase in control horizon will not increase the size of the feasible set. In some cases
it happens thaf., (X) = S, (X, T) and that both sets are finitely determined. One can then choose
the control horizon which minimises the computational overhead. For examplearifd j* are the
determinedness indices 6f,(X) and S, (X, T), respectively, then one could choose thend N

such thatN = min(i*, j*).

Increasing the Horizon Length Until Xy € T

A remark could be made with regards to the discussion in [SR98, Sect. 4A] and [RR99]. The authors
argue that a terminal set should not be included in the MPC problem, as it increases computational
overhead. They propose that after each optimisation it should be checked whether the terminal state
Xy lies in a control invariant terminal set and if not, increase the control horizon by some heuristic
and repeat the optimisation until the terminal state lies in a control invariant set. This requirement is
mainly due to the fact that the authors require the finite and infinite horizon costs to be equal.

This approach suffers from two main drawbacksxdf¢ C,,(X) then the terminal state will never

lie in a control invariant set foany control horizon and the process of increasing the control horizon

will only result in an infeasible problem at some future time. Secondly, the problem is restricted to
slower processes, since the control horizon has to be increased repeatedly before applying the control
input. In [SR98, Sect. 4B] the authors propose that one switch to an MPC controller which is known
to be stabilising, such as one with a terminal constraint, if a control horizon is not obtained which
guarantees optimality. This adds unnecessary overhead to the MPC problem.

Furthermore, if the sampling time of the process has already been fixed, then this puts a restriction on
the size of the optimisation problem which can be solved between samples. This immediately places
an upper bound on the control horizon. By fixing the control horizon to this value and including

a control invariant terminal constraint in the optimisation one not only maximises the feasible set,
given the available computation power, but can provide a guarantee that the finite horizon cost will
be equal to the infinite horizon cost for a subset of the feasible set. This subset of optimality cannot
be increased, given the computational power, without changing the cost function and/or computing a
larger control invariant set.

The author of this thesis proposes that the computational overhead of adding constraints in the form
of a control invariant terminal set is minor compared to the overhead of having to repeatedly increase
the control horizon. Recently, in [RWR98] it was shown that if the system is LTI, then interior-point
methods can be used to solve for the MPC control action with a time complex@ydtm-+n)3). In

other words, the time complexity is independent of the number of constraints and linear in the control
horizon length. With this new algorithm, the addition of a control invariant terminal set will result in

a minor increase in the time taken to compute the control action.
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5.8 Different Control and Prediction Horizons

When the prediction horizon is larger than the control horizon, feasibility analysis of the MPC problem
is slightly more involved and it is more difficult to obtain many useful results regarding the feasibility
of the MPC problem.

Proposition 5.3. Assume that the maximal control invariant set is finitely determined with deter-
minedness indeX iand that P> N. If T is any subset ak and P > i*, thenXg (T, N, P) C Co,(X).

Proof. For all xx € Xg(T, N, P) there exists a control sequence of lengthsuch that the state
constraints are satisfied. By recalling the definition of admissible sets it follow&th@t, N, P) C
Cp(X). But P > i*, thereforeCp (X) = Coo (X). O

Note that since Proposition 5.3 does not assume any invariance conditintbe result does not
imply that the feasible set is control invariant. Even with a control invafiant P > N one cannot
guarantee in general that the MPC problem is strongly feasible or even control invariant without
making additional assumptions.

Before proceeding with considering some special cases, the following lemma is useful in understand-
ing Theorem 5.5.

Lemma5.4. LetT C X.

1. If T = X", thenKO"(X, T) = O"(X) for alli > 0. Furthermore, if the maximal positively
invariant set(’)Qo(X) is finitely determined with determinedness indemhenICO{‘(X, T) =
O (X) foralli > i*.

2. If T > X" and the maximal positively invariant S@QO(X) is finitely determined with deter-
minedness index | thenlC(’)ih(X, T) = OQO(X) foralli >i*+ 1.

Proof.

1. Recalling the definitions in Section 2.9, it follows that foriait O:
KOMNX, T) = KOMX, XM = KO; (XM, XM = 0, (XM = ON(X) .

2. Firstly, it will be shown that" (X) € KOMNX, T). If xx € O (X) then after applyingi, =
h(x) fori > i* + 1 stepsxeyi € ON (X). ButO" (X) € X" c T, thereforex, € KOMNX, T).
Secondly, it will be shown by contradiction th@f (X) 2 ICOih(X, T). Assume thaO" (X) ?
IC(’)ih(X, T). This implies that there exists aq € ICOP(X, T) for which the evolution of the
system leaveX" ini* steps or less. However> i* + 1, which implies thavx, € ICOP(X, T)
the system evolution will remain withiK" for the firsti* steps.
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5.8.1 Terminal SetT = X

The next result considers the case when the control and prediction horizons are different and the
terminal constraint set is equal Xa

Theorem 5.5. Let P> N andT = X:

1. The feasible set is equal to the N-stmtrollableset tolCO*,L_N(X, X) for the closed-loop
system .1 = f(Xk, h(xy)), i.e.

Xe(X, N, P) = Kn(X, KOB_\ (X, X)).
The feasible set is not necessarily control invariant;

2. The MPC problem is strongly feasible if thigferencebetween the prediction and control hori-
zons is larger than the determinedness indeafithe maximal positively invariant séthw(X),
i.e. P— N > i* 4+ 1. The condition relaxesto P N > i* if T = X";

3. Assume that N is fixed. Bycreasinghe prediction horizon, the size of the feasibledssts not
increase If the maximal positively invariant sé". (X) is finitely determined and tidifference
between the prediction and control horizons is larger than its determinedness inde&n the
feasible set is equal to the N-step stabilisable sé?taX), i.e.

N+i*+1>P>P,>N=XX,N, P) CXe(X,N, Py
and

Xe(X, N, P) = Sy (X, 08 (X), ¥P = N +i* +1;

4. Assume that B N +i* + 1. A larger controlhorizon results in dargerfeasible set. The size
of the feasible set stops increasing if and only if the maximal stabilisablg.s€f, O (X)) is
finitely determined and the control horizon is larger than its determinedness irideg. |

1> N1 > N2 & Xp(X, Np, P) D X (X, N, P).
Furthermore,

Xe(X, N, P) = Soo (X, 00 (X)),VN > j*, P> N+i* + 1.
Proof.

1. From Theorem 5.1 and the definitions of controllable sets, the feasible set is given by
Xe(X, N, P) = Kn(X, KOB_y (X, X)).

Since no further assumptions have been made, one cannot deduce anything about the invariance
of the feasible set.
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2. If P—N > i*+1, then by the second statement in Lemma 5.4 it foIIowsI(EﬁE_N(X, X) =
Ol (X). This implies thatkr (X, N, P) = Kn (X, ON (X)). But O (X) is control invariant for
the systemk,1 = f (X, Uy, thereforeXg (X, N, P) = Sy(X, O (X)).

The feasible set can be seen to be equal to that of an MPC problenNwithP and a control
invariantT = O" (X). Strong feasibility follows from Theorem 5.4. The relaxation follows
from the first statement in Lemma 5.4.

3. If PL > P, thenKOp (X, X) € KOB_\(X,X) follows from the definition of the sets.
As a result of applying Proposition 2.1 repetitively, it follows th&g (X, ICO*F‘,FN(X, X)) C
Kn(X, KOB (X, X)) for all N.

This implies thatXg (X, N, P;) € Xg(X, N, P,). The feasible set for the case whén>
N + i* 4+ 1 was derived in the previous statement.

4. The proof is the same as for the third statement in Theorem 5.4 3@& N, P) = Sy(X, T)
with T = O (X).

O

Remark 5.6.The third statement in Theorem 5.5 says that an increase in the prediction horizon will
notresult in an increase in the size of the feasible set. Depending on the dizé & more likely that

an increase in the prediction horizon leads to a decrease in the size of the feasible set. The decrease
in the size of the feasible set then stops if and only i N is larger than the determinedness index

of O (X).

Note that ifP — N < i*, then one cannot guarantee that the feasible set is control invariant, except that
there exists a subset of the feasible set which is control invariant. It is also difficult to say anything
useful about the size of the feasible set with respect to the length of the horizons.

Theorem 5.5 leads to the following well-known result which is useful when the determinedness index
of O (X) is known.

Corollary 5.3. If O (X) is finitely determined with determinedness indesxtien the feasible set of
an MPC problem with terminal constraifit = (’)QO(X) and N = P is equal to the feasible set of an
MPC problem withT = X and P > N +i* + 1, i.e. Xg(O" (X), N, N) = Xg(X, N, P) for all

P > N +i* 4+ 1. Both problems are strongly feasible.

This result implies that if the system is LTI, the constraints are given by linear inequalities and the
control law is lineah(xx) = Kxg, then it is probably more efficient to use a terminal set rather than
settingP — N to be larger than the determinedness indexOff(X). This is because the number

of inequalities describing@". (X) will be no more than the extra number of inequalities in the MPC
problem withP — N > i* 4+ 1. When computingi)';o (X), it is nearly always the case that the number

of inequalities are less, therefore making the MPC problem Witk= P andT = O" (X) more
efficient than one wittP — N > i* + 1 andT = X.
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5.8.2

Control Invariant Terminal Set

In general, ifT is any control invariant subset &fandP > N, it is difficult to say anything about the
feasibility of the MPC problem. However, the following theorem is usefm)jg(X) is complex and
it is easy to obtain a simple expression for a positively invariant subgef ¢K). It also says that an
increase in the prediction horizon will not result in a decrease in the feasible set.

Theorem 5.6. Let P > N and the terminal constraint séit be a positively invariant set for the
closed-loop systemcx = f (X, h(x)), i.e. 07 (T) = T € O" (X):

1.

Proof.

The feasible set is equal to the N-sgabilisableset toICO';,fN(X, T), i.e.
Xe(T, N, P) = Sn(X, KOB_\ (X, T)).

The feasible set is control invariant;

. The MPC problem is strongly feasible;

Assume that N is fixed. Bycreasinghe prediction horizon, the size of the feasibleds®s not
decreaself the seﬂCOQo (X, T) is finitely determined and thdifferencebetween the prediction
and control horizons is larger than or equal to its determinedness ingaken the feasible set
is equal to the N-step stabilisable setlwgo(X, ), i.e.

N+i*>Py>P,>N=Xg(T, N, P)2Xg(T, N, Pp)
and

X (T, N, P) = Sn(X, KOL (X, T)), VP — N > i*;

Assume that P- N is fixed. A largeicontrolhorizon results in dargerfeasible set. The size of
the feasible set stops increasing if and onlgdf (X, ICOE,?N(X, T)) is finitely determined and
the control horizon is larger than its determinedness index.¢.

j* = Ny > N2 & Xg(T, Ng, P) D Xg(T, Np, P)
and

Xe(T, N, P) = Soo (X, KO _\ (X, T)), YN > j*.
Furthermore, ifS. (X, KON (X, T)) = Ss(X, KO (X, T), then

Xe(T, N, P) = Soo (X, KO (X, T)),VN > s*, P — N > i*.
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1. SinceT is positively invariant forx,, 1 = f (X, h(Xx)), ICO*;,_N (X, T) is also positively invari-
ant and hence control invariant fex,; = f (X, ux). From Theorem 5.1 and the definitions of
controllable and stabilisable sets, the feasible set is given by

Xe(X, N, P) = Kn(X, KOB_( (X, T)) = Sn(X, KOB_n (X, T)).

2. SinceXg(T, N, P) is control invariant for allN > 0, it follows from Theorem 5.2 that the
MPC problem withP > N > 1 is strongly feasible.

3. If PL > P, thenKOB (X, T) 2 KO} _\(X,T) 2 KOIX,T) 2 T, sinceT is pos-
itively invariant. As a result of applying Proposition 2.1 repetitively, it follows that for all
N, Kn(X, KOB (X, T) 2 Kn(X, KOR (X, T)). This implies thatXg (T, N, P1) 2
Xe(T, N, Py).

The feasible set for the case when> N + i* follows from the fact thatCO" (X, T) =
KON (X, T),¥P — N > i*,

4. The proof proceeds along similar lines as for the third statement in Theorem 5.4, since the
feasible seKg (T, N, P) = Sy(X, T) with a control invarianfl’ = IC(’)*F‘_N X, ).

O

The conclusion that increasing the difference between the control and prediction horizon could result
in a larger feasible set, providéilis positively invariant for the systemx,1 = f (Xx, h(x)), is also
reported in [DMMSO00]. This idea of using different control and prediction horizons to reduce the
computational burden in MPC, while enlarging the region of feasibility, is also discussed in [ZA98].

5.9 Nominal Stability in MPC

This chapter deals mainly with feasibility in MPC. As such, the results in this chapter do not neces-
sarily imply anything about the stability of the closed-loop system. Strong feasibility does not imply
stability.

If the feasible set is bounded and the MPC problem is strongly feasible, then one can think of the
system as being nominally stable in a weak Lyapunov sense. However, one is often interested in
obtaining stronger stability guarantees, such as asymptotic and exponential stability.

One way in which stability can be ensured for suboptimal solutions, is to add constraints to the MPC
problem which ensure that the cost will not increase with time [SMR99]. With some additional
assumptions on the system and cost function, it can be shown that feasibility implies asymptotic
stability (and feasibility for all time).

Another way of ensuring exponential stability for suboptimal MPC, is to choose the terminal set to be
acontractive constrainfdM00], .9.T £ {Rpjx € R" | [[Rpll < a||Xokll}. Feasibility could possibly
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be a problem, but with a proper choice of the contraction parametef0, 1), feasibility for all time
can be guaranteed.

The usual way of ensuring stability is via some kind of Lyapunov argument. The reader is referred
to [MRRS00, DMS00, May00] for surveys on stability results in MPC which are based on this ap-
proach.

Usually the following assumptioAstogether with optimality of the solution at each time step, are
made when using a direct Lyapunov argument to prove that the origin is an asymptotically stable
fixed point with region of attractio&Xr [MRRSO00]:

1. h(x) € U,V¥x € T, i.e. the control lawh(x) is admissible irT;
2. f(x,h(x)) € T,vx € T, i.e. T is positively invariant for the systemk,; = f (X, h(x));
3. There exists a positivesuch that the stage castx, u) > c||(x, u)||2 andL (0, 0) = 0.

4. F(x) is positive definite and-(f(x, h(x))) — F(x) < —L(X,h(X)),¥x € T, i.e. F(-) is a
control Lyapunov function in a neighbourhood of the origin;

It can be shown that the above assumptions allow one td/tigg) as a Lyapunov function for the
closed-loop system.

Strictly speaking, optimality at each time step (and hence uniqueness of the solution) is not needed to
ensure convergence to the origin. The Lyapunov method is based on guaranteeing that at each time
step, the new control sequence is such that the cost decreases, i.e.

V*(Xkr1) < VF(Xk) -

If the above conditions hold, and a feasible control sequeﬁbwas found at timd, then the control
sequence

N Y Y % al
T, = [ullk’ u2|k’ ey UN71|k’ h(XN|k) ]

is feasible at timek + 1 and results in a lower cost than the cost obtained at kméth 7). By
initialising the problem with the time-shifted control sequence found at the previous time step and
appending it witth(-), convergence to the origin is guaranteed even if the solution is suboptimal.

If the following additional assumptions hold, then the origin of the closed-loop system is an exponen-
tially stable fixed point: there exist positive constaaté andc such that
1. alx|* < V*(x) < bl|x||?, vx € X¢;

2. V*(f(x,h(x))) — V*(x) < —c||x||?, VX € Xf.

3Sometimes some continuity assumptions fonL and F are included to guarantee existence of a unique solution to
Problem 5.1 [Rao00, Chap. 5], though these can often be dropped in practice.
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It is interesting to note that the conditidn(x, u) > c||(x, w)||?> > c||x||? is sufficient to guarantee
exponential stability, providedF (.) is chosen such that*(x) < b||x||?, ¥x € T [MRRSO00, App. Al.
For example, ofterr (x) = X' Qg x with Qr > 0 is the chosen control Lyapunov function.

Because of the fact that asymptotic stability is guaranteed, fogall Xg\T, the system is guaran-
teed to entefl after a finite number of steps. Exponential stability follows since the conditions for
exponential stability are satisfied for alle T.

As before, optimality and uniqueness of the solution is not required to guarantee exponential stability.
The optimisation problem need only be initialised with the shifted feasible control sequence found at
the previous time step.

5.10 Summary

A standard formulation for the nominal MPC regulator was given. The formulation allows for different
control and prediction horizons as well as the inclusion of a terminal constraint set.

Even in the absence of disturbances, infeasibility occurs in MPC mainly because of the finite hori-
zon nature of the problem. The feasible set of the MPC problem was defined and the reasons for
infeasibility occurring in MPC were discussed.

The notion of strong feasibility was introduced. An MPC problem is strongly feasible if and only if it
is feasible for all time, even if the solution is sub-optimal. A new sufficient condition was derived for
guaranteeing strong feasibility, even if the terminal constraint is not control invariant. An equivalent
statement of the condition is that if

Xe(T,N—-1,P—-1) C Xg(T, N, P),

then the MPC scheme with control and prediction horizondl @ind P is strongly feasible.

The effect of the horizons and terminal constraint set on the geometrical properties of the feasible
set was investigated. A new result on the possible need for some kind of “feasibility constraint” was
found during this study. If the control and prediction horizons are equal and the terminal constraint
set is equal to the state constraints, then the MPC problem can be made to be strongly feasible if and
only if there exists a finitéN such that

XEX,N,N) =XpX,N—-1,N —-1).

In general, such all is not guaranteed to exist.

Finally, some well-known conditions on guaranteeing nominal stability in MPC were given.

4By replacinga with c.



Chapter 6

Robust Feasiblility in Model Predictive
Control

A necessary and sufficient condition for robust feasibility is given. The design of robustly feasible
MPC controllers via the addition of a robustness constraint is discussed. A new necessary and suffi-
cient and some new sufficient conditions are given for the proposed scheme to be robustly feasible.
The implementation of the scheme for linear systems with parametric uncertainty is given. A proce-
dure for computing a setpoint which is compatible with the constraints and disturbances is given.

6.1 Introduction

Recall the definitions for the feasible set and feasible control inputs, as in Section 5.4. This chapter
deals with determining whether the MPC problem will be feasible for all time, despite any disturbance

sequences that might occur. Feasibility must also be independent of the optimality of the solution to
the MPC problem. The definition of strong feasibility in the presence of disturbances is extended to
the following:

Definition 6.1 (Robust strongly feasible). The MPC problem isobust strongly feasiblé and only
if for all feasible state-input pairs and allowable disturbances the MPC problem is guaranteed to be
feasible at the next time instant.

Sections 6.2—-6.4 will mainly be concerned with a system given by

Xer1 = Fu(, U) + fu(wi) - (6.1)
LTI systems with polytopic uncertainty and state disturbances will be considered in Section 6.5.
Before proceeding, define

D2 f,(W). (6.2)

89
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Itis assumed that @ W and 0= f,(0) and that the state is measured.

6.2 A Necessary and Sufficient Condition for Robust Feasibility

This section deals with deriving a necessary and sufficient condition for strong robust feasibility for
the MPC problem considered in Chapter 5.

By recalling the definition of the nominal reach set from Section 2.3
R(Q) £ X1 €R" | Ixc € Q, Uk € Ut Xpey1 = Feu(Xi, U}, (6.3)
it is possible to state the following:

Lemma 6.1. For Problem 5.1 the following holds true:

1. For all Xk € Xg (T, N, P) and for all corresponding feasible control inpuf, Xix =

2. Forall X3x € R(Xg (T, N, P)) N Xg (T, N — 1, P — 1) there exist arkox € X (T, N, P)
and a corresponding feasible control inpiigx such thatkyx = fxu(Xok, ojk)-

3. Forallstates x,1 € (R(Xe (T, N, P))NXe (T, N — 1, P — 1)) ® D there exist a stateyxe
Xg (T, N, P), a corresponding feasible control inpagy and an allowable disturbancey <
W such that ;1 = fyu(X, 00|k) + f, (wy).

Proof.

1. This follows from Lemma 5.1 and the definition of the reach’8€¢Kr (T, N, P)). If Xok €
X (T, N, P) and a feasible control input has been found, tkgne R (Xg(T, N, P)) has to
be true, since a feasible control input is also admissible.

2. If Xy € R Xg (T, N, P))NXg (T, N — 1, P — 1) then there exists a feasible control sequence
{0} which will take the system fromy, to KO (X, T) in N — 1 steps. Also, there ex-
ists anadmissiblecontrol inputlok and arkok € X (T, N, P) such thayx = fxu(Xok, Gok)-
However, the appended sequerﬁﬁ@}g“l is a feasible control sequence which will drive the
system from the giverigy to ICO';_N(X, T) in N steps, viakyk. Hence the sam@y is also
feasible

3. Recalling the definition ob and the Minkowski sum, it follows immediately thiik,; €
(RXe(T,N,P)NXp (T,N -1, P —1)) & D there exists akyx € R (Xg (T, N, P)) N
Xg (T,N — 1, P — 1) and a disturbancey € W such thatx,;1 = Xy + fi, (wi).

