
Graphical FPGA Design for a Predictive Controller with Application to
Spacecraft Rendezvous

Edward N. Hartley and Jan M. Maciejowski

Abstract— A reconfigurable field-programmable gate array
(FPGA)-based predictive controller based on Nesterov’s fast
gradient method is designed using Simulink and converted to
VHDL using Mathworks’ HDL Coder. The implementation
is verified by application to a spacecraft rendezvous and
capture scenario, with communication between the FPGA and
a simulation of the relative dynamics occuring over Ethernet.
For a problem with 120 decision variables and 240 constraints,
computation times of 0.95 ms are achieved with a clock rate of
50 MHz, corresponding to a speed up of more than 2000 over
running the algorithm directly on a MicroBlaze microprocessor
implemented on the same FPGA.

I. INTRODUCTION

The archetypal predictive controller (e.g. [1], [2]) solves
a constrained, finite but receding horizon optimal control
problem online at each time step. In its most prevalent
forms, this problem is cast as a constrained convex quadratic
program (QP) or a linear program (LP). The solution of these
has a higher computational burden than linear feedback and
this must be accommodated in the overall system design.

FPGAs are programmable silicon chips that allow imple-
mentation of custom digital circuits. In contrast to conven-
tional microprocessors, the designer can choose the levels of
parallelism and numerical precision at each stage in a nu-
merical algorithm and trade these against hardware resource
usage. Parallellism can accelerate the solution of constrained
optimisation problems to meet real-time requirements whilst
running at comparatively low clock frequencies.

The present paper demonstrates the implementation of
a field programmable gate array (FPGA)-based predictive
controller applied to the terminal phase of a spacecraft
rendezvous and capture mission, as outlined in Section II.

FPGA design can be carried out in a number of ways.
These include: directly using a register transfer language
(RTL) (e.g. VHDL, Verilog), writing a custom generator to
create RTL source from a set of parameters (e.g. [3], [4]),
using a high level C-like language (System C, Vivado High
Level Synthesis), or graphical methods (e.g. Xilinx System
Generator for DSP, Mathworks HDL Coder). Whilst the
former allow the most fine-grained control over the design,
the latter are more accessible to the control systems designer,
who may be an expert with MATLAB and SIMULINK, but
only marginally familiar with VHDL or Verilog. Graphical
visualisation of the design also helps its documentation and
communication, ease of maintenance and re-use.

This work was supported by the EPSRC (Grant EP/G030308/1) as well as
industrial support from Xilinx, Mathworks and the European Space Agency.

The authors are with the University of Cambridge (email:
{enh20,jmm}@eng.cam.ac.uk).

The main focus of this paper, forming Section III, is
the modelling of the circuit design using SIMULINK, to be
translated to VHDL using Mathworks’ HDL Coder. In [5], an
interior point QP solver was implemented solely using built-
in SIMULINK blocks to enable automatic code generation
and to assist verification and validation processes. Else-
where, SIMULINK Coder/MATLAB Coder (née Real Time
Workshop/Embedded MATLAB (EML) ) have been used to
compile M-code implementations of custom QP/LP solvers
to C to accelerate simulation and simplify deployment (e.g.
[6]–[8]). For FPGA synthesis the process is rather more
complex. It is insufficient to generate RTL from the same
M-code used for simulation or C generation. Register level
timing, numerical representation and parallelism of compu-
tation must also be considered to obtain a design suitable for
an FPGA. The design from Section III is implemented on a
Xilinx ML605 evaluation board, and results are presented in
Section IV.

II. BACKGROUND

A. Control scenario

The terminal phase of a spacecraft rendezvous and capture
scenario is considered, based on the Mars Sample Return
mission [6], [9], [10] in a circular orbit with radius of
3893.4 km. The linearised Hill-Clohessy-Wiltshire equations
(e.g. [11], [12]) are used for the prediction model, the
controlled spacecraft has a nominal mass of 1575 kg.

