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Abstract

Stability and stability robustness of multivariable Smith predictors are
analysed by viewing Smith predictors as instances of Internal Model Con-
trol. This allows a much simpler development than appears in previous
analyses, and the way that delays enter the plant transfer function matrix
is unrestricted. It is shown that robustness to additive plant perturbations
can be predicted during design, on the basis of a model of the rational part
of the plant alone. A design example based on the Shell Control Problem
is included.
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1 Introduction

The Smith predictor is a feedback structure introduced in [14] for the control of
single-input, single-output (SISO) stable processes which contain time delays.
Its principal advantage is that it allows design to be performed using techniques
which apply to processes with rational transfer functions. This is very important
in practice because there is a wide range of algorithms and software available
for use with such processes, usually described by state-space models, whereas
relatively little exists for processes with irrational transfer functions, such as
those containing time delays. The Smith predictor has been widely applied and
analysed.

Several multivariable generalisations of the Smith predictor have been pro-
posed. In [1] it was assumed that the delays in each input-output channel were
the same. In [7] the delay in each element of a row of the plant’s transfer
function matrix was assumed to be the same, which is tantamount to assuming
that the delays are concentrated in the output channels of the plant (each delay
associated with one sensor, for example). In [2] and [11] it was assumed that
the plant transfer function matrix can be factored as

P (s) = D(s)Pr(s) (1)

1



where the (i, j) element of D(s) is assumed to be of the form exp(−sTij) and
Pr(s) has only rational elements. This is less restrictive than the assumption
made in [7], but still does not allow an arbitrary pattern of time delays to appear
in P (s). Oggunaike and Ray [10] and Palmor and Halevi [12] allow any delay
to occur in each input-output channel; while this is still not completely general,
it appears to be general enough for practical applications. Both of these papers
propose the same multivariable generalization of the Smith predictor.

In this paper we first point out that the Hadamard (also called ‘Schur’), or
element-wise, matrix product can be used to describe the multivariable Smith
predictor introduced in [10] and [12]. This has didactic advantages over the
original presentations.

A criticism of the Smith predictor which is often made is that controllers
with that structure can be very sensitive to modelling errors, particularly as
regards mis-specification of time delays in the plant. This criticism is true but
exaggerated. There are many control structures which are used successfully,
even though the structure itself does not guarantee a good control system. For
example, it is known that LQG controllers can exhibit arbitrarily bad stability
margins [5], but this does not preclude the successful use of LQG controllers.
It only means that stability margins of a particular design have to be checked
before that design is accepted. A similar situation holds for Smith predictors
(both SISO and multivariable).

As already explained above, an important and attractive feature of Smith
predictors is that they can be designed without taking explicit account of the
time delays in the plant. It would be very convenient to check stability margins
and performance of the controller during the design, also without taking account
of the time delays explicitly. In this paper we show that stability robustness
against additive perturbations can indeed be checked in this way. Surprisingly,
this does not appear to have been noted before for processes with general pat-
terns of time delays, although something similar has been noted in [2] and [11]
for the particular classes of processes treated in those papers. The situation is
slightly worse in the multivariable than in the SISO case; for SISO plants the
stability robustness to multiplicative perturbations can also be predicted in this
way.

In [9] it is shown that the SISO Smith predictor is easily viewed as an
instance of Internal Model Control. This makes the analysis of its stability and
properties very straightforward. In this paper we follow the approach of [9], but
extend it to the multivariable case. As a consequence, we also obtain a simple
analysis of stability and robustness.

In particular, the robustness analysis given here is much simpler, and com-
plementary to, the analyses given in [6], [4], [11], or [2]. The method of analysis
used in [2] is similar to the one adopted here; much use is made of the Youla
parameter (called the ‘Q-parameter’ in [2]), which is equivalent to viewing the
Smith predictor as Internal Model Control, since the plant must be assumed to
be stable.
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2 Definition and Stability

In this section we use the Hadamard, or element-wise, matrix product, which
is denoted by the operator ‘.*’. This product is defined as follows. If A and
B are matrices of the same dimensions, then C = A. ∗ B is defined to be the
matrix, of the same dimensions as A and B, whose (i, j) element cij is given
by cij = aijbij . The Hadamard product is commutative, namely A. ∗ B =
B.∗A, but it is not associative relative to the ordinary matrix product, namely
(A. ∗ B)C 6= A. ∗ (BC).

We assume that the (continuous-time) plant to be controlled is stable, and is
described by a transfer function matrix P (s). There is a time delay Tij between
input j and output i, and we assume that

P (s) = Pr(s).∗D(s) (2)

where Pr(s) and D(s) are defined as in (1). In other words, the time delays are
the only sources of irrational elements in P (s), and Pr(s) is the ‘rational part’
of the plant. In fact Pr(s) is a ‘predictor’, since each of its outputs is composed
of predictions of signals which compose the outputs of the plant. Note that it
is often very easy to obtain Pr(s) and D(s) for a given plant. Our assumptions
on the plant correspond precisely to those made in [10] and [12].