From the second result, it follows that there must also exiskgne Xg (T, N, P) and a
feasible control inputigy such thatikyx = fxu(Xo, o). SinceXox = Xk, the result follows.
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Remark 6.1.Note that, in general,
Xe(T,N—-1,P—1) ¢ R(Xg (T,N, P)) .
If this set inclusion does not hold, then
RXe (T,N,P)NXeg(T,N=LP -1 #Xeg(T,N—1,P—1).

Definition 6.2. Assuming no disturbances, the set of st&gg-c reachable fronXg (T, N, P) using
control inputs which are feasible for the MPC problem is

Rumpc 2 {Xr1 € R | (X, 7)) which satisfies (5.2) X1 = fxu(X, Qo)) - (6.4)

Given the above result and definition, the following result can be given.

Proposition 6.1. Assuming no disturbances, the set of states reachableXsoffi, N, P) using fea-
sible control inputs is

Rmpc = RXp(T,N,P)NXe(T,N—-1,P - 1). (6.5)

Proof. The fact thatRypc 2 R(Xg(T, N, P)) N Xg(T, N — 1, P — 1) follows from the second
statement in Lemma 6.1.

If Rmpc g REXe(T, N, P)NXe(T,N—-1, P—1), then eithele+1 ¢ Xe(T,N—-1,P-1), which
contradicts Lemma 5.1, o1 ¢ R(Xg(T, N, P)) which contradicts the definition of the reach set.
Therefore Rypc € RXe(T, N, PY) NXe(T,N -1, P - 1). O

RXE(T, N, P)) is the set of states reachable from the feasibleXsgfl, N, P) using admissible
control inputs, while the s (Xg (T, N, P)) N Xg (T, N —1, P — 1) is the subset which is reachable
using feasiblecontrol inputs. The seR(Xg(T, N, P)\Xg(T,N — 1, P — 1) is the set of states
reachable using admissible control inputs which are incompatible with the constraints of the MPC
problem over the prediction horizon.

With this understanding of the set of states reachable using feasible control inputs, one can derive a
necessary and sufficient condition for strong robust feasibility.

Theorem 6.1 (Robust strongly feasible).The nominal MPC regulator is robust strongly feasible if
and only if

(RXe (T,N,P)NXeg (T,N—1LP—-1)®DCXg (T, N, P) . (6.6)
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Proof. (=) If the problem is robust strongly feasible then forxalle Xg (T, N, P) it is true that for
all corresponding feasible control inputs and for all allowable disturbaxngas= Xix + f,(wk) €
Xe(T, N, P).

Assume that the set inclusion does not hold. The third statement in Lemma 6.1 implies that for all
Xkt1 € {(R(Xe (T, N, P) NXe (T, N -1, P - 1)) ® D} \Xe (T, N, P)

there exist axx € Xg (T, N, P), a corresponding feasible control input and an allowable disturbance
which will result inxy1 = fxu(Xk, Jo) + fu(wk) ¢ Xe (T, N, P). This contradicts the assumption
that the MPC problem is robust strongly feasible and the set inclusion therefore has to hold.

(<) By the first statement in Lemma 6.1,
Xk € Xg(T,N,P) = Xk e REe (T,N,P)NXe (T,N-1,P-1).

After applying a feasible control input, then for all allowable disturbances it is truexihat =
Kk + fu(wr) € R Xe (T, N, P)) NXe (T, N -1, P — 1)) @ D. But this set is contained inside
Xk (T, N, P), hence the problem is feasible at titkg- 1, despite the presence of a disturbance.

O

This statement says that a nominal MPC scheme is robust strongly feasible if and only if the Minkow-
ski sum oflD and the intersection &fg (T, N — 1, P — 1) with the set reachable frodg (T, N, P)
is a subset of the feasible s&t (T, N, P).

Corollary 6.1. Assuming there are no disturbances present, then the nominal MPC regulator of Prob-
lem 5.1 is strongly feasible if and only if

Remark 6.2.This result is stronger than Theorem 5.2 and can be used to prove Theorem 5.2.

Theorem 6.1 is useful for analysing the robust feasibility of a given MPC regulator. If the nominal
MPC problem satisfies this criterion, then no modifications need to be made in order to robustify the
controller. By increasing the size ®Y until (6.6) is violated one can calculate the size of disturbances
to which the closed-loop system will be robust.

Theorem 6.1 was derived for obtaining a condition for guaranteeing strong feasibiligl] feasible
(optimal and suboptimal) control inputs are considered. This result could therefore be conservative in
practice. Itis possible that the MPC scheme will reject a larger set of disturbances when implemented,
due to the fact that the optimisation routine might try to steer the system towards the origin, rather
than towards the boundary & (Xg (T, N, P) N Xg (T, N — 1, P — 1).

The following example shows that a nominal MPC scheme can be robust strongly feasible without
having to make any modifications to the original formulation.
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Figure 6.1: Plot showing that the given nominal MPC scheme is robust strongly feasible for an un-
known disturbance withjw||o < 0.333

Example 6.1. Consider the system:

) 1ol [ros|, [1o0 68)
= Wk , .
1= 1™ o os] T |o 1] ¢

with no constraints on the states.

The input is constrained tful|,, < 1 and the disturbancéw|,, < y. The target sefl' = {0,} and
the control and prediction horizons are equal=P N.

Figure 6.1 is a plot of the reach s&(XF ({02}, 5,5)) and the feasible setXr ({0}, N, N) =
Sn(R?, {0,})) for N = 4 and5. As the figure shows,

RXe ({02}, 5,59) NXe ({02}, 4, 4) = Xe ({02}, 4, 4) .
It was found that

Xe ({02}, 4, 4) ® EW C Xp ({02}, 5,5) if y < 0.333
and

Xr ({02}, 4, 4) @ EW ¢ X¢ ({0}, 5,5) if y > 0.333.
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Figure 6.2: Plot showing that the given nominal MPC scheme for the double integrator is not robust
strongly feasible for any size of disturbance

This implies that the nominal MPC regulator with N 5 is robust strongly feasible for allw||, <
0.333

The next example demonstrates that a nominal MPC scheme for the double integrator is not robust
strongly feasible given any arbitrarily small disturbance set. It is only strongly feasible in the nominal
sense.

Example 6.2. Consider the double integrator:

11 0.5 10
Xkl = Xk + Uk + , 6.9
e[t G e} 9o o0

with no constraints on the states. The input is constraingplifg, < 1 and the disturbancéw|, <
y. The target sef’ = {0,} and the control and prediction horizons are equakPN.

Figure 6.2 is a plot of the reach s (Xg({0,}, 5,5)) and the feasible setXg ({0}, N, N) =
Sn(R?, {05)) for N = 4 and5.

As can be seen,

RXr ({02}, 5,5) N Xr ({02}, 4, 4) = Xp ({02}, 4, 4)
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andXg ({02}, 4, 4) intersects the boundary & ({0,}, 5, 5), hence
Xr({02),4,4) ® EW ¢ Xp ({02}, 5,5)

foranyy > 0.
This implies that the given MPC controller with N 5 is not robust strongly feasible, even though it

has nominal strong feasibility.

It would be desirable to determine whether one can synthesise a predictive controller to be robust to
ana priori determined disturbance set. The robust synthesis problem is the focus of the rest of this
chapter.

6.3 Min-max Robust MPC Schemes

This section briefly describes the two main robust model predictive control (RMPC) schemes found
in the literature - open-loop and feedback RMPC. Both approach the problem from a min-max point
of view. The control tries to minimise the worst-case cost that could result from a future disturbance
sequence.

In both cases it is usually assumed that the control and prediction horizons are equal, i.e.
N=P.

In order to guarantee that the RMPC scheme is robust strongly feasible the terminal coffisisaint
chosen to be a robust control invariant set

T < O(T).

The open-loop RMPC problem is given by:

Problem 6.1 (Open-loop RMPC). Solve

N-1
min - max F&) + ) Lk, Gig) (6.10)
T {dikeWly i=0
subject to
RKiruk = T K Gr, Wi, Kok = Xk (6.11a)
)A(||kEX, 0||k€U, | 20,... ,N—l (6.11b)
Kk € T (6.11c)

The decision variable is

N A ~ ~ A~ /
T = [u0|k’ u;_lk, ey U/Nfllk] . (612)



96 CHAPTER 6. ROBUST FEASIBILITY IN MODEL PREDICTIVE CONTROL

Following the discussion in Section 2.6, the feasible set of open-loop RMPC is

X¥ = {xoeR" | I{ug e U}y : {x e X} xn € T,V {wy € Wi} . (6.13)

The feedback RMPC problem is given by:

Problem 6.2 (Feedback RMPC).Solve

N-1
min  max  F(&nj) + Z L (Rik» Qi) (6.14)
e {ikeW}o i—0
subject to
Xiryk = T K G, Wik, Xojk = Xk (6.15a)
)}Z”kGX, 0||kGU, I =O,... ,N—l (615b)
Uik = h(XiK), l=1,...,N—-1 (6.15c)
)?N|k eT. (615d)
The decision variable is
N2 o h (R o h (R | (6.16)
Ty ok: M(Xyk) - XNy |- :

The only real, but very important, difference between Problems 6.1 and 6.2 is the choice of decision
variable. In open-loop RMPC the decision variable is a corstegluencef lengthN and in feedback
RMPC the decision variable is the conttaiv h(.).

Some authors, such as [MRRSO00], prefer using the more general sequence of control laws

’
T[ll\‘ 2 [OE)lk’ hl ()?1“()/ yees thl ()A(;\l—llk):l

as the decision variable for feedback RMPC. By choosing a single control law as the feedback policy
implicitly puts a causality constraint [SM98] on the sequence of control laws in the sense that the
control is independent on the path taken to reach the state, kg, a‘ndkﬁk are the estimates of the
state for two different disturbance sequences, then

ol o2 A a2
Kk = Xk = Uik = U -

As is often the case, if the system is time-invariant, the terminal constraint is robust control invariant
and the disturbance sequence does not depend on previous values of the disturbance, then no benefit
in terms of the size of the feasible set of the RMPC scheme is gained from using a controller with
memory. A memoryless control law is sufficient for guaranteeing that the region in which constraint
satisfaction for all time can be guaranteed, is maximised. By solving for a single, memoryless con-
troller as in Problem 6.2 the complexity of the min-max problem is reduced and the presentation and
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development of theoretical results is simplified. The idea of optimising over a single feedback policy
for MPC of LTI systems is adopted in [KBM96, SM98], the former for polytopic uncertainty and the
latter for bounded state disturbances.

Following the discussion in Section 2.6, sintes robust control invariant, the feasible set of the
feedback RMPC problem stated above is

X = KneX,T). (6.17)

As mentioned before, the main difference is that open-loop RMPC tries to find a sequence of control
inputs, whereas feedback RMPC tries to find a control law which will guarantee constraint satisfaction
over the control horizon. A simplistic way of appreciating the difference between the two schemes is
to realise that open-loop RMPC assumes that the control sequence computedkawtiirbe applied

blindly for N steps, without measuring the state and recomputing a new control sequence at each of
the subsequent time stepssilglecontrol sequence is chosen such fieatall allowable disturbance
sequences the constraints will be satisfied.

Clearly, by choosing different control sequences for different disturbance sequences will be less con-
servative. Feedback RMPC takes into account that at each point in the future the state will be measured
to determine which disturbance has occurred. Based on this knowledge of where the actual state lies
compared to the previously predicted range of possible values, a different control can be computed.
Feedback RMPC assumes that feedback will be used over thé\rgbefps and incorporates this into

the prediction. As a result, the feasible set of feedback RMPC is often much larger than for open-loop
RMPC, i.e.

ol fb
Xg cc Xg .

Though feedback RMPC is in principle a good idea, it is fairly difficult to implement and compu-
tationally expensive. Min-max RMPC schemes require determining all possible future evolutions of
the disturbance sequence over the control horizon. Even if some special properties about the sys-
tem and disturbances hold, such as linearity and convexity [SM98], the computations quickly become
intractable as the horizon is increased.

The aim of the next section is to describe a method for robustifying MPC via the inclusion of a “ro-
bustness constraint”. The proposed scheme does not suffer from having to predict all possible future
disturbance evolutions on-line, but relies on the off-line computation of a robust control invariant set.
The addition of this constraint to the original MPC problem usually increases the computational load
by a minimal amount compared to traditional min-max RMPC schemes. Furthermore, in principle the
feasible set of the modified MPC problem can be made to be as large as possible.
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6.4 Robust Feasibility via a Robustness Constraint

The idea of adding a constraint to the nominal MPC problem to robustify the system against persistent
state disturbances was proposed in [CZ99]. This approach to solving the robust feasibility problem
has a number of benefits over the traditional robust MPC schemes.

This section also gives a new necessary and sufficient condition for the MPC problem with a ro-
bustness constraint to be robust strongly feasible. Some new sufficient conditions are also given in
Theorem 6.4, which are generalisations of [CZ00c, Thm. 5] and therefore less conservative. In Sec-
tion 6.5 it will be shown that this approach can also be extended to LTI systems with parametric
uncertainty and state disturbances.

The original MPC problem of Chapter 5 is modified by placing an additional constraii,oryp-

ically the constraint is derived from a robust control invariant set containéfl an X (T, N, P),
depending on the problem at hand. It is then requiredhitie inside the Pontryagin difference of

this pre-computed set and the disturbance set. As will be shown in the sequel, this constraint allows
one to modify a nominal MPC scheme in order to guarantee robust strong feasibility.

Problem 6.3 (MPC with a Robustness Constraint).[CZ99, CZ00c] Solve

P—1
min F(Xp) + Z L (i, Gijk) (6.18)
Tk i=0
subject to
K1k = Fxuik, Qi) Ro = Xk (6.19a)
Xk € Xp ~ D (6.19b)
>2||keX, 0||kGU, [ =0...,P-1 (619C)
Ok = hXiw). l=N,...,P-1 (6.19d)
Xpk € TC X (6.19¢)

The decision variable in the above MPC problem is the control sequence

N _ Iy A/ A/ 4
me = [ Ojes -+ » O]

The problem posed above is the same as Problem 5.1, but with the robustness constraint (6.19b) added
to the original MPC constraints. It is assumed tat € X. No assumption about strong feasibility
of the original MPC problem is made.

Remark 6.3.Note that, in contrast with the min-max RMPC schemes, Problem 6.3 does not minimise

the worst case cost, nor does it make use of explicit predictions of the future behaviour of the distur-
bance. TypicallyXr is a robust control invariant set and by choosing the parameters appropriately,

strong robust feasibility can be guaranteed. The effect of the disturbance is implicitly taken into ac-
count by requiring that the predicted state at the next time instant lie inside a robust control invariant
set.
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The feasible sétis defined in a similar fashion as in Section 5.2 to be the set of states for which a
control sequence exists which will satisfy the constraints in Problem 6.3.

Theorem 6.2 (Feasible set of MPC with robustness constraint)The feasible seX® of the MPC
controller defined by Problem 6.3 is given by
X = L1(X, Xr ~D) NXp(T,N =1, P — 1))
= O((Xg~D)NXe(T,N-1,P-1)NX.

(6.20)

Proof. The fact thatkyx € Xg(T, N — 1, P — 1)) follows as with Theorem 5.1. Additionally, it is
required thakyk € Xg ~ D, henceXox € Q(Xr ~ D) NXe(T, N — 1, P — 1)). Finally, Xok € X,
henceXok € Q((Xg ~ D) NXe(T, N — 1, P — 1)) N X and the result follows from the definition of
controllable sets. O

Remark 6.4.If the constraintkyx € X is removed, then
XF=9((Xg~D)NXe(T,N—-1,P—-1)). (6.21)

Furthermore, sinc&gr ~ D C X, the explicit constraink;x € X can be removed without changing
the problem.

The next result is a necessary and sufficient condition for Problem 6.3 to be strongly feasible.

Theorem 6.3 (Feasibility of MPC with robustness constraint). Problem 6.3 is robust strongly fea-
sible if and only if

REE)NEr~D)NXe(T,N-1LP-1)oDcXF. (6.22)
Proof. The proof follows the same argument as that of Theorem 6.1. O

The important thing to note about this result is that it does not regidr®r the originalXg to be

robust control invariant and can hence also be used for analysis. If this condition is satisfiefthen

is robust control invariant. Furthermore, none of the following conditions on their own are necessary
nor sufficient for Problem 6.3 to be robust strongly feasible, since one can find counter-examples to
these conditions:

XRr € Xp(T, N, P),

Xr~D S Xp(T,N, P).

However, the following theorem provides some sufficient conditions to guarantee that Problem 6.3 is
robust strongly feasible.

1The notationXg (T, N, P) is still meant to denote the feasible set of Problem 5.1.
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Theorem 6.4 (Sufficient conditions for MPC with a robustness constraint).
1. If XR is robust control invariant and
Xr~DCXg(T,N—-1,P —1), (6.23)
then Problem 6.3 is robust strongly feasible and
X = K1(X, Xg ~D) = QXg ~D)NX. (6.24)
2. If X is robust control invariant and
Xgr C Xg(T,N—1,P — 1), (6.25)

then Problem 6.3 is robust strongly feasible and

X = KX, Xg ~ D) = QXgr ~ D) NX. (6.26)
3. If
Xg € Xp(T, N, P) (6.27)
and
Xe(T,N—1,P -1 CXg~D, (6.28)

then Problem 6.3 is robust strongly feasible and

XE =Xg(T,N, P). (6.29)
Proof.

1. f Xg ~D C Xg(T, N — 1, P — 1), then it follows thatXg ~ D) N Xg(T,N — 1, P — 1) =
Xgr ~ D and hence from Theorem 6.2 tH8f = O(Xr ~ D) N X.
Recall that(Xg ~ D) @ D € Xg € X and from the geometric condition for robust control
invariance thaKr € Q(XR) = Q(XRr ~ D), which implies thaiXr C Q(Xg ~ D) NX.
If X« € X, then for all feasible inputg;x € Xg ~ D and for all allowable disturbances
Xki1 € Xr~D) @D € Xg € QXgr ~ D) NX = XF.

2. This result follows immediately from the first statement, sige~ D C Xg(T, N—1, P—1).

3. fXg(T,N—-1,P —1) € Xg ~ D, thenitfollows thatXg ~ D) NXg(T,N -1, P - 1) =
Xe(T, N —1, P —1) and hence from Theorem 6.2 tH8f = O(Xg(T,N-1L P-1))NX =
Xe(T, N, P).
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If Xe(T,N—1,P—-1) C Xg~D, thenXg(T,N—-1,P -1 @D < (Xg ~ D) ®D. Recall
alsothatXg ~ D) @ D € Xg € X (T, N, P).

If X« € X, then for all feasible input$;x € Xg(T,N —1,P — 1) € Xg ~ D and for
all allowable disturbances,1 € Xg(T,N -1, P-1)dD C Xg~ D) D C Xg C
Xe(T, N, P) = XF.

O

Remark 6.5.The method for constructin&kr given in [CZ00c] satisfies the second condition in
Theorem 6.4. Given aa priori chosenN = P andT = O" (X), the authors propose setting
Xgr = Sw=(X, O (X)), whereM* is the largesM such thatSy (X, O (X)) € Sy_1(X, O (X)) =
Xe(T,N — 1, N — 1). A better choice would be to séfr = C.o(Xg(T,N — 1, N — 1)) or

to setXg = So(Xp(T, N — 1, N — 1), O" (X)), since it is easy to show via contradiction that
Sy (X, ON (X)) € Soo(Xe(T, N —1, N — 1), O" (X)) € Coo(Xg(T, N — 1, N — 1)).

Remark 6.6.If Xg(T,N -1, P — 1) = Sn_1(X, OQO(X)) as in Remark 6.5, then another method
which improves on the one given in [CZ00c] is to fiMf, the largesM such thatSy, (X, @QO(X)) ~

D C Sy_1(X, O (X)) and settingkr = Sy (X, O (X)). Similarly, an improvement on the latter
scheme is to find*, the largestM such thatSy (Xg (T, N, P), OF (X)) ~ D € Sy_1(X, O (X))
and settingXg = Su+(Xg(T, N, P), @QO(X)). Strong robust feasibility is then guaranteed in both
cases by the first condition in Theorem 6.4.

Remark 6.7.The last result in Theorem 6.4 does not requfiigto be robust control invariant. Fur-
thermore, the robustness constraint is effectively redundant and the constiaiet Xg ~ D can

be removed if the third statement holds for the given MPC scheme with robustness constraint. Theo-
rem 6.1 then guarantees strong robust feasibility.

6.4.1 Implementation of MPC with a Robustness Constraint
The idea of using a constraint to guarantee feasibility can be implemented in one of two ways:

e GivenXg, choose arN, P andT such that one of the conditions in Theorems 6.3 or 6.4 holds;

e Given an MPC controller, choos€r such that one of the conditions in Theorems 6.3 or 6.4
holds.