As in [13], the chaser spacecraft nominally starts at
zero velocity, 200 m behind a passive target and 0.0767 m
below the x-axis (positive z) in a cartesian reference frame
centred on the target. The objective is to track a step
increase in velocity in the x direction (towards the target)
to 0.2 ms−1 until the separation has reduced to 100 m and
then reduce to 0.1 ms−1 whilst holding 0.0767 m below
(positive value) the z-axis, and null out-of-plane (y-axis)
separation. At ≤ 3 m separation, the remainder of the
manœuvre must be passive and the chaser trajectory will
naturally drift upwards to intercept the x axis. Navigation
error is modelled as Gaussian and white, with 3σ values
of [0.0247, 0.0247, 0.009, 0.007, 0.007] on [y, z, ẋ, ẏ, ż] re-
spectively [6]. As well as a minimum impulse bit, below
which differential thrust is used to deliver the net commanded
value, the thrust on each axis is subject to a multiplicative
uncertainty with σ = 0.01.

An `1-regularised quadratic (`asso) cost function [13]–[16]
is used to engender sparsity in the input trajectory, thus
avoiding lengthy periods of continuous low-level thrust. At



each time step k, the MPC minimises the cost function

‖xN − r‖2P +
∑N−1
i=0

(
‖xi − r‖2Q + ‖ui‖2R + ‖Rλui‖1

)
subject to the predicted plant dynamics and any input or
state constraints, where R > 0 is diagonal and Q ≥ 0. In
the present design there are no state constraints, and inputs
are bounded symmetrically: −umax ≤ ui ≤ umax, where
umax = [8, ..., 8]T (in Newtons). The 1-norm of Rλui is
encoded by letting Rλ > 0 be diagonal, and splitting ui
into positive and negative components on each of 3 axes,
so that ui = u+

i − u−i , with 0 ≤ u+
i ≤ umax, and 0 ≤

u−i ≤ umax. Let ũi = [u+T
i , u−Ti ]T and to ensure strong

convexity, replace the input contribution to the stage cost
with u+T

i Ru+
i + u−Ti Ru−i . Due to diagonality of R and

positivity of ũi, the optimal ui is equal to that of the original
problem. The resulting constrained optimisation can be posed
as a dense parametric QP

min θTHθ + fT θ s.t. θmin ≤ θ ≤ θmax

where θT = [ũT0 , ũ
T
1 , . . . , ũ

T
N−1], f = (Frr + Fxx0 + l),

and the values of H , Fx, Fr, l, θmin, θmax follow from
condensing out the state variables in the usual way (e.g. [1]).
The tunings are obtained as described in [13], aiming for a
capture tolerance of 7.5 cm (tighter than the 20 cm required
by the MSR mission).

In the present scenario, N = 20, and ũi ∈ R6. Therefore,
after condensing, the number of decision variables, nθ =
120. A sampling period of Ts = 1 s is used. To avoid
magnification of navigation error it is desirable to not allow
a full unit delay for computation. A QP of this size is easy to
solve in milliseconds on a contemporary desktop computer,
but in space environments computer clock rates are between
one and two orders of magnitude slower due to radiation
hardening and power consumption requirements. Through
parallelisation, an FPGA can achieve similar times whilst
clocked at a few tens of MHz. The motivation for using the
FPGA in this application is to get adequate computational
speed at relatively low clock rates.

B. Optimisation algorithm
Nesterov’s fast gradient method (FGM) (e.g. [17], [18]) is

chosen, since only input constraints are considered in the pre-
sented control scenario and this class of algorithm is division-
free, with a relatively straightforward data flow, offering
natural opportunities for parallelism and pipelining. It is also
demonstrably well-behaved with fixed-point arithmetic [4],
[19]. Thus it lends itself well to FPGA implementation using
the design methodology presented. The algorithm is shown in
Fig. 1 for the case of a bound constrained QP, where θ is the
decision variable, the superscript •(k) indicates element of a
sequence, and L is the largest eigenvalue of H . The value β
is taken to be (1−α(∞))/(1+α(∞)), where α(∞) =

√
µ/L

and µ is the smallest eigenvalue of H .

III. DESIGN

A. Scaling and data types
As highlighted in [17], [18], the QP can be scaled to min-

imise the condition number of H to improve convergence.