We define the multivariable Smith predictor to be the feedback structure
shown in fig.1. Here Cr(s) is the transfer function matrix of any feedback
controller which stabilises Pr(s). The Smith predictor controller has the transfer
function matrix

C(s) = Cr(s){I + [Pr(s) − P (s)]Cr(s)}
−1 (3)

This structure clearly generalises the usual Smith predictor, and corresponds
to the one introduced in [10, 12].

Figure 1 can be redrawn, as shown in fig.2, in the form of Internal Model
Control. If we let

Q(s) = Cr(s)[I + Pr(s)Cr(s)]
−1 (4)

then it is a standard result that the feedback system shown in fig.2 is internally
stable if and only if both Q(s) and P (s) are stable [9]. Note that the irrational
nature of the various transfer functions involved does not change this standard
result [3]. So long as ‘stability’ corresponds to analyticity in the closed right
half-plane then the result holds. Since we assume that P (s) is stable, internal
stability of the feedback system depends only on the stability of Q(s). (Note
that Q(s) is the Youla parameter, since P (s) is stable [8].)

Since we insist that Cr(s) should stabilise Pr(s), Q(s) is clearly stable. We
have therefore established that the proposed multivariable Smith predictor is
internally stable.

3 Properties

It is easy to show (and it is also a standard result [8, 9]) that the complementary
sensitivity, namely the transfer function matrix from the vector of set-points r
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to the vector of outputs y, is given by

T (s) = P (s)Q(s). (5)

Substituting for Q(s) from (4) we obtain

T (s) = P (s)Cr(s)[I + Pr(s)Cr(s)]
−1 (6)

= [D(s).∗Pr(s)]Cr(s)[I + Pr(s)Cr(s)]
−1 (7)

If we define Tr(s) to be the complementary sensitivity which would be ob-
tained if the feedback controller Cr(s) were used with the predictor Pr(s) as
the ‘plant’, namely

Tr(s) = Pr(s)Cr(s)[I + Pr(s)Cr(s)]
−1 (8)

then unfortunately T (s) 6= D(s).∗Tr(s) in general.
One of the principal results obtained in the SISO case therefore does not

generalise: the set-point responses are not the same as those obtained for the
feedback combination of Pr(s) with Cr(s), except for the addition of the same
delays as exist in the plant. However, the closed-loop poles which appear in
T (s) and Tr(s) are the same, since both of these transfer function matrices can
become unbounded only at the poles of Pr(s), or the poles of Cr(s), or the zeros
of [I + Pr(s)Cr(s)].

The prediction of performance in the face of unmeasured disturbances is not
simple for the Smith predictor. The response to output disturbances is given
by the sensitivity S(s), and the response to input disturbances by P (s)S(s),
where

S(s) = I − T (s). (9)

If we define

Sr(s) = I − Tr(s)

= [I + Pr(s)Cr(s)]
−1 (10)

there is unfortunately no simple relationship between S(s) and Sr(s). But this
is no worse than in the SISO case, for which the same is true [9].

Robustness in the face of unstructured multiplicative modelling errors is
measured by ||T ||∞ [8], where ||T ||∞ = supω σ̄[T (jω)], where σ̄[.] denotes the
maximum singular value of [.], and assuming that T (s) is stable. In general
||T ||∞ 6= ||Tr||∞, so robustness cannot be predicted easily in the multivariable
case. This contrasts with the SISO case, for which |T (jω)| = |Tr(jω)| holds.

For additive modelling errors, however, the situation is better. Robustness
in the face of additive modelling errors is measured by ||CS||∞ [3, 8] or, equiva-
lently, by ||Q||∞ (since C(s) = Q(s)[I−P (s)Q(s)]−1 and S(s) = I−P (s)Q(s)).
But for our proposed Smith predictor structure Q(s) is given by (4), and hence
from (10) we have

C(s)S(s) = Cr(s)Sr(s). (11)
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So the robustness to additive modelling errors is the same as the robustness
of the controller Cr(s) with the predictor Pr(s) as the ‘plant’. It can therefore
be monitored easily during design, even if this is pursued using the delay-free
‘plant’ Pr(s) only. Of course the same is true a fortiori for the SISO case.
Surprisingly, this fact does not seem to have been noted before.

It follows immediately from the previous paragraph that the response of the
control signal vector, u, to changes in the set-point vector, r, is the same for
the real plant as it is for the delay-free ‘plant’, since both are determined by
the transfer function Q(s).