Which approach is the most appropriate is dependent on the structure of the system. For example, for
a general nonlinear system iz is the maximal robust control invariant set, then the first approach
might not work if the terminal constraint is chosen such figt(X, T) € Xr ~ D, since no choice

of control horizon will result inXg ~ D € X (T, N — 1, P — 1). On the other hand, experience has
shown that for LTI systems there nearly always exists a choice of horizons which results in one of the
conditions in Theorems 6.3 or 6.4 holding.
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The first approach can be implemented as follows:

1. Given:XRg and the resultingg ~ D;

2. Choose/compute a terminal constrdihtthe maximum allowed control horizoNmax and a
value for the differencé® — N;

3. SetN <« 1;

4., ComputeXg(T,N -1, P —1);

5. ComputeXg(T, N, P) = O Xe(T,N—-1, P - 1)) NX;

6. If any of the robust feasibility conditions in Theorems 6.3 or 6.4 hold, then stop;

7. If N < Npmaxthen setN < N + 1 and go to step 5, else go to step 2.
The second approach can be implemented as follows:

1. Given: aterminal constraifit and values for the horizor® andN.

2. ComputXg(T,N — 1, P — 1) andXg(T, N, P) = OQXg(T,N - 1, P — 1)) NX;,
3. ComputeXg = Coo(X);

4. If any of the robust feasibility conditions in Theorems 6.3 or 6.4 hold, then stop;
5. ComputeXg = Coo(Xp (T, N, P));

6. If any of the robust feasibility conditions in Theorems 6.3 or 6.4 hold, then stop;

~

. ComputeXg = Coo (Xe(T, N — 1, P — 1));

ProvidedC’oo(XF(’JI‘, N — 1, P — 1)) # @, the last choice foKg will always work, since the second
statement in Theorem 6.4 will hold. Obviously, alternative choiceXfpare possible, such as those
proposed in Remarks 6.5 and 6.6.

6.4.2 Benefits of MPC with a Robustness Constraint

The following are some benefits of using the robustness constraint approach in guaranteeing robust
feasibility in MPC:

e Traditional robust MPC schemes based on the min-max approaches discussed in Section 6.3
typically result in computationally impractical implementations. This is because, as the horizon
increases, the number of possible sequences of disturbances can grow exponentially and often
also the number of steps required in solving the min-max problem.
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What the robustness constraint approach offers is a guarantee for robust feasibility with the
addition of only a minimal amount of on-line computational effort. For example, if the cost
function is quadratic, the system is LTI and the constraints are given by polyhedra, then a single
QP is sufficient for solving for the MPC control action.

e An additional benefit of the robustness constraint approach is that one can robustify an existing
MPC controller without having to redefine the problem in a substantial way. A new choice of
terminal constraint, horizons or cost function is not necessary.

e The use of a terminal constraifit alone does not give a robust feasibility guarantee. The
robustness constraitlir ~ D does away with the need for relying on a terminal constraint to
guarantee feasibility.

However, often the terminal constraint is used to provide a stability guarantee. The robustness
constraint allows one to seek alternative ways of guaranteeing stability without having to rely
on the use of a terminal constraint.

o In principle (particularly for LTI systems) the MPC problem can be made to be robust strongly
feasible over as large a subsefXofs possible. For example, by settifig= X andN = P one
can choos& g = C»(X). The MPC problem will be robust strongly feasible with a feasible set
X = Q(Co(X) ~ D) NX, for any choice oN.

6.5 LTI Systems with Parametric Uncertainty

If the system is LTI with no uncertainty in the matricgs, B) and only additive state disturbances are
present, then all the results in Sections 6.2 and 6.4 can be used to guarantee robust strong feasibility.
However, if there is parametric uncertainty(i, B) as in Section 3.1, then a few small modifications

need to be made to Problem 6.3 and care has to be taken which matrices are to be used in the different
parts of the MPC problem.

It is assumed that the actual system is given by
Xkr1 = AX¢ + Buk + Ewy (6.30)
where
(A, B) € A £ conv{(A1, By, ..., (Ap. Bp)} (6.31)
andwy € W, whereW is a polytope containing the origin.
Before proceeding, one has to choose a nominal matrix pair
(Ao, Bo) € A (6.32)

which will be used in the constraints and cost function of the MPC problem. The MPC problem then
becomes:
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Problem 6.4 (Robustly feasible MPC for LTI systems with parametric uncertainty). Solve

P-1
Tii“n FRep) + Y LKk Gijk) (6.33)

i=0

subject to

K11k = AoXik + Boli, Kok = Xk (6.34a)
Aj )A(0|k + Bj 00|k € XXR ~ D, j =1...,p (634b)
)A(||kEX,O||kEU |=0,...,P—1 (6.340)
Ok = (R, l=N,...,P—-1 (6.34d)
Xpk € T C X (6.34e)
The decision variable in the MPC problem is still the control sequeite- [og)lk, Ul -+ O’N_llk] .

The vertices of the matrix polytope are included in the robustness constraint (6.34b). Due to convex-
ity, if the constraints are satisfied for all vertices, then the constraints will be satisfied for all points
contained in the convex hull.

Some slight modifications need to be made to the results in Section 6.4. It is easy to verify that the
feasible set of the robust MPC problem is given by
duceU:

X' = {xk e X (6.35)

Aij+ BjUkGXXR’V]D),j =1...,p,
AoXy + Boug € Xg(T,N -1, P — 1) '

whereXg (T, N — 1, P — 1) is computed using the nominal matrix péa#y, Bo) andX{® can then be
computed using a projection method.

Due to plant-model mismatch the necessary and sufficient condition of Theorem 6.3 does not nec-
essarily hold. However, due to convexity the sufficient conditions of Theorem 6.4 hld i
A-contractive and. is such that. < A < 1. The following substitutions need to be made:

Xg~D < AXg~D
and

Q(Xg ~ D) < Qx(AXg ~ D).

6.6 Robust Stability

As with nominal stability, it is desirable to obtain stability results for the various RMPC schemes. The
conditions in Section 5.9 need to be strengthened as follows to guarantee robust asymptotic stability
for the open-loop and feedback RMPC schemes:
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1. h(x) € U,V¥x € T, i.e. the control lavh(x) is admissible irf;

2. f(x,h(x),w) € T,vx € T,Yw € W, i.e. T is robust positively invariant for the system
Xer1 = (X, h(x));

3. There exists a positivesuch that the stage castx, u) > c||(x, u)[|> andL (0, 0) = 0.

4. F(x) is positive definite andF (f (x, h(x), w)) — F(X) < —L(X, h(X)),¥x € T,Vw € W, i.e.
F(-) is a robust control Lyapunov function in a neighbourhood of the origin;

These conditions guarantee that the worst-case cost in the min-max RMPC schemes will decrease at
each time step. Robust asymptotic stability follows.

However, with the robustness constraint MPC scheme of Section 6.4, the worst-case cost does not
come into play, since the scheme does not rely on explicit predictions of the disturbance. Nevertheless,
a robust stability result can be obtained.

Definition 6.3 (Asymptotic stability of a perturbed system). [SRM97] The origin is an asymptoti-
cally stable fixed point of the perturbed syst&m; = G(Xx) + wy if and only if:

1. there exists strictly positive constamt@&nd i such that the solution of the perturbed system
X1 = G(X«) + wy remains in a balB, for all k > 0, if X, € By, g # r for someq, and
wg € B, for allk;

2. the solution of the perturbed systéin; = G(Xk) + wy converges asymptotically to the origin,
if Xo € Bg, wx € B, for all kandwy — 0 ask — oo.

Theorem 6.5 (Asymptotic stability of a perturbed system).[SRM97] Let G: R" — R" satisfy a
Lipschitz condition in a neighbourhood of the origin withi® = 0. If the origin is an exponentially
stable fixed point of x; = G(xx), it is an asymptotically stable fixed point of the perturbed system
Xkr1 = G(Xk) + wk.

Let G(Xk) = fyxu(Xk, Kk (Xx)) be the description of the nominal system in closed-loop with the robust-
ness constraint MPC control law of Section 6.4, where the parameters have been chosen such that
the origin is an exponentially stable fixed point (see Section 5.9). An additional Lipschitz continuity
assumption o1& (-) guarantees robust asymptotic stability of the system, provigdd an asymptot-

ically decaying disturbance aiill is bounded.

An unresolved question is for which class of systems the Lipschitz continuity of the resulting closed-
loop system holds. For LTI systems where the inequalities are linear and the cost is quadratic, the
optimisation problem becomes a QP. It can be shown that the solution of the QP is Lipschitz continu-
ous over the feasible set [Hag79, Mea94, BMDPQ0Oa]. As a result, the closed-loop system is Lipschitz
continuous and the stability result is applicable.
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This observation that if the system is LTI then the resulting closed-loop system is robust asymptot-
ically stable, is also noted in [SR98, Thm. 2]. However, feasibility for all time is not guaranteed
in [SR98]. With the addition of a robustness constraint to the original (nominal) MPC problem, both
strong robust feasibility and robust asymptotic stability can be guaranteed for LTI systems with an
asymptotically decaying disturbance.

As mentioned in [Mea94, SRM97, SM98], the output feedback case can be addressed by cascading
an asymptotically stable state estimator with an exponentially stable MPC scheme. The errors in the
estimation can be treated as disturbances on the state. By assuming a bound on the effect of the errors
on the state and incorporating this into the MPC controller, a stable closed-loop system results with
guaranteed feasibility.

6.7 Output Feedback

The case of output feedback has always been one of the main problems in MPC because of the fact
that there is always some error between the actual and estimated state. All guarantees of feasibility,
even if there is no plant-model mismatch or disturbances, are lost if the initial state estimate differs
from the true state.

However, if one has an asymptotically stable estimator and one can place a bound on the error, then
it is easy to see that by defining the error as a bounded state disturbance pfiani chosen size,

then one can synthesise a predictive controller with a robustness constraint which incorporates this
fact. Furthermore, if the nominal MPC scheme is exponentially stable and satisfies some Lipschitz
conditions, then the origin of the estimator-controller-plant system is an asymptotically stable fixed
point, as mentioned in Section 6.6.

To see why errors in output feedback can be treated as a state-disturbance, consider the LTI system

Xk+1 = AXc + B
Yk = CX

in closed-loop with a feedback control law
U = KRk,
where the estimate of the current st&g is provided by an observer of the form
Rik—1 = ARk—1jk-1 + Blk_1
Rk =1 (Y Xijk—1) -
The error between the estimated and the actual state is given by

& = Rk — X - (6.36)
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If one implements the control law, then the closed-loop system

X1 = AXc + BK(X + &)
Yk = Cx
is equivalent to

Xkr1 = (A+ BK)x¢ + Ewg
Yk = CX,

with E = BK andwyx = e&. The error in the estimate is scaled by the control law and produces a
control input which is slightly perturbed from the ideal control layv—= K x, which would have been
possible if there were state feedback.

If the control law or plant is nonlinear as with MPC, then an analysis of this kind is more difficult.
In the case of an MPC controller in closed-loop with an LTI system, the controller can be computed
off-line and it results in a piecewise affine control law, as discussed in Section 7.4.2, i.e.

Ug = Ki)zk“( + gi, if )}Zk|k eCRj.
The closed-loop system is then also a piecewise affine system

X1 = (A+ BKYX + Bg + E'wg, for R € CR;
Yk = CX,

where the estimation err@; = wy is still treated as a state disturbance with= BK'. Given a
bound on the errag < E, this analysis can be performed for all critical regidf#®; and a disturbance
setW computed.

For large systems this kind of analysis might be impractical. Prior to controller desighwhich

is ‘sufficiently large’ to include the effect of state estimation errors and actual state disturbances can
be chosen. Combining this heuristic approach with a robustness constraint already provides one with
some kind of robustness guarantee, compared to a standard MPC scheme which has no robust feasi-
bility guarantee.

Finally, one could design the estimator such that the error size is robust to the unmeasured state
disturbances [Bla90, Sect. IV]. The estimator parameters have to be chosen such that there exists
a robust positively invariant set contained within tgriori chosen bounds oe.. An alternative

way of including output feedback in MPC is to incorporate set-based estimation techniques [Sch68,
Hny69, Sch73, CGZ96, CGVZ98] into the predictive controller [BG00, CZ00b]. However, the meth-
ods proposed in [BG00, CZ00b] propagate the uncertainty in the state forward in time using open-loop
predictions. Because of the fact that the predictionsopen-loop this approach is conservative and

the controller could therefore have a small feasible set. An MPC scheme with a robustness constraint
which assumes a bound on the size of the estimation error can be designed to have a larger feasible
set, given the same control horizon.
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6.8 Setpoint Calculation

In most applications the operating level as required by the operator changes during the lifetime of
the process. A controller which has been designed to operate around a single set-point is therefore
not very practical. The problem with many MPC schemes is that a large change of set-point could
result in an infeasible MPC problem at some future time. The MPC controller has therefore got to be
designed to drive the system from one operating point to another without violating the constraints.

Many approaches have been proposed for designing MPC controllers to allow for varying set-points.
One of the solutions which has received a large amount of attention is the concept of using a reference
governor [GKT95, GK99]. In the standard approach it is assumed that some stabilising controller,
which does not explicitly take account of the constraints, has been desigmaéati. The reference
governor then modifies the reference at each time step in order to avoid the violation of constraints.
These ideas have been applied in a predictive control context [BCM97, BM98, Bem98], where some
form of uncertainty in the impulse/step response can also be assumed.

In [CZ00a] a method is described which combines the reference governor approach with an MPC
controller. The region of attraction of the reference governor is enlarged by allowing the controller
to not only modify the reference, but the input as well. Bounded state disturbances are dealt with by
adding a robustness constraint to the original MPC problem, as in Section 6.4.

An alternative solution to the set-point tracking problem is to derive an MPC controller for a family of
set-points [FCAOQ]. In this approach, a “pseudo-linearisation” of the plant is used to obtain a closed
form expression for the MPC controller parameters as a function of the set-point.

More fundamental than taking the system from one set-point to another, is that of determining a set-
point which is compatible with the constraints and disturbances [MR93]. The problem of determining
a setpoint, assuming no disturbances, is discussed in [Mus97]. A procedure for computing the setpoint
for systems with measured disturbances is described in [RR99] and an algorithm which explicitly ac-
counts for model uncertainty is given in [KBHOO]. This section discusses the problem of determining
a setpoint when there are unknown, but bounded state disturbances.

6.8.1 Computation of a Compatible Setpoint for LTI Systems
Consider the LTI system

Xk :AXk—i-BUk‘i‘EU)k
i (6.37)
Yk = CX + Fux,

wherewy € W andvg € V are the disturbances wiith, 0) € W x V. Itis required thauy € U
andyy € Y for all time. The desired set-points for the inputs and outputs are givery land vy,
respectively.
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The problem becomes that of determining a steady-state equilibrium for thexgtateAxss + Buss
and inputugs such that the steady-state outgyt = CXgs iS close toyy in some sense and that the
constraints can be satisfied for all allowable disturbahces

Note that the disturbances are unknown. If the output constraints are to be satisfied for all state and
output disturbances, then the state has to be kept inside a robust control invariant set contained inside
the output admissible set, i.e.

X € C- (X?),Vk e N (6.38)
where the output admissible &t is given by

X ={xeR"|Cx€Y~FV}. (6.39)

An inner approximation t@o(X‘P) can be computed using the algorithms given in Chapter 3¢ et
denote an inner approximation to the maximatontractive setfgo(Xd’). The problem can then be
restated as finding ans and admissibl@iss such that the constraints

Xes € Q2 ~ EW (6.40a)
XSS = AX55+ BUSS (6.40b)

are satisfied anglys andusg are as close as possibleygandug.

Remark 6.8.Note that it is required thatss € 2 ~ EW and not jusixss € Q. If only the latter were
enforced, then it is possible that at steady-state, a state disturbance could drive the system outside the
output admissible set.

The issue is complicated by the fact that the number of inputs and outputs often differ. If there are

more inputs than outputs, then multiple combinations of inputs may produce the same output. If there
are less inputs than outputs, then it is possible that there does not exist a combination of inputs which
will ensure that all desired output values are met. Furthermore, it is often more desirable to satisfy

some steady states and give up on others if it is not possible to get an exact golution

If @ ~ EW andU are given by linear inequalities, then ad hocway of computing the optimal
setpoint is to solve the following soft-constrained quadratic program:

. 1 1 / /
min > [8 Qsst + (Uss — Ud)" Res(Uss — Ud)] + Ossf (6.41)

Xss; Uss, €

2Recall from Section 2.2 that the output constraints can be recast as constraints on the shate; ! is replaced
with X?, the output admissible set.

3The setpoint determination then becomes one of a multi-objective optimisation problem [MSB92]. There are several
proposals for dealing with multi-objective problems and an approach based on mixed-integer programming is discussed in
Chapter 8.
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subject to the constraints

Xss = AXss + BUss (6.42a)
Xss € 2 ~ EW (6.42b)
Usse U (6.42c)
Ya — CXs = ¢ (6.42d)
Yo — CXss = —¢ (6.42¢e)
Oxe, (6.42f)

whereQss = 0 andRss = 0. The weightgss > 0 is chosen sufficiently large such that the soft

constraint is guaranteed to be eXacthe uniqueness of the solution is guaranteed if the system is
detectable [RR99, App. Al.

Due to the exact penalty nature of the problem, the optimisation routine tries to minimise the slack
variabless before minimisinguss — ug, thereby assigning a high priority to all the outputs and putting
all the inputs on the same, but lower priority level.

Remark 6.9.Providedqgs is large enough, if any of the slack variables of the solution are non-zero,
then it indicates that the computed steady state is incompatible with the output constraints and distur-
bances. Such a violation should be used to indicate a process exception and the operator should be
notified. Furthermore, an infeasible solution indicates that a steady state is not possible.

Example 6.3. Consider the system:
« 10 o 4+ 1 05 U 4+ 10
= w
T 1™ o os| o 1] ¢
10 o 4+ 10
= Vk ,
Yk o 1% o 1%
with

2y e R?|llyllo < 5}
2 {ueR?|ulle < 1}
{
{

(1>

w € R?[|wl < 0.5}

Y
U
W
V2 {veR||v)o <1} .

The desired outputgyand input  values at steady-state are given as

(][]

4See Chapter 7 for a discussion on how to compute sugh.a
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The first step is to calculate the output admissible set. The output admissible set is

X? £ {xeR?|Cxe Y~ FV]
=[x e R?| Xl < 4} .

The second step is to calculate the maximal robust control invarian€.s€k?) contained in the
output admissible set. It turns out that an inner approximation is not necessary, Gincg) is
finitely determined.

The third step is to compute the Pontryagin difference betwegix?) and EW. This set is

(08 2] [7.8]
08 2 7.8
—06 -2 7.3
06 2 7.3
—04 -2 7

Q~EW =C0(X?) ~ EW = { x € R? 04 2 X < ! -
—02 -2 6.9
02 2 6.9
1 0 35
0o 1 35
-1 0 35
0 -1 35

Finally, solving the soft-constrained QP given in Section 6.8.1 with

st = Rss = Ia Oss = 100- [1, 1]/ .

| 2] L _]o2
71305 7 |—04

Figure 6.3 shows the various sets considered in the computation of the setpoint as well as the location
of the final steady state;xand the state which corresponds to the desirgd y

the steady-state

is obtained.

Staying Away From the Constraints

In many industrial processes the operating poit@and uy of the plant are calculated on a higher
level to minimise some economic cost. This optimisation is often posed as an LP and as a result the
most economic operating point is always on the boundary or intersection of some of the constraints.
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—

-6 1 1 1 1 I J
-6 -4 -2 0 2 4 6

Figure 6.3: The sets used for calculating the setpoint in Example 6.3

On the other hand, one cannot drive the system too close to the boundary since an unknown distur-
bance could push the system outside the constraints. If the constraint is a safety constraint, then this
could result in system failure.

If the W contains the origin in its interior, then the new steady state will be contained in the interior
of the output admissible s&?. This agrees with intuition in the sense that in order to satisfy the
constraints in the presence of disturbances, the set-point has to be some distance from the boundary.

The soft-constrained optimisation problem posed above will result in a setpoint which is as close to the
desired set-point as possible. As can be seen, there will always be some tradeoff between optimality
and robustness, since a larger disturbance set will result in a setpoint which is further away from the
boundary and hence less optimal in an economic sense.

6.8.2 The MPC Problem With a New Setpoint

Given the new steady-state péxss, Uss) as computed using the above soft-constrained QP, the origin
of the system and the input- and state constraints need to be translated and a new MPC problem needs
to be set up to regulate the system to the new setpoint.
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Problem 6.5 (Robustly feasible MPC with a new setpoint).Solve

P-1
min F (Xpy) + Z L (Xijk Gip) (6.43)
Tk i=0
subject to
Kit1x = AXk + By, Kok + Xss = Xk (6.44a)
)?1|k € XR ~D (644b)
Rk + Xss € X, Oy + Uss € U, |=0,...,P-1 (6.44c)
Uik = (R, l=N,...,P-1 (6.44d)
)zp“( eT. (6448)

The input that is implemented is given by = (g + Uss.