For k = 0 to kmax

1. ∇J (k) = Hy(k) + f

2. θ̃(k+1) = y(k) − 1
L∇J

(k)

3. θ(k+1) = max{θmin,min{θ̃(k+1), θmax}}
4. ∆θ(k+1) = θ(k+1) − θ(k)
5. y(k+1) = θ(k+1) + β∆θ(k+1)

End for
Fig. 1. Fast gradient method for bound constrained QP

TABLE I
DATA TYPE SELECTION (ALL SIGNED)

Bits
Variable Word Frac.
H 18 16
y(k) 25 22
Hy(k) 25 22
f 41 22

Bits
Variable Word Frac.
θ̃(k) 42 22

θ(k), θmin / max 25 22
∆θ(k) 25 22
β 18 16

Alternatively [20], [21] proposes a diagonal preconditioner,
originally intended for an interior point QP solver with an
iterative MINRES linear solver which puts the numerical
values of a matrix into the range [−1, 1] and spec(H) ⊆
(0, 1]. The latter is used in the present implementation, since
it simplifies the positioning of the fixed point, and also
means that L = 1 (Fig. 1, Step 2), therefore eliminating
a multiplication by 1/L from the final circuit design. To
avoid additional notation, we henceforth use H to mean the
Hessian term after the scaling has been applied.

The choice of fixed point data type is driven by the solu-
tion accuracy required, the dynamic range of the numerical
values and the hardware available. The Xilinx Virtex 6 FPGA
which will be targeted has a number of dedicated 25 × 18-
bit hardware multipliers (DSP48Es). The data types used
(shown in Table I) are chosen based on the FPGA resources,
empirical testing and knowledge of the bounds of variables,
rather than an aim to use the optimum number of resources
for a specified accuracy. By application of [20], [21] only
one integer bit is needed for H . Similarly, β ∈ [0, 1]. During
matrix multiplication, elements of H multiply elements of
y(k) therefore it is convenient for one of these to be (a
multiple of) 18 bits long and the other to be (a multiple
of) 25 bits long to optimally use the DSP48E resources. y(k)

has a greater dynamic range, so therefore takes the longer
word length. Noting that for this scenario θmin is a vector of
zeros, y(k) and θ(k) will be bounded above by max(θmax).
After scaling, max(θmax) = 1.5453 so at least 1 integer bit
is needed. β(θ(k+1)− θ(k)) is added to θ(k+1) to get y(k+1)

for β ∈ [0, 1], so y must have at least one additional integer
bit totalling 2 integer bits. β takes the same data type as
H , and we let θ take the same type as y with 2 integer
bits and 22 fractional bits. The data type of θ̃(k) follows
from allowing SIMULINK to use its internal rules rather than
forcing a data type or using backwards propagation. Since
data types are chosen based on pre-determined bounds, all
summations and products are set to round to “Floor” and to



TABLE II
INPUT AND OUTPUT PORTS

LOADMODE 4-bit unsigned integer indicating which RAM the
“write enable” input should be connected to.

DATA IN A 41-bit unsigned integer. This is reinterpreted as
fractional fixed point data types as appropriate, starting
from the least significant bit if the target data type is
less than the full 41 bits.

WE IN A write enable signal - when high, the value on
DATA IN is written to the RAM indicated by LOAD-
MODE. Each RAM has an counter associated with it
that increments when WE IN is high and resets when
LOADMODE corresponds to another RAM.

TRIG IN Triggers the QP solver state machine.
ITERMAX IN 12-bit unsigned integer corresponding to maximum

number of QP iterations.
DOUT Element of final QP solution.
RDY Boolean signal is high when DOUT contains an ele-

ment of the final QP solution.

“Wrap” on overflow to minimise hardware resources used.
Experiments using the MATLAB fixed-point toolbox verify

sufficient accuracy for the application. Analysis of conver-
gence with fixed point arithmetic is beyond the scope of this
paper; for a formal theoretical framework the reader should
consult the work of [4].

B. Fast gradient method implementation

The data-flow through the circuit is modelled at a clock-
cycle level using SIMULINK. Counters and state machine
logic are implemented using the “MATLAB Function Block”,
from which HDL Coder can also generate VHDL or Verilog
(we use the former). It is designed so that rather than
being hard-coded, the QP matrices can be loaded upon
initialisation. (This is not repeated for each QP solution.)

1) External interface: The QP solver presents five input
ports and two output ports (Table II).