4 Example

As an example we take part of the ‘Shell Control Problem’ defined in [13]. This
concerns the control of a heavy oil fractionator. Since the example is not meant
to show a complete design study, we select only two outputs to be controlled
— the ‘Top End Point’ and the ‘Side End Point’ — and three control inputs
— the ‘Top Draw’, the ‘Side Draw’, and the ‘Bottoms Reflux Duty’. (The only
reasons for omitting other controlled outputs are to emphasise that the plant
may have unequal numbers of inputs and outputs, and to keep the example
simple.) The linearised plant model is:

P (s) =







4.05e−27s

1+27s
1.77e−28s

1+60s
5.88e−27s

1+50s

5.39e−18s

1+50s
5.72e−14s

1+60s
6.90e−15s

1+40s






(12)

in which the time constants and delays are expressed in minutes.
The rational part of this, or the ‘predictor’, is:

Pr(s) =







4.05
1+27s

1.77
1+60s

5.88
1+50s

5.39
1+50s

5.72
1+60s

6.90
1+40s






(13)

and the delay matrix is:

D(s) =

[

e−27s e−28s e−27s

e−18s e−14s e−15s

]

(14)

It is routine to construct a 5-state minimal realization of Pr(s). This allows
standard design algorithms, such as those based on LQG or H∞ theory, to be
used.

A design was performed on this realization, using the LQG/LTR technique
(see [8], for example), which yielded a 7-state realization for Cr(s):

ż = ACrz + BCrf (15)

u = CCrz + DCrf (16)

where the matrices ACr, BCr, CCr, DCr are given in the Appendix, f is the
input to Cr(s), and u is the control signal. The controller has 7 states rather
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than 5 (the number of states needed to realize Pr(s)) because there are two
additional states to give integral action.

For this design it was found that the singular values of the complementary
sensitivities T (s) and Tr(s) are quite close to each other, even though there is
no guarantee of this from the theory, while those of the two sensitivities S(s)
and Sr(s) are rather different. We find that

||Sr||∞ = 1.05, ||S||∞ = 1.51
||Tr||∞ = 1.02, ||T ||∞ = 1.04

and that
||CrSr||∞ = 0.854 = ||CS||∞.

To emphasise that good robustness to time delay variations can be obtained
with Smith predictors, we performed the following exercise. Suppose that each
of the time delays defined in (12) is liable to increase by up to 20% of its nominal
value. Let Pnom(s) be the plant transfer function with nominal values of the
time delays, and let

∆(s) = P (s) − Pnom(s). (17)

Let σ̄[∆(s)] denote the largest singular value of ∆(s). By generating randomly
500 plants P (s) with the time delays distributed uniformly over the intervals
described above, an upper bound on σ̄[∆(jω)] (as a function of ω) was generated
heuristically. The reciprocal of this upper bound is shown as the upper trace
in fig.3. The lower trace in the same figure shows σ̄[Cr(jω)Sr(jω)]. This figure
shows that

||CrSr||∞ <
1

||∆||∞
(18)

and hence that this design gives robust stability even in the face of up to 20%
increases in the plant time delays. We point out that this design is also quite
reasonable in terms of performance, with a closed-loop bandwidth (as defined
by the −3dB frequency of σ̄[T (jω)]) of about 0.08 rad/min. Fig.4 shows plots
of σ̄[T (jω)] and σ̄[S(jω)] against ω.

5 Conclusion

It has been shown that the stability and robustness of the multivariable Smith
predictor controller which was introduced in [10] and [12] can be analysed very
easily by viewing it as Internal Model Control.

In particular, robustness to additive modelling errors can be predicted dur-
ing the design, using information from the delay-free model only. It is shown
by example that this can be used to ensure that a particular Smith predictor
design has adequate stability margins, even though such margins cannot be
guaranteed in general.

The stability robustness results derived in this paper are complementary to
those derived in previous analyses.
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Appendix: Realization of Cr(s) for the example

ACr =

























0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0091 −0.0039 −1.4198 −0.6702 −0.0554 −2.0323 −0.0744
−0.0396 0.0454 0.3358 −0.7408 −0.8233 0.5056 −1.0476
0.0046 −0.0022 −0.7454 −0.3611 −0.0497 −1.0956 −0.0399
0.0222 −0.0141 −0.2729 −0.8877 −0.7224 −0.4203 −0.9240
0.0265 −0.0170 −0.3360 −1.1109 −0.9064 −0.4929 −1.1844

























BCr =

























0.0100 0
0 0.0100

0.0091 −0.0039
−0.0396 0.0454
0.0046 −0.0022
0.0222 −0.0141
0.0265 −0.0170

























CCr =







0 0 18.1717 9.1342 1.0337 26.7169 1.3697
0 0 −5.2671 16.0400 17.3657 −8.1907 22.0377
0 0 4.5720 23.2277 19.9624 6.7394 25.5366







DCr =







0 0
0 0
0 0
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6 Figures

Fig.1 The proposed multivariable Smith predictor structure.

Fig.2 The proposed controller redrawn in the form of IMC.

Fig.3 Robustness to increased time delays.
Upper trace: 1/σ̄[∆(jω)]
Lower trace: σ̄[Cr(jω)Sr(jω)].

Fig.4 Performance of example design.
Continuous trace: σ̄[S(jω)].
Dashed trace: σ̄[T (jω)].
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