Remark 6.10.The setsXr and T might have to be recomputed for the new setpoint and translated
constraints. It is also possible that the horizon lengths need to be increased in order to make the new
problem feasible.

If the number of possible operating points are finite, then an off-line design could be carried out to
determine all possible values for the constraints and horizons to guarantee feasibility for all cases. If
the possible operating points are not known before-hand, then an on-line computation has to be done
with each set-point change.

If T =X, N = P and one would like to keep the current horizon length and robustness constraint, then
a steady-state would have to be computed which is compatible with the constraints of the original MPC
problem. This is achieved by adding the constraiate Xg ~ D to the steady-state computation of
Section 6.8.1.

An important further point which needs mentioning is that “any domain of attraction for a linear
constrained system is a tracking domain of attraction” [BM00]. What this implies is that if the set-
point of the system changes, the shape and size of the maximal stabilisable and control invariant set
does not change and therefore does not need to be recomputed. Though [BMO0O] discusses only the
nominal case, it should be possible to extend the results to the case with disturbances. If this does
hold true, then the following remark is also true:

Remark 6.111f T = X, N = P andXg = C.(X) in the original robust MPC problem, then the new
MPC problem will be feasible at the next time instant and it will be robust strongly feasible as well.
No new calculations foN or Xg need to be made. The news is a compatible steady-state only if
Xss € Coo(X).
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6.9 Robust MPC Design Examples

This section shows how a robust strongly feasible MPC controller can be designed by adding a ro-
bustness constraint to the nominal controller.

6.9.1 The Double Integrator

Consider the double integrator:

« 11 X + 0.5 U+ 10
= Wk -
k+1 0 1 k 1 k 0 1 k

It was shown in Example 6.2 that a nominal MPC controller cannot be designed to be robust strongly
feasible for any size of disturbance. It will be shown how adding a robustness constraint guarantees
robust strong feasibility of the closed-loop system.

The constraints are given by

X £ {x € R?||x]l < 5}
U2 {ueR?ule <1}
W

2 {w e R?||lw] < 0.5} .

The first step is to design an MPC controller with nominal exponential stability. For this purpose, the
stage cost is chosen to be quadratic

L(x,u) =xQx+URu
with

Q=1 R=1.

The terminal controller is chosen to be the solution of the unconstrained, infinite horizon LQR problem
with weightsQ andR, as in (7.4):

h() = Kook = [ —0.4345 —1.0288] X
The terminal cost is chosen to correspond to be the control Lyapunov furkefion= x’ Qg X with

 [23671 11180
7111180 25875|"°

whereQg is found as part of the solution to the Algebraic Riccati Equation (7.4).
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The terminal constraint is chosen to be the maximal positively invariant set for the unconstrained LQR
controller contained iiX:

1 0
-1 0
—0.4345 —1.0285
T =0" (X) = ONX) = { x € R? X <

0.4345 10285
0.1068 —0.1818
—0.1068 01818

N LI

The control and prediction horizons are chosen to be equaRi.N. It is desired that the smallest
control horizon be chosen such that the feasible set is as large as possible, while still being robust
strongly feasible. The largest that the feasible set can be, is eq@Cto(X) ~ D) N X.

The maximal robust control invariant ét,(X) has a determinedness index of 6 and the robustness
constraint is chosen to be

Xgp~D=Cx(X)~D.

It is found that

Xr ~D ¢ So(X, T) = Xg(T, 0, 0)
but that

Xe~DC &KX, T)=Xe(T,1,1).

The first statement in Theorem 6.4 implies that if the control horilkor 2, then the MPC scheme
with the given robustness constraint is robust strongly feasible with feasible set

X = 9l (X) ~D)NX.

The control horizon is therefore set b = P = 2. Figure 6.4 shows the corresponding sets used

in deriving the MPC control law with robustness constraint. Figure 6.5 shows the state evolution
starting from a number of initial states inside the feasible set. The MPC problem remains feasible for
a sequence of random state disturbances.

It is interesting to note that even though the disturbance does not decay to zero, the system is stable in
the sense that every trajectory enters a bounded subset containing the origin.

6.9.2 A System With Three States and Two Inputs

This section illustrates that it is not necessary to visualise the sets in order to design a robust MPC
controller. The tools developed in this thesis can be used to obtain values for the MPC parameters
such that the feasible set is maximised, while still guaranteeing strong robust feasibility.
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Figure 6.5: The evolution of the system from a number of initial states inside the feasible set of the

robust MPC controller designed in Section 6.9.1
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Consider the arbitrary system:

-01 02 01 1 2 1 00
X41=]1-03 —-05 03X+ |5 8|uk+ |0 1 Ofwx,
05 -06 07 8 2 0 01

where the constraints are given by

X £ {x € R*|||x]l» < 100}
U= {ueR?ule <1}
W2 {w e R®||wlle < 10} .

The first step is to design an MPC controller with nominal exponential stability. For this purpose, the
stage cost is chosen to be quadratic

L(x,u) = X' Qx+ URu
with
Q=I3R=1,.

The terminal constraint is chosen to be

T = {0}
with the terminal cost
F(x)=0
and terminal controller
h(xx) =0.

The maximal robust control invariant set is finitely determined with a determinedness index of 1. By
choosing

Xg = Co(X) = C1(X)
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the robustness constraint is

[ 02913 —0.4854 02913 | 89.3204|
05328 —0.3651 05920 85.1011
05000 —0.6000 07000 82.0000
~05328 03651 —0.5920 85.1011
02913 04854 —0.2913 89.3204

%o D= |y cgs|| 05000 06000 —07000| | 820000
1 0 0 90
0 1 0 90
0 0 1 90
1 0 0 90
0 1 0 90
0 0 _1 90

By increasingN = P from 1 to 5 it is found that
Xe~DZSNX, T) =Xg(T,N,P), N=1235
but that
Xpr~DCSX,T)=Xe(T,6,6).

The first statement in Theorem 6.4 implies that if the control horilkor 7, then the MPC scheme
with the given robustness constraint is robust strongly feasible with feasible set

X = Q(Ca(X) ~D)NX.

Figure 6.6 shows the state evolution starting from a number of initial states inside the feasible set. The
MPC problem remains feasible for a sequence of random state disturbances.

As with the double integrator, it is interesting to note that even though the disturbance does not decay
to zero, the system is stable in the sense that every trajectory enters a bounded subset containing the
origin.

6.10 Summary

The notion of strong feasibility defined in the previous chapter was extended to the notion of robust

strong feasibility. A necessary and sufficient condition was derived for a given nominal MPC scheme

to be robust strongly feasible. This condition reduces to a necessary and sufficient condition on the
strong feasibility of the MPC controller in the absence of disturbances.
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Figure 6.6: The evolution of the system from a number of initial states inside the feasible set of the

robust MPC controller designed in Section 6.9.2
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The differences between open-loop robust MPC and feedback robust MPC schemes were discussed.
These schemes suffer from having to predict all possible future disturbance evolutions at each time
step, thereby making on-line implementation very difficult.

The addition of a robustness constraint to the nominal MPC scheme for guaranteeing robust strong
feasibility and reducing the computational effort was discussed. The idea relies on the off-line com-
putation of a robust control invariant set. This constraint is used to modify the original MPC scheme
by requiring the predicted state at the next time instant to lie inside the Pontryagin difference of
this pre-computed set and the disturbance set. A new necessary and sufficient condition and some
new sufficient conditions were derived for guaranteeing the robust strong feasibility of the proposed
scheme.

It was then shown how this scheme can be applied to guaranteeing robust strong feasibility for MPC
of systems with parametric uncertainty and state disturbances. If the constraints are given by convex
polyhedra and the cost function is quadratic, then a single QP at each time step is sufficient to compute
an MPC control which will guarantee that the MPC problem is feasible at the next time instant, despite
the presence of uncertainty and disturbances. This makes the on-line implementation of the robustness
constraint MPC approach feasible, since the addition of the extra constraint adds minimal overhead to
the computational effort required.

Some well-known conditions for guaranteeing robust stability were also given. It was briefly discussed
how the robustness constraint approach can be used to guarantee robust feasibility and stability in the
case of output feedback with an asymptotically stable observer.

Finally, some of the ideas from set invariance theory were applied to the computation of a setpoint
which is compatible with the constraints of the system, while bearing in mind that there are unknown
disturbances on the state and output.
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Chapter 7

Soft Constraints and Exact Penalty
Functions

Soft constraints and exact penalty functions are introduced. It is shown how to compute a lower
bound on the penalty weight such that the soft-constrained MPC is such that constraint satisfaction is
guaranteed if possible.

7.1 Introduction

The success of Model Predictive Control (MPC) in industry is primarily due to the ease with which
constraints on the inputs and states can be included in the control problem formulation. However,
sometimes a disturbance drives the plant into a state for which the control problem is infeasible and
hence a new control input cannot be computed. Heuristic methods such as removing constraints or
repeating the previously computed input are sub-optimal and could lead to unpredictable closed-loop
behaviour.

A more systematic method for dealing with infeasibility is to “soften” the constraints by adding slack
variables to the problem, where the size of the slack variables correspond to the size of the associated
constraint violations [dOB94, SR99, Mac01]. The slack variables are added to the MPC cost function
and the optimiser searches for a solution which minimises the original cost function, while keeping
the constraint violations as small as possible.

Additionally, it is desirable that the solution to the soft-constrained MPC problem be the same as the
solution to the original hard-constrained MPC problem, if the latter were feasible. The theory of exact

penalty functions can be used to derive a lower bound for the constraint violation weight such that

equality is guaranteed [Fle87, Sect. 14.3]. However, in MPC this weight is dependent on the current
state of the system. It is therefore necessary to calculate a lower bound for the whole of the feasible
set of the hard-constrained problem.

123
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A naive and impractical solution would be to grid the state space region of interest and compute the
optimal Lagrange multipliers at each point. This method is computationally demanding and due to the
finite nature of the grid one cannot guarantee that the true lower bound on the weight will be found. As
mentioned in [SR96], a conservative state-dependent lower bound might be obtainable by exploiting
the Lipschitz continuity of the quadratic program [Hag79]. However, it is unclear as to how exactly
one would proceed to implement this for the entire feasible state space.

Furthermore, it is shown in Section 7.6 that the norm of the Lagrange multipliers of the optimal
solution are, in general, non-convex over the feasible set. This further complicates the problem.

This chapter shows how the Karush-Kuhn-Tucker (KKT) conditions can be used to compute a lower
bound by solving a finite number of linear programs (LPs). This method is therefore computationally
less demanding than gridding and provides a guarantee that the lower bound has been found.

Once a lower bound has been computed, the soft-constrained MPC problem can be set up. This new
MPC problem will produce a result where the original hard-constrained MPC problem would have
been infeasible. The important result is that one can guarantee that the soft- and hard-constrained MPC
problems will produce the same result for the region in which the latter would have been feasible.

Section 7.2 defines a standard formulation of MPC with an LTI model subject to linear inequality
constraints. It is shown that the cost function and constraints of the resulting quadratic program (QP)
are dependent on the current plant state. More precisely, the MPC problem can be treated as a multi-
parametric quadratic program (mp-QP) [BMDPOOb]. This allows one to gain additional insight into
the structure of the problem and develop a systematic approach for computing a lower bound for the
violation weight.

Exact penalty functions are introduced in Section 7.3 in order to find a condition on the lower bound
for the violation weight. By introducing slack variables the non-smbatRact penalty function can
be converted into an easily-solvable, soft-constrained QP.

A procedure for setting up an optimisation routine for computing a non-conservative lower bound for
the violation weight is described in Section 7.5. This weight guarantees the exactness of the penalty
function over ara priori chosen subset of feasible states.

A simple example is presented in Section 7.6 to show how a soft-constrained mp-QP could be set
up to have the same solution as the original hard-constrained mp-QP. The chapter concludes with a
summary of the results.

7.2 Model Predictive Control of LTI Systems

A standard formulation for MPC will be described below. The cost function and constraints of the
optimisation problem will be shown to be dependent on the system state.

1in the sense of not being differentiable everywhere.
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Consider the following discrete-time, LTI system:
Xkr1 = AX¢ + Bug (7.1a)

wherexy € R" denotes the state ang € R™ is the input. The system is subject to linear inequality
constraints on the control inputs and/or the states over the whole time h&rizdf as in (3.2).

Assuming that a full measurement of the state is available, the MPC problem to be solved at each time
step is given by:

Problem 7.1 (Hard-constrained MPC with quadratic cost). Solve

P-1
U (%) = arg min Ko FRpik+ Y K Qi + U R (7.2)
i—0
subject to
Xit1k = AXk + By, Kok = X« (7.3a)
)}Z”kGX, 0||kGU, I =0,... ,P—l (73b)
Ok = KXk, l=N,...,P-1 (7.3c)
Xpk € T C X, (7.3d)

where Q> 0, R> 0, F = 0and K is a feedback gain.

The decision variable is the control sequence

/!

A N/ a4 N/
Z/{ = [UOIk, Ullk, ey UN_llk] .

Various possibilities exist in choosing and F in order to guarantee nominal stability. A popular
choice is to seK = K., whereK,, andF are the solutions of the unconstrained, infinite horizon
LQR problem with weight€Q andR:

Kew=—(R+ BFB)!B'FA (7.4a)
F = (A+BKy)F(A+ BKy) + KL RKy + Q. (7.4b)

The horizon lengths anl are then chosen such that the feasible set is strongly feasible, as discussed
in detail in Chapter 5. It is then straightforward to show via a Lyapunov argument that with this
choice ofF andK the origin of the nominal closed-loop system will be an exponentially stable fixed
point [MRRSO00].

In addition to exponential stability, it is also possible to check whether it is necessary to add a ro-
bustness constraint to guarantee that the the MPC problem is robust strongly feasible, as discussed
in Chapter 6. If the (possibly modified) MPC problem is robust strongly feasible and the additive
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disturbance decays asymptotically to zero, then the origin of the closed-loop system will be an asymp-
totically stable fixed point [SRM97].

By substituting

-1
)z”k = AI Xk + Z Aj BG|_1_j|k (75)
=0

into the cost function of Problem 7.1, the optimisation can be rewritten as
Uy (x¢) = arg rgin %L{/Hu + U'GX + X F Xk (7.6a)
subject to
EU < f +GCx. (7.6b)

The matrices and vectot, G, E, f, G and’H = 0 are obtained by collecting terms. The term
involving F is usually dropped, since it does not affect the optimal solutfx).

Remark 7.1.Note that both the cost function and constraints, and hence the optimal solution, are de-
pendent orxx. The MPC problem can therefore be treated as an mp-QP for which an explicit solution
can be computed off-line [BMDP00Oa, BMDPO0Ob] as will be discussed in Section 7.4. Additionally,

it can also be shown that for the reference tracking case, the mp-QP is dependent on the current
state, past input and reference [BMDP00Oa, KMOOb]. If a measured disturbance is assumed, then the
disturbance also enters as a parameter of the mp-QP.

The feasible set of the hard-constrained mp-QP is defined as in Chapter 5:
Xe £ X eR" U :EU< T +Gx. (7.7)

Even if the MPC problem has been designed to be strongly feasible as discussed in Chapter 5, it is still
possible that a disturbance or modelling error could result in the system being driven to a state outside
Xk, where the hard-constrained mp-QP is infeasible and hence no solution exists. One possible way
of dealing with this situation is to soften some or all of the constraints, as described in the sequel.

7.3 Soft Constraints

A straightforward way of softening constraints is to introduce slack variables which are defined
such that they are non-zero only if the corresponding constraints are violated. If the original, hard-
constrained solution is feasible, one would like the soft-constrained problem to produce the same
control action. In order to guarantee this the weights in the cost function have to be chosen large
enough such that the optimiser tries to keep the slack variables at zero, if possible. Exact penalty
functions can be used to guarantee this behaviour [Fle87, Sect. 14.3].
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7.3.1 Exact Penalty Functions

The general non-linear, constrained minimisation problem can be stated as:
0* = arg rrginV(@) (7.8a)
subject to
c@) <0. (7.8b)

This optimisation problem can be recast into the following equivalent unconstrained, non-smooth
penalty function minimisation:

05 = argminV(6) + pllc@) ™|l (7.9)

where the vectoc(9)* contains the magnitude of the constraint violations for a givemdc™ =
max(c;, 0). The scalap is the constraint violation penalty weight.

Thedual normis used in the condition op which guarantees that the solutighto (7.9) is equal to

the solutiong* to (7.8). The dual of a given nort- || is defined as

lullp £ mi‘?“’” ) (7.10)

It can be shown that the dual pf |1 is || - || and vice versa, and tht ||, is the dual of itself [HJ85].

If 6* denotes the optimal solution to (7.8) aktis the corresponding Lagrange multiplier vector,
then the following well-known result gives a condition under which the solutions to (7.8) and (7.9)
are equal:

Theorem 7.1 (Exact penalty function). If the penalty weighp > ||[A*|p and a6Z) =< O, then the
solutioné* to (7.8) is equal to the solutioA; to (7.9).

Proof. See [Fle87, Thm. 14.3.1]. O

If o > ||A*|Ip, then (7.9) is called aexact penalty functianThe cost function (7.9) is non-smooth
and therefore not as easy to solve for as, say, a QP. One way to overcome this difficulty is to introduce
slack variables into the problem.

7.3.2 Slack Variables as Soft Constraints

The non-smooth, unconstrained minimisation (7.9) can be cast into the following equivalent con-
strained problem:

E?L')‘V(G) +pllell (7.11a)



128 CHAPTER 7. SOFT CONSTRAINTS AND EXACT PENALTY FUNCTIONS

subject to

c0) <e (7.11b)
0=<e, (7.11¢)

wheree are the slack variables representing the constraint violations; &0 if the constraints are
satisfied.

The hard-constrained MPC problem can now be formulated as the soft-constrained MPC problem:

Problem 7.2 (Soft-constrained MPC). Solve

o1
USX), € (X)) = arg min EM/HU +U'Gx 4 pllell (7.12a)
subject to
EU < f+Gx+e (7.12b)
O<e. (7.12¢)

If |le]l1 or |le]loo IS Used in (7.12a) to penalise the constraint violations, then the soft-constrained
problem can be formulated as a QP and solved using standard techniques [dOB94, SR99, Mac01].

Remark 7.2.Even though thé-norm|je|» = +/¢’e will result in a non-smooth penalty function, one
cannot formulate the soft-constrained MPC problem as a QP because the hard-constrained MPC cost
function is quadratic angle > has a square root. Using th&quadratic norme |3 £ ¢'e one can

express the problem as a QP, but this does not result in an exact penalty function since (7.9) will be

smooth; it is the non-smoothness of the penalty function which allows it to be?exact

7.4 Explicit Solution of the MPC Control Law

In MPC, the optimal solutiod/}; is dependent on the current stagg as discussed in Section 7.2, and
hence the corresponding Lagrange multiphiéris also dependent oxx. The lower bound fop is
therefore dependent og.

One would have to calculate a lower bound fowhich guarantees that the soft-constrained MPC
will produce the same solution as the original hard-constrained MPC fag &l Xr. The Karush-
Kuhn-Tucker (KKT) conditions provide some insight into the relation of the Lagrange multipliers to
Xk. This section gives an explicit expression for the Lagrange multiplier in terrrg af well as the
region in which the expression is valid.

2In [SR99], ||e||2S is added to the cost function, together with a weightedorm; thel1-norm guarantees an exact
penalty function andis an extra tuning weight used to penalise the constraint violations.
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7.4.1 KKT Conditions for mp-QP Problems

The Lagrangian of optimisation problem (7.6) is
1
LU, A, X) = EU/HU +U'GXy + X|/(ka + A’(EL{ —f-Gx). (7.13)

A stationary point for the Lagrangian occurs when.Z U, A, xx) = 0, hence the corresponding
KKT optimality conditions are [Fle87]:

HU + Gx+ E'X =0 (7.14a)
A>0,%eR (7.14b)
EU—f—Gx <0 (7.14c)
diag(x)(EU — f — Gx) =0 (7.14d)

whereq is the number of non-redunddrinear inequalities in (7.6b).

ProvidedH > O (as is the case wheR > 0), from (7.14a) one can solve for the unique
U=—H1Gx+EN (7.15)

and substituté/ back into (7.14), if desired. For a giveq, thel/ andi which solve (7.14) are equal
to the solutiorif}; (x«) and Lagrange multipliers* of (7.6).

7.4.2 Expressions for the Optimal Solution and Lagrange Multipliers

Before proceeding to use the KKT conditions to derive an explicit expression for the optimal solution,
the following non-degeneracy assumption is made in order to guarantee that the Lagrange multipliers
are unique at the optimum.

Assumption 7.1. For all x, € X and for all admissible combinations of active constraints at the
optimal solution of (7.6), the corresponding rows of matare linearly independent.

It might be possible to relax this assumption, as can be done for the case of computing the explicit
solution of an mp-LP [BBMO0Oc]. However, this assumption seems to be valid in most practical cases.

Theorem 7.2 (Explicit solution of the MPC control law). [BMDP0Oa, BMDPOOb] LetH{ > 0 and

E satisfy Assumption 7.1. For a givep, fet i(x) = 0 and i(x,) denote the Lagrange multipli-

ers corresponding to the inactive and active constraints at the optimal solution, respectively. The
Lagrange multipliers corresponding to the active constraints are given by

LX) = Sx +t (7.16)

3]t is assumed that the non-redundant inequalities are removed from (7.6b) before analysis and implementation.
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and the optimal solutichis given by

U (%) = (-H*lg - H*lé/s) X — HLE't (7.17)

where
S=— (EH‘1E’>_1 (é + EH—lg) (7.18a)
t=— (EH*E')*l f (7.18b)

andE, f andG correspond to the set of active constraints. Furthermore, these expressions are valid
for all xk contained in the polyhedron

[— EH'G — EHE'S— G} {f + EHlé/t} }
Xk X .

s t (7.19)

CR = [Xk eR"

Proof. Substitute (7.15) into (7.14d) to obtain the complementary slackness condition
diag(n) (E (-H ' (9% + E'A)) — f — Gx) =0.
For the inactive constraints

LX) =0.

Let the rows ofE, f andG correspond to the set of active constraints. For the active constkain®
and hence (7.14d) implies that

E(-H(9x+ET)) - f-Bx=0
and solving for 1 it follows that
oo = - (EHE) (T4 (6 + EnG)n) .
By defining Sandt as in (7.18), the expression(xy) = Sx + t results.
Substituting this expression far(xy) into (7.15) one gets
U () = —H L (gxk B (Sx + t)) - (—H—lg — H‘lﬁ’S) X — HLE't.

U}, () has to satisfy the constraints (7.6b) and the Lagrange multipliess corresponding to the
active constraints have to be non-negative. These two constraints combine to define the critical region

CR = {xk cR"|E ((—H—lg — H—lé’s) Xi — H—lé’t) < f 4+ GX. S+t o}
I -EH G- EHE'S-G f + EH'EY
={x eR S X < ¢ .

4Note that the contral, = « (x) to be implemented is given by the firstcomponents abey (Xk)-
5(EH~1E")~1 exists because the rows Bfare linearly independent.
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This result implies that the resulting MPC control law is a continuous, piecewise-affine function with
domainXg. In order to determine the complete expression over alljoft is necessary to determine

all feasible combinations of active constraints. Rather than trying outlall 2 combinations of
possible active constraints, an efficient procedure can be described as follows:

1. Seti < 0.
2. Choose an arbitrang € Xg.
3. Solve the corresponding QP.

4. By looking at the constraints which are active at the solution of this QP, compute the affine
functions forl4}; (xx) andA*(x) as in Theorem 7.2.

5. Compute the resulting critical regidfR; and remove the redundant constraints.
6. Terminate iiuijzo CRj = X, else set < i + 1 and continue.

7. Choose an arbitrang € Xg\ Uij‘:% CR; and go to Step 3.

This procedure guarantees that all feasible combinations of active constraints will be computed. The
number of feasible combinations is often many orders of magnitude less tharl 2A systematic
procedure for choosing the in Step 7 is described in [BMDP00Oa, BMDPOOb] and involves the
computation of a sensible partitioning Bt .

7.5 Computing a Lower Bound for the Penalty Weight

The problem of guaranteeing the exactness of the soft-constrained MPC problem can be restated as:

Problem 7.3. GivenXy, a closedbounded polyhedral subset of the feasible set
Xo € Xk,
find ap such that

Xk € Xg = u,ﬂ (Xk) = Z/{;(Xk) .

In other words, find @ such that

p > max|Alp (7.20)
U, Xk, A

6The requirement thaXg is bounded, is sufficient to guarantee that the maximisation in (7.20) is bounded from above.
To determine whether a giveXy is contained irXg, one can test whether the hard-constrained MPC problem is feasible at
each one of the vertices &f.
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with the maximisation subject to the KKT optimality conditions (7.14) and the additional constraint
Xk € Xg. This value forp will guarantee that the soft- and hard-constrained QP problems produce the
same solution for all feasibte, € X, since alllf andx which satisfy the KKT conditions for a given

Xk solve the corresponding primal and dual problems.

The optimisation in (7.20) is difficult, since it is the maximisation of the norm of a piecewise affine
function, which is not necessarily convex or concave. Furthermore, the number of possible active
constraint combinations is exponential in the worst ca8e(2) and checking each combination of
active constraints is therefore impractical.

However, despite this inherent complexity of the optimisation problem, the explicit solution derived

in Section 7.4 can be used to develop a systematic procedure for computing a lower boand for

1. Using the KKT conditions, compute off-line the explicit solution to the mp-QP (7.6):

(@) ldentify, for X, all possible combinations of active constraints and the corresponding
critical regionsC’R; via the procedure described in [BMDP00a, BMDPOOb];

(b) For each critical regioG@R; that intersectXg, obtain the explicit affine expression for the
Lagrange multipliers corresponding to the set of active constraints:

A) = Sxe +t, (7.21)
whereS andt' are as in Theorem 7.2 and the supersdripenotes the corresponding
active region.

2. Choose a lower bound gnsuch that
p > max max ||A*(%)|lo = max max |A(x) = Sx« +t'|lp . (7.22)
i xkeCRj i xkeCR;
If ||-]lz0r] - ]le is used to penalise the constraint violations in (7.12a), then the maximum can

be found by solving a finite number of LPs for each critical region.

The authors of [BMDP00Oa, BMDPOOb] discuss the computational complexity of computing the ex-
plicit solution of the mp-QP and give a bound on the maximum number of possible active constraint
combinations. Though it is possible that the computation of the solution could take a long time, for
off-line design and analysis the computation speed is less of an issue. The method outlined here is
more efficient than the brute force approach of gridding and provides a guarantee that a lower bound
has been found.

7.6 Example

Consider the system:

11 0.5
Xkl = X u 7.23
k+1 |:0 1] kK + |: 1 } k ( )
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with constraints on the input

U={ueR|-1<u<1) (7.24)

and the state

{_25} <x< {25} } . (7.25)
-5 5
The weights for the MPC controller are chosen as

Q=1,,R=1 (7.26)
with the terminal weight

- [2.3671 11180} 7.27)

1.1180 25875

corresponding to the unconstrained, infinite-horizon LQR cost, obtained from solving (7.4). The
unconstrained LQR controller is

Koo = [-0.4345 —1.0285] (7.28)
and the maximal positively invariant set using this controller is

—0.4345 —1.0285
0.4345 10285
X <
0.1068 -0.1818(
—0.1068 01818

OK=(X) = OK*(X) = { x € R? (7.29)

e

If the terminal set is chosen to be

T = OX>(X), (7.30)
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then the maximal stabilisable s8f,(X, T) has a determinedness index of 13:

1 5 375
1 -5 375
1 4 33
1 —4 33
1 3 295
1 -3 295
1 2 27
Sx(. ) =SX. = (xR~ " |x=| |1 (7.31)
1 1 255
1 1 255
1 0 25
0 1 5
1 0 25
0 -1 5

In addition, the maximal stabilisable set is equal to the maximal control invariafgt g&t), which

has a determinedness index of 5:

So(X, T) = Coo(X) = C5(X) . (7.32)
The feasible set of an MPC controller with horizon
P=N=13 (7.33)
and terminal constrairif as above is maximal in the sense that
Xg = Coo(X) = So(X, T). (7.34)

Because of the choice of terminal constrdinand costF, the origin will be an exponentially stable
fixed point of the closed-loop system, with region of attraction equal to the maximal control invariant
set.

As mentioned earlier, the norm of the Lagrange multipliers is not guaranteed to be convé&-over
Figure 7.1 shows the value of the infinity norm of the Lagrange multipliers for the range

Xk = axXy + (1 —a)X, o € [0, 1], x; = [19, —1]', X, = [19, —3.6]'.

The figure shows thati*(Xy) |l iS non-convex over a small, convex subsetXgf. This implies
that problems exist for which the optimisation in (7.20) is inherently complex, thereby ruling out the
possibility of using convex optimisation techniques.

Figure 7.2 depicts the feasible set and the critical regions for different combinations of active con-
straints for the above MPC controller. The states at which the 1-norm and infinity-norm of the La-
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+ (10 %) I,
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Figure 7.1: Plot showing thaffA* (Xx) ||« IS Non-convex oveKg for the given example. The statg
is varied fromx; = [19, —1] to x, = [19, —3.6]’, by choosingxy = ax; + (1 — @)X, a € [0, 1]

grange multipliers are maximised are
arg max||A*(x)lloc = arg max||A*(x)lly = £[12.5, 5], (7.35)
XkEXFE XkEXFE

with the maximum norms

max [|A* (%) lleo = 2.188 x 10° (7.36a)
Xk eXF

max [|A* (%) |l1 = 8.162x 10°. (7.36b)
XkeXF

This implies that if||¢]|; is used in (7.12) to penalise the constraint violations, then
p > 2.189x 10°, xx € X = US(X) = U\ (%) -
Similarly, if |l€]l is used, then

p > 8.163x 10°, xx € X = US(X) = U\ (%) -
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Figure 7.2: The feasible s&tr and critical regions of the resultant MPC control law wikh= N =
13 andT = 0%~ (X). The location of the maximising solution to (7.22) is indicated

7.7 Summary

The problem investigated in this chapter is how to choose the weights in a soft-constrained MPC
problem such that the resulting control action would be equal to the solution of the original, hard-

constrained MPC problem. The theory of exact penalty functions say that if the the constraint viola-
tion weight of the soft-constraint problem is larger than the norm of the Lagrange multipliers of the

original, hard-constrained problem, then the two solutions will be equal.

A standard formulation of an MPC controller for LTI systems subject to polyhedral constraints was
given. It was shown that both the cost function and the constraints of the resulting optimisation prob-
lem are dependent on the current state. This implies that the Lagrange multipliers are also dependent
on the state. Itis therefore necessary to compute an upper bound on the norm of the Lagrange multi-
pliers for all feasible states.

A method for computing the upper bound of the norm of the Lagrange multipliers over a bounded
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subset of the feasible states was presented. The region of interest can be divided into polytopes in
which different combinations of constraints become active at the solution and the Lagrange multipliers
are given by an affine expression in the state. The problem of finding the maximum norm of the
Lagrange multipliers therefore reduces to solving a finite number of LPs.

If the constraint violation weight that is used in the soft-constrained problem is larger than the com-
puted bound, the solution is guaranteed to be equal to the hard-constrained solution for all feasible
conditions that were considered.






Chapter 8

Optimisation Subject to Prioritised
Constraints

Multi-objective problems and prioritised solutions are introduced. A mixed-integer approach is de-
scribed for finding a solution to a constrained optimisation problem which minimises the number
of violations in a set of prioritised constraints. The same idea is applied in the computation of a
minimum-time, output-prioritised MPC control law for hybrid systems which can be modelled in
MLD form.

8.1 Introduction

In most practical applications there is usually a large number of control objectives. The nature of these
objectives vary widely from time and frequency domain constraints to the minimisation of a number
of cost functions.

The issue is further complicated by the fact that often the objectives cannot be met simultaneously and
a solution therefore does not exist. The question then becomes how the objectives should be modified
in order for a solution to exist.

The usual approach to attacking an infeasible controller design problem is for the designer to re-
specify the objectives and then determine whether a solution to the new problem exists. The choice
of which objective to change and how to change it is usually based on the designer's experience
and insight into the physical process. This re-specification of the objectives could involve a number
of iterations and some systematic method which would reduce the number of iterations is therefore
highly desirable.

The area of multi-objective optimisation attempts to provide insight and tools for automating the
controller design problem. The need for multi-objective optimisation problems to incorporate the fact
that certain objectives are more important than others further complicates the problem. Section 8.2

139
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defines an abstract framework for handling some of tipeseitised, multi-objective problems.

Finding a general approach to solving a general multi-objective problem is extremely difficult and

therefore this chapter deals mainly with the problem of satisfying prioritised constraints, rather than
the minimisation of a number of continuous cost functions. Section 8.3 defines a number of related
prioritised constraint satisfaction problems and Section 8.4 provides some solutions.

Most of the results in this chapter apply to the general class of multi-parametric, mixed-integer, non-
linear programs (mp-MINLPs). Section 8.5 discusses some practical issues for the special case when
the problem is an mp-MIQP or mp-MILP, as occurs when implementing MPC controllers for hybrid
systems.

While controlling a system, often a disturbance or fault occurs which drives the system outside the
maximal control invariant set, thereby making the satisfaction of all the constraints impossible. A
control sequence then has to be chosen which will bring the system into the desired region as soon as
possible, while bearing in mind that the constraints on output variables have different priorities. An
MPC solution to thisninimum-time, output-prioritise@droblem is presented in Section 8.6.

One of the motivations for this chapter was to develop a framework for the optimal reconfiguration of
a control system in the event of a fault occurring. In Section 8.7 the results of this chapter are applied
to the steady-state computation for a faulty three-tank system.

8.2 Prioritised, Multi-Objective Problems

Given a cost function vectar(9) € R", whered € © is the decision variable, the multi-objective
optimisation problem is often defined as finding the set of’auch that

0* = arg rgir‘[vl(e), v2(0), ..., v (0)]. (8.1)

At this stage it is unclear what is meant by an optimal solution of a cost function vector. When working
with multi-objective optimisation problems one therefore needs a definition for optimality. A notion
of optimality which is often used is that of Pareto-optimality.

8.2.1 Pareto-Optimal Solutions

Definition 8.1 (Pareto-optimal solution). A solution 6* is Pareto-optimalif and only if V6 # 6*
there exists ansuch thaw; () > v; (0*) or v (8) > v; (6*) for all i.

Remark 8.1.This definition is probably easier to understand by noting that a solati@not Pareto-
optimal if and only if36 # 6* such thavi : v;(8) < v;(6*) and3i : v;(0) < v;(6%).

A solution is therefore Pareto-optimal if and only if one cannot find another solution which improves
uniformly on all thev; (#). Equivalently, a solution is Pareto-optimal if and only if a decrease in
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any one of the component cost functions will result in an increase in at least one of the other cost
components.

The easiest way of finding amprioritised Pareto-optimal solution is to solve for
r
6* = arg rgin; wivi (6), (8.2)
i

where the weights are any; € R,. By varying thew; one can generate a set of Pareto-optimal
solutions.

However, this chapter is concerned with finding the subset of Pareto-optimal solutions which are
optimal with respect to the relatiywiorities of all the cost functions; (6).

8.2.2 Perioritised-Optimal Solutions

Before giving a definition of a prioritised-optimal solution, the following assumption is made:

Assumption 8.1. The objective associated with cost functigiié) has a higher priority than the one
associated withr_1(0).

A formal definition ofpriority will not be given. However, the following implicitly defines what is
meant by priority.

Definition 8.2 (Prioritised-optimal solution). A solution6* is aprioritised-optimalsolution if and
only if 36 # 6* such that;-(0) < vi«(0*), wherei* is the index of the first element whevg¢d) and
v(0*) differ.

The process of finding the set of prioritised-optimal solutions can be described as follows: A subset
®, C O is chosen for which all € ®, are such thai4(0) is minimised. The subsé&, C ®, is then
chosen such thatd € ©,, v,(0) is minimised. This process is continued until al{6) have been
minimised. Determining the prioritised-optimal solution is equivalent to finding the lexicographic
minimun? of a set [VSJ99, Def. 1].

A single prioritised, Pareto-optimal solution is therefore obtained by solving the sequence of optimi-
sation problems for=1,...,r:

v = main vi (0) (8.3)
subject to the set of constraints

vi@ =vj, j=1...,i—-1 (8.4)

1An implemented algorithm will not necessarily follow this recipe, but the result would be the same.
2This process is analogous to arranging a set of words alphabetically, hence the use of the word ‘lexicographic’. For
example, the lexicographic minimum of the $g&, 3, 1], [3, 2, 1], [2, 2, 4], [2, 2, 1], [2, 2, 3]} is [2, 2, 1].
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The solution to the'th optimisation problem is a prioritised-optimal solution. This approach is also
the method that is used in [MSB92, VSF99]. Though easy to implement, this method will always
requirer optimisation problems to be solved.

It would therefore be desirable if one could find a set of weights for (8.2) such that one could guarantee
that the solution to (8.2) is a prioritised, Pareto-optimal solution to (8.1), as was done in [VSJ99] for
the special case of a prioritised LP. It turns out that this is relatively easy if the cost function is such
thatVve, v(#) € N'. A choice of weights which guarantees a prioritised-optimal solution is given by
the following theorem.

Theorem 8.1 (Weights for the prioritised, multi-objective problem).
Letvi() e Nandv;(0) <t;,V0 € ©. If

0* = argminW'v(9), (8.5a)
0c®
where
o
W2 | w, (8.5b)
withw; € R, and
r
wi > Z tjwj, (8.5¢)
j=i+1

then6* is a prioritised, Pareto-optimal solution t.1).

Proof. Assume thad* is an optimal solution to (8.5a), but that it is not prioritised-optimal, i.e. there
exists & # 6* such that;«(0) < vj=(0*), wherei* is the index of the first element whev¢p) and
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v(0*) differ, i.e. vj«(0) < vi«(0*) — 1. If this is the case, then

W) — W (6*) = Z wj(vj (@) —vj(6%))
j=1

= Z wj(vj(0) — vj 0%)), sincev,-(@) = v,-(@*), j=1,...,i"=1
j=i*
= wix(vj=(0) — v« (6%)) + Z wij(vj (@) — vj(0%))
j=i*+1

< wi(ui(0) — v (@) + Y wjt;, sincev;(B) — v;(0%) <t
j=i*+1

wi*(Ui*(G) - U|*(0*)) + Wj*
= 'LUi*(Ui*(G) — Ui*(e*) + 1)

< 0, sincewjs > 0, vj=(0) — vi=(0*) < —1.

A

This implies thatW'v(6) < Wv(0*). This contradicts the assumption tltdtis optimal, thereby
concluding the proof. O

This idea that the weight for a certain priority level must be larger than the weighted sum of the
number of lower-prioritised objectives, will be used frequently in the subsequent sections.

8.2.3 Constraint Satisfaction

It might seem that by restricting the cost functions to boundeé€) € N very few multi-objective
problems will fall into this class. However, note that the satisfaction of a constraint can be represented
as the minimisation of a cost function, e.g. if the constrgii®) < 0 is given and one defines

w2 |0 19O=0 ©.6)

1 ifg®) >0

thenv; (9) = 1 if the constraint is violated angl(9) = O ifitis satisfied. For a more complex example,
assume that the objectives consist only of constraints and that therepai@ity levels, with the
possibility of some constraints having the same priority. Given a candidate saltime can define
v () € N to denote the number of violated constraints on priority IeyBencev(9) € N' represents
the number of violated constraints on each of the priority levels. Hence, a solution is prioritised-
optimal if and only if there does not exist another solution which will violate less constraints on any
level, without increasing the number of violated constraints on a higher level.

Theorem 8.1 therefore allows one to define multi-objective problems in terms afithberof con-
straint satisfactions, violations or relaxations. The problem of designing a single optimisation which
minimises the numbéof prioritised constraint violations seems to have received very little attention

3In [VSJ99] the problem of minimising theizeof the constraint violations in a prioritised fashion is considered.



144 CHAPTER 8. OPTIMISATION SUBJECT TO PRIORITISED CONSTRAINTS

in the optimisation and control literature. The subsequent sections present a method for solving this
and related problems.

Though Theorem 8.1 is the solution to an abstract problem, it will be shown how one can modify a
multi-parametric, soft-constrained optimisation problem so that the solution is such that the number
of constraint violations is minimised in a prioritised-optimal fashion. This is achieved by introducing
logic variables into the problem such that the value of the logic variable at the solution indicates which
constraints have been satisfied or violated.

Remark 8.2.Note that in this context the usual concept of a constrained optimisation problem can
be interpreted as a prioritised multi-objective optimisation problem, with the satisfaction of the con-
straints taking higher priority than the optimisation of the cost function. As a result, in subsequent
sections only the prioritised satisfaction of constraints will be considered. The optimisation problem
will be constructed such that minimisation of the cost function effectively has the lowest priority. The
cost function will only be minimised after a set of solutions has been found that guarantees constraint
satisfaction.

8.2.4 Numerical Conditioning of the Proposed Choice of Weights

Though Theorem 8.1 is a simple result, it has a drawback in the sense that the weights can grow to be
very large if there are a large number of priority levels, as shown in the next example.

Example 8.1. Let a problem contain 100 objectives and choage= 1.

e Let each of the objectives be assigned its own priority, ije=t1. If one choosesy; =
1+ZE:i+1 tjw;, thenw; ~ 6.338x 10%°. If w; = O.OOl—i-ZE:i+1 tjw;, thenw; ~ 3.172x10%°,
which is not much better.

o If the objectives can be divided into 10 different priorities, i.e.=t 10, and one chooses
wi =1+ ZE:th,-w,-, thenw; = 2.357947691x 1(°. If w; = 0.001+ ZE:th,-w,-, then
wy ~ 2.144 x 10°. These two choices of weights are slightly more acceptable.

e Let the objectives be such that the first 10 have the same, but higher priority than the next 90,
l.e. 4 = 10and t = 90. If one choosesy; = 0.001+ er:iﬂtjwj, thenw; = 90.001 for

i =1...10andw; = 1fori = 11...100 This choice of weights is a lot more preferable
than for the previous two cases, where the choice of weights could result in an ill-conditioned
problem.

One can therefore conclude that a large problem with many priority levels might result in an ill-
conditioned optimisation problem. The proposed choice of weights therefore works best either when
there are a small number of priority levels or a small number of objectives with a high priority. This is
typically the case in many practical applications where there are a large number of lower-prioritised
performance constraints and a small number of higher-prioritised safety constraints.
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8.3 Problem Formulation

The main aim of this chapter is to design a prioritised, soft-constrained problem for a given hard-
constrained, multi-parametric, mixed-integer, nonlinear program (mp-MINLRhukti-parametric
optimisation problem is one where the cost function and/or constraints are dependent on one or more
variable. A different optimal solution set will exist for each one of these variables. The motivation
here for working with multi-parametric programs is due to the fact that the optimisation problem in
MPC controller design is dependent on the current state and hence the solution is also dependent on
the current state. The current state therefore parametrises the solution.

This section is concerned with defining the scope of objectives and problems which this chapter at-
tempts to solve. The hard-constrained problem and prioritisation scheme is described. This is followed
with the setting up of the prioritised, soft-constrained problem and the types of problems which will
be addressed in the next section.

Consider the following hard-constrained mp-MINLP:

Problem 8.1 (Hard-constrained mp-MINLP). Solve
0*(x) = arg rginf(@, X) (8.7a)
subject to
g0,x) <0 (8.7b)

whered € R% x Z® is the decision variable and x RPt x ZP2 is the parameter vector of the
mp-MINLP and f: (R% x Z%) x (RP: x ZP?) — R. The constraint$8.7b), where g: (R% x Z%) x
(RP1 x 7ZP2) > RS, define a closed and bounded, non-empty/ét {(6, X) : g(0, x) < 0} # ¥ and
all the constraints are unique, i.;@ ) = g;(-,-) i = j.

The constraints implicitly define the set of feasible parameters for the hard-constrained mp-MINLP:
Xen £ {x : 360 such thag(d, x) < 0} . (8.8)

It is assumed that both mirf (9, x) and max f (0, X) existv¥x € Xgy. No continuity assumptions
are made.

The constraints (8.7b) usually reflect desired constraints which the decision variable has to satisfy.
However, sometimes a paramexds passed to the optimisation routine for which no feasible solution
exists, i.e.x ¢ Xgy. Itis therefore necessary to either redefine the problem or, more likely, relax
some of the constraints and allow for the violation of some of the constraints in the final solution.

8.3.1 Prioritised Constraints

Often a hierarchy of priorities can be assigned to the set of constraints, e.g. it is more important
to satisfy the constraing; (¢, X) < 0 than the constraing,(6, x) < 0. A solution which violates
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02(0, X) < 0 but satisfieg; (6, x) < 0 is therefore preferred. For the purpose of rigorously defining
and implementing these priorities, the following definitions are given:

e The set of indices of the constraints is giveny {1, 2, ... , c}. If the set of indices of the
soft constraints is given hg, then the set of indices of the hard constraint®ig C\S;

e There arg priority levels, ordered such that leviehas a higher priority than levél+ 1. The
set of indices of constraints on priority levek given by, € C, with ? NP = 0,1 # j, i.e.
a constraint cannot be associated with more than one priority level.

Let ¢; be the number of constraints associated with priority levee. c = Z{Zl Gi;
e The vector of slack variables € RS is defined agm(f, X) = MaXes,, (g8, X), 0), whereSp,

is the set of indices of soft constraints associated with slack varéahl&; N S; = 0,1 # j
andS = |U;_; Sm.

For a given(#, x), each slack variable represents the largest constraint violation of a set of
constraints, hencef,(0, x) = 0] < /\,.s, [9k(®, %) < O].

All constraints associated with a slack variable have to be associated with the same priority
level, i.e.VSy,, 3P; such thatS,, € P;.

Lets be the number of slack variables associated with priority leviet. s = Y i _; s;

e Each element of the vector of logic variables {0, 1}! is associated with one or more slack
variables on the same priority level such that

[6n=0] < /\ [em = 0], (8.9)

me7n

where7, is the set of indices of thelack variablesassociated witld, andZ; N 7; = 0,1 # |,
i.e. a set of slack variables (and the associated set of soft constraints) cannot be associated with
more than one logic variable.

The set of indices ofonstraintsassociated witld, is given byD,, £ Umef[n Sm andVvD,, 3P,
such thatD,, € P;, hence

[6n=0] & A [ok(6,%) <0]. (8.10)

ke D
Lett; be the number of logic variables associated with priority leéyee.t = Y i _, t;.

Remark 8.3.From the definitions above, it can be seen thats >t >r.

Example 8.2. A given problem has & 10 constraints:

€=1{123456728910,
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where the first eight are allowed to be softened and the rest are to remain as hard constraints:

S=1(1,23,4567,8)
H = {9, 10} .

The soft constraints can be ordered in a hierarchy ef & priority levels, from highest to lowest:
P1=1{1,2},P,={(3,4},P3={5,6,7}, P» = {8}

Each constraint is associated with its own slack variable, except constraints 5 and 6 (hen@g s
since they cannot be violated simultaneously and introducing an additional slack variable is therefore
unnecessary:

S1={1}, 52 = {2}, S3 = {3}, Ss = {4}, S5 = {5, 6}, Sg = {7}, S7 = {8}.

A logic variable is associated with each slack variable, except slack variables 3 and 4, which share a
logic variable:

T1={1},72={(2,T3=(3,4,7a= {5}, Ts = {6}, Te = {7} .
Hence, the indices of the constraints associated with taetlogic variables are:
D1 ={1},D, = {2}, D3 = {3,4}, D4y = {5,6}, Ds = {7}, Ds = {8} .

It can be seen that ead®, andS,, is a subset of sonfg . There are two logic variables and two slack
variables associated with priority level 1, one logic variable and two slack variables with priority level
2, two logic variables and two slack variables (but 3 constraints) with priority level 3 and, finally, one
logic variable and one slack variable with priority level 4.

Note that if a solution has been found asd= 1, then one cannot deduce whether only one or both

of constraints 3 and 4 are violated - one would have to look at the values of the associated slack
variables. If6; = 1, then either constraint 5 or 6 is violated, but not both. However, if it were possible

for constraints 5 and 6 to be violated simultaneously, then one also cannot tell whether one or both
constraints have been violated. Since they both share the same slack variable, one cannot gain any
information from examining it.

These definitions have been given for the sake of rigour. It will become clear later on how they are
used to set up prioritised, soft-constrained problems.

8.3.2 Setting up a Soft-Constrained Problem

The slack variables are used to soften the constraints. However, the following assumption is made in
order to guarantee that the scatawhich is used later in (8.16a), has a finite lower bound.
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Assumption 8.2. All the slack variableg (6, x) are bounded above:

0<em@,XxX) < Mp. (8.11)

This is a realistic assumption, since in most applications the constraints are associated with a physical
parameter which is bounded. One can now proceed to define the soft-constrained problem.

Problem 8.2 (Soft-constrained mp-MINLP). Solve
(02(X), €*(x), 8* (X)) = argemig] f(6,x,€)+ pW's (8.12)

subject to the inequalities

k0, X) < €n (8.13a)
a@®.x) <0 (8.13b)
0<em < Muydn (8.13c)
k € Sm (8.13d)

l e H (8.13€)

me 7, (8.13f)
ne{l?2...,t} (8.13g)

where it is desired that the logic variabks(x) e {0, 1}! indicates whether any of the associated
constraints have been violated in the sensé80t0)ande;, (X) = em(62(X), X) represents the largest
violation in the m'th subset of constraints. The weights R, and W € N!, should be chosen to
minimise constraint violations in(@z(x), X), while satisfying the given priorities.

Since F is bounded and the slack variables are bounded, the feasible set of paranfetePsob-

lem 8.2, denoted b¥ks, is also bounded¥rs 2 Xry). One has to choose a compact subset of states
Xo C Xgs, with Xo\Xgy # @, for which one would like to design a prioritised, soft-constrained op-
timisation problem.

Obviously, a good choice would B8 = Xgsor Xy D Xgy. However, for computation gf € R,
this might not always be practical and some trade-off in the si2&dfas to be made. The role pf
will become clearer in subsequent sections.

Before proceeding, since the original definition of the slack varighlé, X) £ maxcs,, (0 (6, X), 0)
results in a non-smooth optimisation problem, one would like to pose it as an easier problem.

Lemma8.1. If | - || is a suitably defined norm, then the size of the largest violation in the m’th subset
of constraints is given by

em(8, X) = arg m]%nnan , (8.14a)
ae
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where the optimisation is subject to

(@, X) <a, VkeSnm (8.14b)
0<a. (8.14c)

Using this result, one can choose the cost function of the soft-constrained problem such that the
components of the optimalare equal to the sizes of the constraint violations.

Lemma 8.2. Let

S
6. x )= 1.0+ llenll. (8.15a)
m=1
where]|| - || is any suitably defined norm. If the optimal solution to Problem 8.2 has been found, then

the vectors*(x) reflects which sets of constraints have been satisfied or violated in the sense that

[5:00 =0] & A [ok(®:(x).x) <0] . (8.15D)

keDp

Furthermore. €, (x) represents the size of the largest violation in the m’th subset of constraints.

Proof. If (8.15b) does not hold, then the only other possibility is that the constraints are satisfied with
the associated logic variable equal to 1. This contradicts the optimality assumption, since it is possible
to set the associated slack vectors and logic variables to O for all satisfied sets of constraints, resulting
in a lower cost. If any of the constraints associated with a logic variable are not satisfied, then the
logic variable has to be equal to 1.

For the giverv*(x), by application of Lemma 8.1 and the optimality assumption, it can be seen that
€5 (X) = em(0*(X), X) represents the size of the largest violation inrtiith subset of constraints. O

8.3.3 Prioritised-Optimal Soft-Constrained Problems

The following problems will be considered in the sequel. The first problem is the same as the one
defined in Chapter 7, of guaranteeing that the hard- and soft-constrained solutions will be equal for a
given subset oKgy.

Problem 8.3 (Exact penalty function). Set up Problem 8.2 such théx € XoNXgy, 62 (X) = 6*(X)
of Problem 8.1 and hence all constraints itdgx) < 0 are satisfied.

The next problem is related to the above problem, but also addresses the case @h&n,. No
prioritisation is required.

Problem 8.4 (Minimum number of constraint violations). Set up Problem 8.2 such thek € Xq
the solution is such that the minimum number of constraintgénx) < O are violated.
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The next two problems require the solution to be prioritised-optimal. Problem 8.4 can be seen to be a
special case of Problem 8.5, which in turn is a special case of Problem 8.6.

Problem 8.5 (Uniquely prioritised constraints). Given a set of constraints with each constraint as-
sociated with a different priority level, set up Problem 8.2 such ¥hat X, the solution minimises
the number of constraint violations i@ x) < 0in a prioritised-optimal fashion.

Problem 8.6 (Multiple constraints with the same priority). Given a set of constraints with subsets
of constraints associated with the same priority level, set up Problem 8.2 suckxhat X, the
solution minimises the number of constraint violations on each level in a prioritised-optimal fashion.

Some applications often have lower and upper bounds on a variable. For & ginelx, either both
constraints are satisfied or only one violated. It is not possible for both to be violated at the same time.
One can exploit this structure by putting both constraints on the same priority level and associating a
single slack variable with the constraints. This is the motivation for the following problem.

Problem 8.7 (Exclusive constraint violations). Given a set of constraints with subsets of constraints
which cannot be violated at the same time but that are associated with the same priority level as other
subsets of constraints, set up Problem 8.2 such¥at Xy the solution minimises the number of
constraint violations in 2 (x), X) in a prioritised-optimal sense.

8.4 Main Results
The next result gives a condition on the scatasuch that the solution which minimises the cost
function in Problem 8.2, also minimis&¥’s.

Lemma8.3. Let W € N, and

p > supf(d,x,e) —einf f0,x,€) (8.16a)
VX, €

0,X,€

where it is assumed that the optimisations are bounded from above and below, subject to

x € Xo (8.16b)

Ok, X) < €m (8.16¢)
a®.x) <0 (8.16d)
0<eéem =< Mn (8.16€)
K e Sm (8.16f)

| e H (8.169)

me 7, (8.16h)

ne(l,2...,t}. (8.16i)
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If (62(x), €*(x), §*(x)) is an optimal solution to Problem 8.2 and« X, then there does not exist
another feasible solutiof®s(x), €(X), §(X)) such that W8 (x) < W' §*(x).

Proof. Assume that6g (x), €*(x), §*(x)) is an optimal solution to Problem 8.2 and that there exists
another feasible candidate soluti@(x), e(X), §(X)) with W'§(x) < W’'§*(X).

LetV* = fN(Q;‘(x), X, (X)) + pW'8*(x) andV’ = f (65(X), X, €(X)) + pW’'8(x) be the values of the
cost function in (8.12) for the two feasible solutions.

Sincep is given by (8.16a), it follows that

p > [TOXX), X, € (X)) — F(B(X), X, €(X))], ¥X € Xo.

This allows one to proceed as follows:

V* =V = f(0(X), X, € (X)) + pW'8*(X) — F(8(X), X, €(X)) — pW'8(X)

= f0. %, €* () — F(OX), X, €(X)) + p(W'8*(X) — W'8(X))
(02 (X), X, € (X)) — F(B(X), X, €(X)) + p, sincEW'8*(x) — W'§(x) > 1
f070). %, () — O, X, e(X)) + | F (O (X). X, €* (X)) — F(O ), X, €(X))]|
> 0.

v

\%

This implies thalV’ < V* and that(6(x), €(x), §(x)) results in a lower cost function. This contradicts
the assumption thab; (x), €*(x), §*(x)) is an optimal solution, thereby concluding the proof. [

The following theorem gives conditions &N and tells one how to set up Problem 8.2 such that the
problems of Section 8.3.3 can be solved. Without loss of generality, it is assumed that all constraints
are softened and ordered from highest to lowest priority.

Theorem 8.2. With the givenf (6, x, €) as in Lemma 8.2 ang as in Lemma 8.3, assuming the
optimal solution to Problem 8.2 can be found, one can set up Problem 8.2 to solve a number of related
problems:

1. If W e N, then Problem 8.3 is solved;

2. Associate a unigue slack variable, logic variable and priority level with each constraint, i.e.
Pi={i},Sm={m},7Tn ={n},Dy={ntand hencee=s=t =r. If

W =1, (8.17a)

then Problem 8.4 is solved;
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3. Associate a unique slack variable, logic variable and priority level with each constraint, i.e.
Pi={i},Sn={m},7Th ={n},Dy={n}and hence e=s=t =r. If

W= |2 |, (8.17b)

then Problem 8.5 is solved:;

4. Associate a unique slack variable and logic variable with each constraint and include the pos-
sibility that multiple constraints are associated with the same priority levelA.ds given by
the constraints associated with priority level$,, = {m}, 7, = {n}, D, = {n} and hence
c=s=t>r.lIf

o]
W=|wl, |, (8.17¢)
_wrltr_
with
r
wi =1+ > tjw, (8.17d)
j=i+1

andw; € N, then Problem 8.6 is solved,;

5. Associate a unique slack vector with each subset of constraints on the same priority level which
cannot be violated at the same time. Associate a unique logic variable with each slack variable
and include the possibility that multiple subsets of constraints are associated with the same
priority level, i.e. P; is given by the constraints associated with priority levesj, and Dy,
are given by the constraints associated with slack vector m and logic varialilesa,{n} and
hence c>=s=t >r. If W is chosen as i(8.17c) then Problem 8.7 is solved,;

Proof.

1. If x € Xg N Xy, thend*(x), the optimal solution from Problem 8.1, satisfep®*(x), X) <
0 and hencegé; (x), €*(x), §*(x)) = (0*(x), 0, 0) is a feasible solution to Problem 8.2. By
considering Lemma 8.30*(x), 0, 0) is also a candidate optimal solution, sing&s*(x) = 0.

This implies that the optimal solution has to satifyx) = 0 and that(6g (x), €*(X), §*(X)) is
a solution to Problem 8.2 with the added constrafitx) = 0 ande*(x) = O.
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The new Problem 8.2 is now equivalent to Problem 8.1, hence the optimal solution to Prob-
lem 8.2 is given by6: (x), €*(X), §*(X)) = (0*(x), 0, 0). This solves Problem 8.3, by showing

that the solution to the soft-constrained problem is equal to the solution of the hard-constrained
problem.

2. If x € Xo N Xy, then the proof is as above and all constraints are satisfied. For proving the
result wherx € Xo\Xg, note that ifW = 1;, thenW's = 31 _, 8.

By application of Lemma 8.2 and the fact that each constraint is associated with its own logic
variable,W’§*(x) is equal to the number of constrawiolationsin g(67 (x), X).

Lemma 8.3 implies that if the optimal solution has been found, then there does not exist another
feasible solution with a lowew’s*(x), hence the optimal solution also minimises the number
of constraint violations.

3. Since each constraint is associated with a unique priority level and logic variable, the optimal
5*(x) indicates whether or not the associated priority level has been satisfied. As in Section 8.2,
let vi (B(x)) represent the number of violated constraints on priority leviek a giveno(x),
thenv; (92 (X)) = §*(X).

Assume that the solution is optimal, but not prioritised-optimal. By Definition 8.2, this implies
that there exists @s(x), €(X), §(X)) with §«(X) < &% (X), wherei* is the index of the first
element wheré (x) ands*(x) differ, i.e. §i- (x) = 0 ands;s (x) = 1.

By noting thatW’'s = Zﬁ,zl 2718, and that(s,(x) — §7(x)) € {—1,0, 1}, one can show the
following:

t
W8(x) — W*(x) = > 27" (8n(x) — 83(X))

n=1
t
=32 (8n(x) — 85(x))
=i* N
=27 (5,0 = 820) + Y 27" (%) — 85(X))

n=i*+1

t
<27 (B0 =8 00) + Y 2

n=i*+1
< 277 (8 (x) — 8 (0)) + 27
=27 (=141
=0.

This implies thaW's(x) < W'§*(x). The assumption that (x) is part of the optimal solution
is contradicted, as implied by Lemma 8.3, hence the optimal solution is also prioritised-optimal.
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4. Since each constraint is associated with a unique logic variable, the optitmalindicates

whether the associated constraint has been satisfied. However, more than one constraint can be
associated with a given priority level. As in Section 8.2,ugt(x)) represent the number of
violated constraints on priority levelfor a givené (x), thenv; (63 (x)) = Znepi 55(X).

Assume that the solution is optimal, but not prioritised-optimal. By Definition 8.2, this implies
that there exists &s(X), €(x), 8(x)) with v (6s(X)) < vi=(62(X)), wherei* is the index of the
first element where (65(x)) andv (6 (x)) differ.

By noting that

W’8=ZZwi5n =Zwi Z(Sn =Zwivi(05),
i—1

i=1 neP; i=1 neP

one can show the following:

W8(x) — W8*(x) = > wj [v](6s(X)) — v (BZ(X))]

j=1

=Y wj [v(6s(x) — v} (B2 (x))]
j=i*

r

= wis [0+ (0s00) — vi= (0 0] + D> wj [v5(Bs(X)) — v} (65 (X))]

j=i*+1

= wis [0 (0s00) = vi= (B N] + D wj D (BalX) = 87(X)

j=i*+1 neP;j

< wie [uie (0s(0) — v B0 ] + Y wy Y1

j=i*+1  neP;
< wis [0 (0s00) — v B2 ]+ D wyy
j=it4+1
< wix [vi+(65(X)) — i+ (62 (X)] + wi-
= wix {[vi- (Bs(X)) — vi+ (02 (X))] + 1}
< 0, sincewj- > 1 andvj« (0s(X)) — vi(63(X)) < —1.

This implies thatW's(x) < W’'8*(x). The assumption that (x) is part of the optimal solution
is contradicted, as implied by Lemma 8.3, hence the optimal solution is also prioritised-optimal.

. The proof in the previous result can easily be extended for this case. The new objective that is

introduced is that all the constraints associated with some single logic variable be satisfied. All
of the constraints associated with the logic variable will be satisfied, if possible. If this is not
possible, only one of them will be violated for a giveé(x) and the violation of that constraint
implies the satisfaction of the other constraints associated with the logic variable.
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Remark 8.4.Note that (8.17a) and (8.17b) are special cases of (8.17c).

Remark 8.5.Problem 8.7 can also be solved by treating it as a special case of Problem 8.6. However,
treating Problem 8.7 as a special case of Problem 8.6 would introduce more slack variables and logic
variables than are necessary.

Remark 8.6.1t is trivial to extend Theorem 8.2 to the case where more than one slack variable is
associated with a single logic variable, if the application requires this. The wéiglgmains as

in (8.17c). However, if one of the constraints associated with the logic variable is violated, one cannot
guarantee that the other constraints associated with the logic variable are satisfied, unless the violation
is exclusive as in Problem 8.7.

8.5 Special Cases and Simplifications

Up to now, the case of a general mp-MINLP has been considered. In general it is difficult to implement

and compute the resulting soft-constrained problem if the cost function and constraints do not take on
a special form. This section discusses the special case of when the original problem is an mp-MIQP
or mp-MILP, as occurs when setting up MPC problems, and how one could proceed in computing a
value forp.

8.5.1 The Model Predictive Control Problem as an mp-MIQP or mp-MILP

Since integer variables can be represented by an appropriate number of binary variables, it is assumed
from this point on tha® € R% x {0, 1}% andx € RPt x {0, 1}P2. The class of MPC problems with
guadratic costs and linear inequality constraints results in optimisation problems of the form

1
f(0.%) = 26'HO +XF'6, (8.18a)

where the cost function is convex in the decision vari@biee. H > 0, and the linear part is dependent
on the parametex, which is usually the current state of the plant. Furthermore, the constraints can
often be written in the form:

G16 < g» + Gax, (8.18b)
with G; € R&*@+d%) g, ¢ R andG; € R (P1+P2), Note that the right hand side is dependenton

This is a hard-constrained mp-MIQP (multi-parametric Mixed-Integer Quadratic Program) and a soft-
constrained mp-MIQP can be set up as in Sections 8.3 and 8.4 by introducing appropriate norms for
the slack variables and additional logic variables such that

i 1[61TH o]e Fx| [o
BT R o



156 CHAPTER 8. OPTIMISATION SUBJECT TO PRIORITISED CONSTRAINTS

whereS, € R® and S, € RS*S are determined from the (weighted) norm used in penalising the
constraint violations.

Even in this simple form, the computation @fn (8.16a) is not easy, since the cost functibi, x, )
is not necessarily convex #h € andx, even ifH > 0 andS; > 0, as can be seen by rewriting (8.19)
as:

/ /

K H F 0][es 0] [6
f~(0,x,e)=§ x| |FF 0 of|x|+|0] [x]. (8.20)
€ 0 0 S € S €

Itis easy to find values foF that result in a Hessian which is not positive semi-definite.

If H =0 andS, = 0 the soft-constrained problem becomes that of an mp-MILP (multi-parametric
Mixed-Integer Linear Program). However, the computatiop @ still not easy, since the cost func-
tions in (8.16a) are still indefinite quadraticsxn

In both the mp-MIQP and mp-MILP, unless some structure about the problem is known, the most
practical solution might be to make a conservative guess at the vahie of

8.5.2 Decomposing the Soft-Constrained Problem

If the computation ofp is difficult and it is crucial that the subset of parameters for which one can
guarantee that the solution is prioritised-optimal is maximal Xg= Xgs, then one can decompose
Problem 8.2 into two (or more) steps. The first step would be to solve for

S
(0(X), €7(x), 67(X)) = arggr]z!?; lemll + pW'S (8.21)

subject to the original soft constraints (8.13) in Problem 8.2. This step finds a solution which is
prioritised-optimal in terms of the number of satisfied constraints. The next step would be to solve for

62 (x) = arg nginf 0, x) (8.22)

subject to (8.13), but with the solutior$(x) ands* (x) to the first part substituted into the constraints.
In this case, since the slack vectors are known to be bounded, it is easy to find

S
p > IMnl. (8.23)
m=1

Whether the constraint violations should be penalised in the first or second step is problem-dependent -
the same*(x) will result. However, it can be seen that by penalising the violations in the second step
instead of the first, i.e. miry . W’'s followed by min, . f (0, xX) + an:l llemll, that it isnot necessary

to calculate a value fgs. In addition, the restriction that; € N, can also then be relaxedig € R, ,

as in Theorem 8.1.
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One does not need to have slack variables for the solution to be prioritised-optimal with respect to
the number of constraint violations. ff(9, x, ¢) = f (0, x) + > o _1 lemll, then a trade-off between

f (6, x) and the size of the constraint violations has to be made. Adding slack vectors also adds
decision variables to the optimisation problem, thereby increasing the computational effort. Remov-
ing the slack variables and not caring about the size of the constraint violations, amounts to setting
f (0, x,¢) = (0, x) and replacing (8.13a) and (8.13c) with

gk(9, X) = I\/|m3n .

By decomposing the problem as in the above two approaches, one can guarantee that the solution is
prioritised-optimal in terms of constraint satisfaction fonakt Xgs.

8.6 Model Predictive Control of Hybrid Systems

The MLD modelling framework mentioned in Section 4.2 allows one to design MPC controllers for
hybrid systems. The following problem has to be solved in order to compute an MPC controller for
an MLD system:

Problem 8.8. [BM99a] Given the initial state xand a control horizon N, find (if it exists) the control
sequencer,i\‘ £ {Ooik, G1, ... , On_1k} Which transfers the state from %o x; and minimises the
performance index

N-1

VO, %) 2 N0k —uell®, + 18k — 8¢112
go: | @ @ (8.24a)

N 2 o 2 0 2
+ 12k — Ze llg, + Xk — Xt llg, + 1%k — Yillgg

subject to

)zN|k = Xy (824b)

A

and the MLD system dynami¢4.1), where||a||2Q = a'Qu, Qi =Q =0,i =1...5are given
weight matrices, and  us, 8¢, z¢, Y¢ are given offset vectotssatisfying(4.1b)and (4.1c) The
decision variable is made up of all thé, , <§||k andz .

As shown in [BM99a, Sect. 5], this problem is an mp-MIQP. Solving the problem is equivalent to
minimising an appropriate cost function in the form (8.18a) subject to constraints (8.18b), with the
parametex = Xx. It is also possible to add additional performance or safety constraints on the states
and inputs of the system, i.& € Xand(;x € U

4These vectors correspond to a steady state which is compatible with the constraints. An MIQP can be set up for
computing these values [BM99a, Sect. 6.1].
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Since the constraints in the problem are dependent on the current state, it is possible that a disturbance
could drive the system outsid€r, resulting in it being impossible to compute a solution to the
original hard-constrained problem. Assuming it is still possible to drive the systamitoN steps

when some or all of the performance constraints have been relaxed, one would like to design a soft-
constrained problem which prioritises the soft constraints. The procedure described in Sections 8.3—
8.5 allows one to construct such a problem.

Remark 8.7.When dealing with MPC problems, it is relatively easy to get a conservative lower bound
for p, as the expressions in the cost function represent physical variables which are bounded. Since
each| - ||%Qi is conve, it is relatively easy to obtain an upper bound on the maximum and likewise
when introducing slack variables. Additionally, the cost function is also always bounded below by 0.

Various priorities can usually be assigned to the soft constraints on the inputs and states. For example:

e It might be less desirable to violate the performance constraints on a given output than con-
straints on other outputs and therefore the soft constraints associated with the first output have
a higher priority than the soft constraints of the other outputs.

e Another design requirement might be that if the performance constraints on an output have to
be violated, that it be brought back into the desired region as soon as possible, regardless of
the satisfaction by other outputs of their corresponding performance constraints. In this case,
constraints in the future have a higher priority than constraints closer to the current time. In
addition, all the constraints on the output have a higher priority than constraints on the other
outputs.

e A third case would be where redundant hardware has been installed for safety purposes and
one would like to use the hardware only to prevent a fault from developing into plant failure.
Constraints on inputs and outputs associated with the redundant hardware therefore have higher
priority than all other performance constraints.

If there are a large number of inputs and outputs and a large hoNzand one tries to associate a
separate priority level with each constraint, the weighté/iwill become very large and the problem
ill-conditioned. However, in practical situations one can rarely associate a large number of distinct
priority levels with all the inputs and states, and this is therefore not a serious problem. It is also
possible to include time priorities without the need for separate weights for each time constraint and
this will be discussed next.

8.6.1 Minimum-Time Output-Prioritised Solutions

Assume that the system has only one output and that one prioritises the constraints on the output such
that a constraint at timke+ 1 has a higher priority than a constraint at tim@nd one chooses tiwg
appropriately to reflect this priority. If the only constraints that have been softened are the performance
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constraints related to the output, then it can be seen that the solutitinimum-timeoptimal in the

sense that the duration of constraint violations has been minimised. The same minimum-time optimal
solution will result if one adopts the approach of [VSJ99], [TM99, Sect. 3.2] or [BM99a, Sect. 5.1]
for a MISO system.

However, if one has a MIMO system and the inputs and states are prioritised then the problem becomes
the following:

Problem 8.9 (Minimum-time output-prioritised). Set up a soft-constrained problem for which the
solution is output-prioritised-optimal with respect to the duration of constraint violations over the
horizon N.

Note that the problem has changed from trying to find a solution which is prioritised-optimal in the
numberof constraint violations to minimising thduration of constraint violations subject to the pri-
oritisation. These are two different problems and adopting the unmodified approach of Sections 8.3
and 8.4 does not solve the latter problem. One has to redefinewihatepresents in order to under-
stand why this is the case.

Let v;(6) now represent the sum of tlourationsof constraintrelaxation for the inputs and states
associated with priority levél The solution is therefore required to be prioritised-optimal with respect
to v(9). For example, assume that the soft-constrained problem has been set up su&%h thdf [

is true if the associated constraint on tfith input or state at timé has beenelaxed. Let ki =
MaX«(o,...,Nj K such thatzﬁ'j‘ = 1], thenk}‘ is the duration of constraint relaxation of thi#h state or
input on priority leveli. If this is the case, then (9) = Zj k.

In light of this, it can be seen that the original problem is such #iak) = 1] is true if and only if

the desired input or state constraint has been violated, not just relaxed. By forcing higher-prioritised
constraints to be satisfied, it could result in a ‘water bed’ effect where constraints on lower-prioritised
states or inputs cannot be satisfied, thereby possibly increasing the duration of constraint violation for
those inputs or states. The same effect will occur when the approach in [VSJ99] is used.

All that remains is to modify Problem 8.2 such thét(x) = 1] is true if the associated input or state
constraint has been relaxed, but not necessarily violated. The solution should be such that the duration
of constraint relaxation is prioritised-optimal. A modification of the approach in [TM99, Sect. 3.2]
and [BM99a, Sect. 5.1] allows one to do just this. Additionally, it will be shown that it is sufficient

for all constraints and logic variables associated with the state or input on priorityi levekave the

same weightv;.

Theorem 8.3 (Minimum-time output-prioritised). Let the upper and lower bounds of the r outputs
of the MLD systen@.1) be given byy and y, respectively.

5Note that a relaxed constraint is not necessarily violated. If a constraint has been relaxed, it implies that violation is
allowed, but satisfaction is still possible. For example, a constgaiit < 0 has been relaxed if it has been replaced by
g(#) < M, whereM is some positive number.



160 CHAPTER 8. OPTIMISATION SUBJECT TO PRIORITISED CONSTRAINTS

Let the violation of output i at time ¥ | be given byei' and the maximum allowed violation of the
constraints of the i'th output be M Furthermore, the outputs are such that output i has a higher
priority than output i+ 1.

A control sequence which minimises the duration of output constraint violations in an output-pri-
oritised fashion and optimally transfers the state frogitax x¢ in N steps is found by solving the
following MIQP:

N—-1
min J (6, ) + D N NB, + pW's (8.25a)

1=1

subject to

y—€e 2 9u=y+e, 1=1... ,N-1 (8.25b)
O<e <M, i=1...,rl=1...,N-1 (8.25¢)
stt<sl, i=1....rnl=1...,N=2 (8.25d)
kN|k = Xj (8258)

and the MLD system dynami¢$.1), with Qs > 0.

The prioritised logic vectos e {0, 1}’ N is defined as

51
§& | (8.25f)
S
with
5
8 = : : (8.250)
sN-1
|
The priority weight vector is defined as
_U)llel_
W = Wi 1N—1 (825h)
| Wr 1N71_
with
r
wi =1+ Y (N = Duw (8.25i)

j=i+1
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andw; € N,.

The vector of constraint violationsis defined as:

e2 | (8.25j)
EN—l
with
€1
el (8.25k)
&
The optimisation in
N—-1
p>¢¥?uama+§:kw@ (8.25l)

=1

is subject to the same constraints as above.

Proof. If the constraints (8.25d) are removed, then it can be seen that the solution solves a special case
of Problem 8.6. All the constraints associated with ouipluiave the same priority, i.¢i = N — 1.

If these constraints weren’t included, then the solution would minimise the number of constraint
violations in an output-prioritised fashion. With the addition of the constraints (8.25d) the problem is
slightly modified.

The constraints (8.25d) are equivalent to the propositional logic statements
[l =0]—[8" =0, i=1....rnl=1...,N=2

and imply that if the constraints of outpuare satisfied at timk + |, then the constraints of outpiut
are satisfied fromtim& +1 + 1tok + N — 1.

If [8! = 1], then this implies thats} = 1] for j = 1,...,| — 1 and hence the constraints for output
have beemelaxed from timek + 1 to timek +|.

With the above choice gf andw; and the fact that the cost function is always non-negative, it follows
from the same argument as in the proof of Lemma 8.3 that the optimal solution also minittitses

Note thaty "' ;" 8! is now equal to the duration of constraint relaxation for outpiitone defines

N-1
@) £ 4,
=1

8|t is stressed again that thi®es not implyhat the constraints have beeiolated
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then
(wiln-1)'8 = wivi (0) .

By Theorem 8.1 and the fact thét's is minimised, it follows that the optimal solution minimises the
duration of constraint relaxations (and hence diieation of constraint violation§ in a prioritised-
optimal fashion. The problem of minimising the duration of constraint relaxations of outplies
higher priority than the minimisation of the duration of constraint relaxations of outpuit.

O

This result illustrates how constraints can be added to include time priorities, but reduce the size of the
components iW. Variations on this theme are possible by combining it with ideas from the previous
sections.

8.7 Fault-Tolerant Control Example: The Three-Tank Benchmark

In [HL99] a benchmark problem was formulated as part of the COSY (Control of Complex Systems)
project in order to compare reconfiguration strategies for fault-tolerant control. A number of solutions
to this problem are given in [LAG00]. This section demonstrates how a prioritised optimisation
problem can be set up to determine a prioritised-optimal steady-state under the various fault scenarios
as defined in [HL99].

8.7.1 Description of the Tank System

The benchmark problem consists of three coupled tanks, as shown in Figure 8.1. The tanks are con-
nected by pipes and the flows through these pipes are controlled by switching Yalves( Vs, Va))

which can only be completely opened or completely closed. The left and right tanks can be filled using
two identical pumps®;, and P,). The continuous measurements of the levels in the tapks, and

hs are available. The system is hybrid by nature, since there are both continuous and discrete inputs
and states and an MLD model of the system is given in [BMM99, Mig99].

The level in each tank and the flow rate of the pumps are bounded:
e The height of each tank is 62cm, i.e<0h; < 0.62[m],i =1, 2, 3;
e The inflows into tankd; andT, are limited to the range & Q; < 0.1 x 103 [m3/s],i = 1, 2;
The connection pipes between the tanks are placed at the bottom of the tanks (pipes withWyalves

andVs, and at a height of 30 cm (pipes with valv@sandV,). Valve V;_ can be used to simulate a
leak in tankT;. If there is no water flowing through the leak, th€s,_ = 0, otherwiseQ,, > 0.

"Not thenumberof constraint violations.
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iy Redundant hardware
2 II||III-[L Cutflow to

consumer

Figure 8.1: The Three-tank Benchmark Problem

The main aim of the tank system is to provide a continuous water @@ato the consumer. In the
nominal mode of operation tank; is used as a buffer to control the level of tafikin the range

9cm < hz < 11cm. The nominal level for tank, is h; = 50 cm. TanKT, and pumpP, are not used
and act as redundant hardware.

In normal operation, a Pl controller is used to control the flow @teof pump Py in order to keep
h, = 50 cm and valve/; is used to controhs. All other valves are closed and punipg is switched
off, i.e. Q, = 0.

8.7.2 The Reconfiguration Problem
For the reconfiguration problem, three different fault scenarios are given:

1. ValveV; is blocked in the closed position, i.¥; = 0;
2. ValveV; is blocked in the open position, i.&, = 1;

3. ValveVy, is open, i.eVy. = 1, thereby simulating a leak in tarik.

The reconfiguration task, as defined in [HL99], is to automatically find a new control configuration of
the three-tank system for each one of the scenarios above such that:
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e The levelh; remains within the nominal operating range, if possible;

e The loss of water is minimised, given the last scenario.

The reconfiguration problem involves determining the set of actuators, sensors, control laws and set-
points such that the control aims above are attainable. The use of the redundant hardware is allowed.

8.7.3 Steady-State Analysis

As can be seen in Problem 8.8, the deviations of the predicted from the steady-state values are pe-
nalised when determining an MPC control action. A steady-state value for an MLD system can be
determined with an MIQP:

o min llys =t 124+ 11X 112, + llug 12, + ¢ 113, + 18+ 112, (8.26)
subject to
X¢ = AXs + Bius + Bods + Bszs (8.27&)
Vi = CX; + Dius + Dbt + D3z¢ (8.27b)
E>d¢ + E3zs < Equs + EsXxs + Es (8.27¢)

wherep; are small, positive definite weighting matrices and a constant reference.

It is possible that the resulting steady-state is unreachable or gives poor performance, or even that
a steady-state does not exists but that a cyclical steady-state is possible [TMFMO01]. For the initial
investigation presented here, it is assumed that a reachable steady-state exists.

Furthermore, it will be assumed that an FDI (fault diagnosis and identification) routine is available
and that the fault is correctly identified and modelled. A steady-state for each of the fault conditions
can then be computed using the above MIQP.

Defining the Priorities

In many practical systems some degree of redundancy is available and it is possible that many optimal
steady-states exist. Additionally, it is often also possible that certain steady-states are preferred over
others.

In the three-tank benchmark problem it is possible to define the following constraint objectives from
highest to lowest priority:

1. Minimise the water loss. Obviously water loss is minimised when

Qi =0;
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2. Maintain a good rate of water flow to the consumer. Within this context it is possible to say that
a high rather than a low rate of flow is preferred. The highest priority is therefore to keep

hs > 9cm

3. Do not use the redundant hardware. This translates into assigning the following two cofistraints
the same priority:

Vi, =0, Vo =0;

4. Close all valves not used in steady-stageich as valvé/;3 connecting tank3; and Ts:

Vi3 =0;

5. Keep the flow rate to the consumer below a certain level. This translates into keeping

hs <1lcm;

6. Minimise the fluctuation in flow rate to the consumer. This could be achieved by keeping the
level of tankT; at some constant value, say

h3 = hapom=10Ccm;

7. Keep the level of tank; at the nominal value:

hl - h:l_nom= 50 cm.

Since some of the above constraints are not defined in the original benchmark, it is possible to choose
any other sensible combination. Itis felt that the above list of prioritised objectives reflect what a plant
operator would try to achieve with manual control.

The Prioritised Optimisation Problem

For each of the fault scenarios, the following prioritised MIQP can be solved for computing the opti-
mal steady-statéxs, us, 8¢, 2¢):

min -y = FIP Xl - Iu i, + 1Zeli5, + 18617, + lels, + pW's

Xf,Uf,8¢,2¢ €,

8The inclusion of the constraif@, = 0 is not necessary, since one can inclij@]|2 in the cost function. /3o = 0
andV, = 0 then the optimal solution would be such tigas = 0.
9The use of valveyy is necessary in steady-state.
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where the minimisation is subject to the following constraints:

QiL < €qy
hs > 0.09 — ep,
V3o < €v,,
Vo < ey,
Viz < ey,
hs < 0.11+ ep,,
0.1—-€n, <h3<01+4ep,
05— ¢€n <h; <05+€p,,

the lower bounds on the slack variabte$: [eq,, €hy €vs, €V, €vys €hy, €hs €ny]':
e>0,

the upper bounds on the slack variables which also associate the slack variables with the prioritised
logic vectors £ [8q,, Shy Svay Ov, Svys Shy, Shs Ony]':

€9y = (Qimadq

€hy < 0.09,

€vg, < Ldvs,

ev, < By,

€vys < Ldvy,

ehy, < (0.62— 0.11)8p,

€n; < Max(0.62 — hznom, Nanomdh,

€n; = max(0.62 — hinom, hlnom)5h1 s

IA

and the MLD steady-state equations of the faulty tank system in the form

Xf = AXs + Bius + B2dt + Bazs
Yyt = CX¢ + D1us + D2d¢ + Dazs
E2d+ + Eszf < Ejus + E4Xs + Es.

The physical constraints on the inputs and states (su€yas> 0 and 0< h; < 0.62) are included
either directly or implicitly in the MLD model and are therefore not listed above.

If the outputyy is
Yk = [h1 hz h3]’
and the referenceis

I = [N1nom O h3non]” = [0.5 0 O1]',
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Table 8.1: Results from the steady-state computation for the Three-Tank Benchmark

Fault hy | hy | hs Q1 Q2 Q1L Vi Vi3 V> Va2
Conditon | m | m | m m/s m3/s m/s
No Fault | 0.4 | 0.0| 0.1| 1.13x 10°° 0 0 open | closed| closed| closed
Viopen | 0.4]00|0.1]113x10° 0 0 open | closed| closed| closed
Viclosed | 0.2 0.0] 0.1 | 1.13x 107 0 0 | closed| open | closed| closed
LeakinT, | 0.0| 0.2| 0.1 0 1.13x10°| 0 | closed| closed| closed| open

then the the scalar has to be chosen such that

2 2 2 2 2 2
P> max llye = IxelE, 4 Iurl, + 0zelE + 18617, + Nl
where the optimisation also has to be performed subject to the above constraints. For the three-tank
system it is possible to get a lower bound fosimply by inspectiot?.

A W which reflects the priorities defined earlier is given by
W =[96 48 16 16 8 4 2 1]

Note that the same weight is assigned to bxth andsy,, since the associated constraints have the
same priority.

The above MIQP was formulated only as an example. Though this MIQP would solve the problem, it
was not the one that was implemented. Several computational simplifications can be made by noting
that some of the auxiliary variables will be equal to the states of the system at the optimal solution,
thereby allowing one to reduce the number of decision variables, e.g.

5y, =€y, = V2 € {0,1).

Discussion of the Steady-State Computation

Table 8.1 gives a summary of the solutions to the above optimisation problem for each of the three
fault scenarios. As can be seen, the computed steady-states satisfy both of the reconfiguration criteria
defined in Section 8.7.2, namely keepihgin the nominal range and minimising water loss in the

case of a leak occurring (in faQ;. = 0). Valve Vi3 is used only when valv¥; is blocked closed,
thereby allowing water to flow from tank; to tankTs.

The redundant hardware is only required in steady-state when there is a leak, with &ating as
buffer instead of tanK;. Valve Vs, is used instead of valvé,, since they both have the same priority.
This configuration allow$, to be closer to the set-point of 0 m.

10For the actual implementation with all tse = |, a value ofp = 3 was sufficient.



168 CHAPTER 8. OPTIMISATION SUBJECT TO PRIORITISED CONSTRAINTS

Note that the steady-state for the case with no fault is the same as the steady-state for whénisalve
blocked open. This is exactly what one would expect, since in steady\t&epen for the nominal
case.

It should also be observed that even for the nominal taseannot be kept at the desired level of
0.5 m at steady-state. This is due to Toricelli's law

Q =aSy/2gh,

which says that the flow rat® through an opening with cross-secti8ris proportional to the square
root of the height of liquid above the openirg.

In the three-tank system, the pipes and their openings are identical. This implies that, in steady-state,
the flow rate to the consumer must be equal to the flow rate of water coming intdsanhis in turn

implies that the level of water above the pipe with valemust be equal tti;. Since this pipe is
placed at 0.3 m, one would expect the level of tdhko beh; = hz + 0.3 = 0.4, which agrees with

the computed value.

As a further consequence, one would expect the flow rate of feinpbe equal to the flow rate to the
consumer. Using Toricelli’s law, one would expé&@t = 2.80x 10~> m?®/s. However, the MLD model
uses a linearised approximation of Toricelli's law [BMM99, Mig99] and hence the computed value of
Q: = 1.13 x 10°m¥/s is different from the ideal value, but correct for the model as implemented.
Obviously a better approximation will result in a more accurate estimate of the flow rate.

This example showed that by a careful choice of objectives and priorities a single optimisation could
be set up to calculate a sensible steady-state which satisfies as many of the objectives as possible. A
change in priorities is easily reflected by a suitable change in the wéighthe scheme proposed

in this chapter therefore allows one to add or remove constraints and change priorities in a simple,
transparent fashion.

8.8 Summary

Prioritised, multi-objective problems were introduced and it was shown how weights can be chosen
such that, for a class of problems where the cost function only takes on integer values, the solution is
prioritised-optimal. A soft-constrained mixed-integer programming problem was then formulated and
the problem of finding a solution which minimises the number of constraint violations in a prioritised-
optimal sense was posed.

The ideas from the first part of the chapter were applied to the choice of weights in the soft-constrained
problem. This was then further applied to the case of designing an MPC controller for the control of
hybrid systems, where some outputs have higher priority than others. Finally, the ideas were applied
to the problem of determining the setpoints for a three-tank system given a number of fault scenarios.

11The other terms in the equation are the gravity congjartd a flow correction terra.



Chapter 9

Concluding Remarks

In conclusion, the main contributions of this thesis are summarised and suggestions for possible future
directions are outlined.

9.1 Contributions

The central idea behind this thesis was to develop a framework for the synthesis of robust controllers
which guarantee constraint satisfaction. The main contributions of this thesis are summarised below.

Invariant Set Theory

e A number of important ideas from set invariance theory were brought together and placed in a
general, nonlinear setting. The essential ingredients required for computing robust controllable
and invariant sets were identified and discussed.

e Some less well-known results regarding the efficient computation of the linear map of a poly-
hedron and subset testing were given.

e A method for computing the Pontryagin difference between the union of a set of convex poly-
hedra and a convex polyhedron was described. It was shown how this allows one to compute
robust controllable sets for piecewise affine systems.

Model Predictive Control

o A new sufficient condition was derived for guaranteeing that a given MPC controller will be
feasible for all time, despite the possible sub-optimality of the solution at each time step. The
effect of the length of the horizons and choice of terminal constraint on the behaviour of the
feasible set and the feasibility of the MPC controller was also investigated.

169
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e A necessary and sufficient condition was derived for analysing whether a given MPC controller
will be feasible for all time, despite the presence of disturbances and the possible sub-optimality
of the solution at each time step. This allows one to determine whether or not it is necessary to
modify the given MPC controller in order to robustify it against disturbances.

e The robustification of the standard MPC scheme via the addition of a robustness constraint was
discussed. A new necessary and sufficient condition as well as some new sufficient conditions
were given in order to guarantee that the new controller would be robust strongly feasible. It was
also shown how to modify the controller to guarantee strong robust feasibility for LTI systems
in the presence of state disturbances and parametric uncertainty.

e Ideas from set invariance theory were applied to the problem of computing a steady-state set-
point which is compatible with the constraints, while bearing in mind that there are unknown
disturbances on the state and output.

Constrained Optimisation

e An algorithm was described for guaranteeing that the solution to a soft-constrained quadratic
program is equal to the solution to the original hard-constrained, multi-parametric quadratic
program (mp-QP) over a subset of the latter problem’s feasible set. This allows one to soften the
constraints of an MPC problem, guarantee constraint satisfaction if possible, but also guarantee
that the problem will not be infeasible if constraint violation is inevitable.

¢ A method was described for setting up a mixed-integer optimisation problem such that the solu-
tion minimises the number of constraint violations in a prioritised-optimal fashion. It was shown
how this method can be applied to the control of hybrid systems for recovering from constraint
violations in an optimal fashion, while bearing the priorities of the different constraints in mind.

9.2 Directions for Future Research

Some possible directions for future research are outlined below.

Invariant Set Theory

o Efficient algorithms need to be developed for the computation of robust controllable and in-
variant sets for linear and nonlinear systems. The class of systems for which these sets can
be computed should also be expanded, such as bilinear systems. As shown in Chapter 4 it is
possible to compute these sets exactly for piecewise affine systems. However, these sets are
generally non-convex and as a result the algorithms are more complex than for linear systems,
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where the sets are always convex. It might be possible to use the equivalent MLD model of the
PWA system to develop more efficient algorithms.

o Different classes of uncertainty to those discussed in this thesis should also be investigated.
The effect of uncertainty in the model for each of the regions of the PWA systems could also be
included in the computation of the invariant sets.

e The feasibility of using invariant sets in the synthesis of robust controllers for piecewise affine
and hybrid systems should be investigated.

e The possibility of obtaining robust performance guarantees from the use of invariant sets should
be investigated. Itis already known that some guarantees are possible when working with linear
systems. The extension of these results to PWA systems could prove to be interesting.

Model Predictive Control

e The use of invariant sets and the robustness constraint as in Section 6.4 could provide the de-
signer with a robust performance guarantee for the closed-loop system. More results regarding
the robust stability and performance of the robustness constraint approach need to be developed.

e The case of the robust stability and feasibility of MPC with output feedback needs to be inves-
tigated. Section 6.7 briefly alluded as to how a robustly feasible output feedback MPC scheme
could be designed and a more thorough investigation into this field needs to be undertaken. The
simultaneous design of an MPC controller and observer might prove beneficial in enlarging the
region of guaranteed robust feasibility and stability.

Constrained Optimisation

e Though the problem described in Chapter 7 of finding a lower bound on the penalty weight
appears to be a difficult, non-convex optimisation problem, there does seem to be some structure
in the behaviour of the Lagrange multiplier over the region of interest. It would be useful if one
could determine whether the problem is quasi-convex or has some other property which could
be exploited in finding a more efficient algorithm for determining a lower bound on the penalty
weight.

e The choice of weights proposed in Chapter 8 is impractical for systems with many levels of
prioritised constraints. It might be possible to compute an optimal set of weights. This would
make the proposed approach feasible for large, complex systems.






Appendix A
Time-Varying Systems

If the system is time-varying
Xer1 = F(X, Uk, wi) (A.1)

and the constraints are also time varying

uk € Uk (A.2a)
Xk € Xk (A.Zb)
wg € Wy. (A.ZC)

then Algorithm 2.1 requires only a minor modification [BR71, GS71].

Before proceeding, the definition of the robust one-step set is modified to account for the time-varying
nature of the system and constraints:

Ok(2) 2 (X € R" | Juy € Uy : fi(Xc, Uk, wi) € 2, Ywy € Wy} . (A.3)
Given a target s€f, one is interested in computing the set of states which can be robustly steered to
T in a finite number of steps. Algorithm 2.1 is replaced by the following:

Algorithm A.1 (Robust controllable sets for time-varying systems).The N-step robust controlla-
ble setky can be computed via the following iterative procedure:

Ko=T (A.4a)
Kis1 = Okenoi-1(Ki) N Xipnoiot - (A.4b)

If Ki1 = @, then terminate.

In order to steer the system Tin N steps, the contral, € Uy has to be chosen such that ; e
Kn_1, Ywi € Wy. Attimek + 1, the state is measured and the contiigh, € Uy, has to be chosen
such thatx,» € Kn_2, Vw1 € Wiy 1. This process is repeated fidr steps.
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If the system has the structure

Xir1 = Tk, U) + Ok (wy) , (A.5)

then one can use the Pontryagin difference to compute the sequence of valid control moves which will
steer the system @ in N steps. Assumingy € Ky, the sequence of controls which satisfies

Ukti (Xiqi) € {U € Upyi | figi ks U) € Kncioa ~ O (Wk+i)} , 1=0,...,N=-1 (A.6)

will robustly drive the system t& in N steps [BR71, GS71]. The set of valid control inputs at time
k +i is dependent on the actual measured state

As can be seen, future knowledge of the time-varying nature of the system and constraints are nec-
essary and the valid set of controls needs to be re-computed on-line at each time step. Furthermore,
onceT is reached, one cannot guarantee that a control sequence will exist which will keep the system
inside T unless further knowledge about the time-varying nature of the system and constraints are
known. Concepts like invariance for time-varying systems therefore become a lot more complicated
and fall outside the scope of this thesis.



Appendix B

Removing Redundant Constraints

This appendix describes a simple redundancy removal routine which is easy to implement. For a more
efficient method, see [CMP89].

A convex polyhedror2 described byN > 2 linear inequalities is given:

Q2 {weR"| Aw<b, AcRV" beR"}. (B.1)

The problem is to remove all redundant inequalitieito obtain arnirredundantdescription® such
that® = Q. Thei'th inequality

Aw <b
is redundant if and only if by removing it from the description<dthe same set results, i.e.
Q=Q £{weR"|Aw=<b,j=1...,i-1i+1...,N}.
Equivalently, thd'th inequality is redundant if and only if
Poe Qi Ao>Db. (B.2)
The irredundant polyhedron is therefore given by

S N {weR"| Aw <bj}. (B.3)
je{ilﬂweﬂi:Ai’w>bi}

Testing whether (B.2) is true can be done by finding the maximuAd@fover;. A simple procedure
for removing the redundant constraints can therefore be implemented as follows:

1. Seti < 1,C < []andd < [];

2. If max,cq, Alw > by, then seC « |:§J andd <« Lﬂ
' i
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3. Ifi < Nthensei < i+ 1and go to step 2, else terminate;

4. The irredundant description 6fis given by® = {w € R" | Cw < d}.

The maximisation in step 2 can be implemented as an LP. The maximisation can be terminated as
soon as aw has been found such thafw > by;.



Appendix C

Fourier-Motzkin Elimination

Fourier elimination can be thought of as the equivalent of Gaussian elimination for solving a set of
linear inequalities. A brief sketch behind the idea of Fourier elimination is given here. See [KG87]
for a more detailed description of the algorithm.

Letx,y, z ..., u,t denote some scalar variables which are required to satisfy a set of linear inequal-
ities. The aim is to successively eliminatey, z, ... from the inequalities to obtain inequalities in
which onlyt enters.

Each of the inequalities, in relation xois either of the form

Xx>A+By+Cz+--- (C.1)
or

X<a+By+yz+---. (C.2)

Each of the constraints in the form (C.1) is taken with each of the constraints in the form (C.2) to form
new inequalities in whiclx does not appeatr, i.e.

a+By+yz+--->A+By+Cz+---. (C.3)
The inequalities which containex, y, z, ... , u,t are now replaced by those which contain only
Y,z ...,u,t. This process of eliminating the variables continues until dniy present in the in-

equalities.
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Appendix D

The Complement of the Union of a Set of
Polyhedra

Given a non-convex set

0L

N
j=

Qj
1

where eaclf2; is a closed, convex polyhedron, this appendix describes how to find the complement

where eachd; is an open, convex polyhedron.

A closed, convex polyhedron can be described as the intersection of a finite number of closed half-
spaces:

Q 2{weR"|Qu=<qg,Q eRY"" gl e R'i)
Lj

:ﬂ{weRHQéa)fqej},

=1

whereQ! is the¢'th row of Q! andg/ is the¢'th component ofy!.
By De Morgan'’s law
L

Q?:U{weR”lQéw>q€j}

=1
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and

N Lj . .
=mu{weRn|ng>qg}.
j=le=1
Rewriting this as
Ly Ln
0° — [U{wGR” | Q%w>q}}i|mm|:U{w€R” | Qg‘a)>qlN}i|
=1 (=1

one can proceed with the development of a systematic procedure for finding the complement by re-
peatedly applying the distributive law and computing the intersections. The resulting set will be the
union of a finite number of open, convex polyhedra.

Example D.1. Consider the set
(AUB)N(CUD),

where A, B, C and D are open, convex polyhedra. By repeatedly applying the distributive law, it
follows that

(AUB)N(CCUD)=(ANC)UAND)UBNCY)U(BND).

The sets A C, AN D,BNC and BN D are easy to represent as convex polyhedra. Each set is
given by appending the strict inequalities which describe the corresponding polyhedra, as discussed
in Section 3.3.1.

Example D.2. Consider the very simple example of computing the complement of
Q=1[0,1]n[2,3].
The complement is found by applying De Morgan’s and the distributive laws:

Q°=1[0,1F U2, 3]
= {(—00,0) N (1, 00)} U {(—00, 2) N (3, 00)}
= {(—00,0) N (=00, 2)} U {(—00,0) N (3, 00)} U {(1, 00) N (—00, 2)} U {(1, 00) N (3, 00)}
= (—00,0) U (1, 2) U (3, 00).

Example D.3. Consider determining the complement of

Q2| e

j=1
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Figure D.1: The shaded area represéts U?Zl Q; of Example D.3

where

Q={Xy)|l-x+y=<1x=<0}
Q={xXyx=<1ly=<1}
Q3:{(X’y)|X§25y§0}

The sef2 is shown in Figure D.1.

The complement is found by applying De Morgan’s laws:

where

QI ={X, Y Ix+y>1}U{X y) x>0}
Q5 ={x,y)Ix>1U{xyly>1}
QS ={(x, y)Ix>2}U{(x,y)ly > 0} .
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By applying the distributive law and forming the intersections, one gets

8
sf=U¢h
i=1

where

O ={X,YIX+y>1Lx>1x>2}
P ={X. V) Ix+y>1ly>1x>2}
P3={X,¥Y)|IXx>0,x>1x>2}
Py={X,YIX>0y>1X>2}
Ps={X,Y)IX+y>1Lx>1y>0}
Ps={(X.y)Ix+y>1y>1ly=>0}
Q7 ={(X,y)Ix>0,x>11y>0}
Pg={(X,y)[x>0y>1y=>0}.

It is possible to simplify this further by removing redundant inequalities. This results in

Q1 ={(X,y) Ix+y>1x>2}

@ ={(X,y)ly>1x>2}

P53 ={(X,y)[x > 2}

Qs={X,YIy>1x>2}

®s ={(X,y) Ix>1y>0}

Qe ={(X,y)Ix+y>1y>1}

O7={(x,y)Ix>1y>0}

Pg={(X,y)[x>0,y>1}.
The number of polyhedra in the union can be reduced by testing whether the union of some of the sets
is convex.

The resulting complement®, which is the union of the abow;, is shown in Figure D.2. As can be
seen, the above 8 sets can be reduced to 3 convex polyhedra.



183

Figure D.2: The shaded area represeefts= Ui8:1 ®; of Example D.3







Appendix E

A Set Invariance Toolbox for LTI Systems

A Matlab toolbox has been developed for the computation of many of the sets described in Chapters 2
and 3 and can be downloaded from the author’s Internet site at

http://www-control.eng.cam.ac.uk/eck21/.

The toolbox handles LTI systems with state disturbances
Xk+1 = AXc + Bug + Ewy
and/or parametric (polytopic) uncertainty
(A, B) € conv{(A1, By, ..., (Ap Bp)} .

If there is uncertainty in the paifA, B) then this fact can be passed to the toolbox by stacking the
vertices of the matrix polytope on top of each othée.

The main functions in the toolbox are K1SET and KINFSET for computing aIIKNEh(EQ, T). As
shown in Chapter 2, nearly all of the sets can be found by computing the robust controllable sets with
different target sets.

The basic object of the toolbox is timledimensional polyhedron given in augmented form
[Cd],
with the function STD2AUG converting polyhedra from standard form

Cx=<d

INo uncertainty in E is assumed.
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to augmented form.

The help files included with the functions are self-explanatory. Following is a list of the functions
available in the toolbox.

Initialisation of Polyhedra

STD2AUG Converts from standard to augmented form

AUG2STD Converts from augmented to standard form

DEFINEQ Converts lower and upper bounds on variables into a polyhedron
SYMINEQ Converts upper bounds to a symmetric polyhedron

NORMALISE Computes the normalised form of a polyhedron

Operations on Polyhedra

SCALESET Scales a polyhedron

POLYMAP Linear map

TRANSLATE Affine translation

INTSECT Intersection of two polyhedra

PDIFF Pontryagin difference of two polyhedra
POLYSUM Minkowski (vector) sum of two polyhedra
SUPPORT Value of the support function
INEQPROJ Projection via Fourier elimination
ISREDUNDANT True if a linear inequality is redundant
REMRED Removes redundant inequalities
LPSOLVER Uses your favourite LP solver

Computation of Various Sets

REACH Reach set

K1SET One-step robust controllable and robust one-step set
ONESTEPAUT One-step set of an autonomous system

KINFSET Thei -step robust controllable (contractive) sets

CINFSET Maximal control invariant (contractive) and admissible sets
SINFSET Maximal and-step stabilisable (contractive) sets

OINFSET Maximal positively invariant set

OINFSETCL Maximal input admissible positively invariant set

OINFDIST Maximal robust positively invariant set

OINFDISTCL Maximal robust input-output admissible positively invariant set

Tests on Polyhedra

ISINVERTIBLE True if a given matrix is invertible
ISILLCON True if a given matrix is ill-conditioned
ISINSET True if a vector is an element of a polyhedron
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ISSUBSET
ISOININT
ISEMPTYSET
ISEQUALSETS
ISCTRLINV
ISROBCTRLINV
ISPOSINV
ISPOSINVCL
ISROBPOSINV

True if polyhedron is a subset of another

True if the origin is contained in the interior

True if empty

True if two sets are equal
True if control invariant (contractive)

True if robust control invariant (contractive)

True if positively invariant

True if positively invariant for closed-loop system
True if robust positively invariant
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