2) Control logic: The main control logic consists of two
counters and a switch. The first counter is the iteration
number. On the final iteration (determined by the input
ITERMAX IN) the boolean signal LASTITER is set high.
The second is the element of the vector y and/or row of
H currently being addressed. When an element is being
addressed the output TRIG is set high. This pulse passes
through a series of shift registers with a delay of the same
length as the numerical component of the circuit, allowing
determination of when the iteration has been completed when
it returns as input we y (where “we” stands for “Write
Enable”). The same happens with the read address — each
subsystem outputs a delayed copy of this to enable memory
instances in the next subsystem to be presenting the output
from the correct memory location at the correct time. The
delays take into account the latency of the RAMs later in the
pipeline, avoiding extra delays in the main data path. Each
of these blocks is implemented in a MATLAB function block,
with persistent variables used to model registers storing data
between time steps (Fig. 3).

The switch simply determines whether data from outside
the circuit, or estimate of y from the previous iterate is passed

Fig. 3. M-code for Read counter

Fig. 4. Control logic

through to the next (gradient calculation) stage, based on the
value of the external control signal “loadmode in”.

3) Gradient calculation: The gradient calculation (Step 1
in Fig. 1 and Fig. 5) comprises a matrix-vector multiplication
followed by a vector-vector addition. This is performed in
a pipelined manner, with a (maximum) throughput of one
dot product of a matrix row with the vector per clock cycle.
The version of HDL Coder used (R2012b) does not support
matrix valued signals. Instead, the (scaled) matrix H is
explicitly stored as an array of single-port RAMs (generated
using the template in hdldemolib) each containing a
column. All of these (i.e. the matrix row) are indexed by the
same signal. Since the size of H depends on the problem
formulation, a self-modifying masked subsystem is created.
To load data into H , switching logic (not shown) is included
so that when “WE” is high, the address is taken from a pair
of resettable counters (determining the row address, which
is connected to all RAMs (columns), and determine which
column to set Write Enable high for) rather than from RADDR



Fig. 2. Simulink block diagram implementation of fast gradient method

Fig. 5. Gradient calculation

(Read Address). The (scaled) vector f is stored in a single
single-port RAM, with a similar arrangement to enable data
to be initially loaded. The vector y(k) is stored in a tapped
shift register. On the block “load and shift” when WE is high,
the end of the vector takes on the value DIN and all previous
values are shifted. When SHIFT is high, the values from the
first shift register transfer in parallel into a bank of parallel
registers. (This avoids replacing y(k) with elements of y(k+1)

before it is finished with.)
The parallel element-by-element multiplication of each

row of H with y(k) only requires a single SIMULINK block.
The data type is allowed to propagate via internal rule at this
point. The elements are then added together (as in the matrix-
vector multiplication in [3]) by an adder reduction tree. The
latter is generated using the SIMULINK “Sum of Elements”
block, configured to use a “Tree” architecture (in HDL Block
Properties) in series with a delay block. By placing this
in a subsystem with HDL Coder’s “Distributed Pipelining”
enabled for that subsystem, the delay is then automatically
distributed between the stages of the tree in the generated
VHDL. Hy(k) is then converted back to the same data type
as y(k) and will not overflow because spec(H) ⊆ (0, 1].

4) Gradient step: The gradient step (Step 2 in Fig. 1 and
Fig. 6) employs a second copy of y(k) stored in a simple
dual port RAM (again with an additional counter inside the

Fig. 6. Gradient step

Fig. 7. Projection

subsystem for the write address) and a subtractor. The dual
port RAM means that a write of element y(k+1)

i will not
interfere with a read of element y(k)

j .
5) Projection: The projection stage (Step 3 in Fig. 1 and

Fig. 7) employs two single port RAMs, two comparators in
parallel, and a multiport switch indexed by word obtained
by concatenating the bits from the comparators.

6) Calculate difference: The next stage (Step 4 in Fig. 1
and Fig. 8) employs a further dual port RAM (with counter)
which buffers y(k) and a subtractor.

7) Update y: The final stage (Step 5 in Fig. 1 and Fig. 9)
contains a register (containing β), a multiplier and an adder.

C. Calculation of f

Vector f is a function of contant matrices Fx, Fr, vector l,
and varying parameters x and r. Letting F̂ = [Fx, Fr, l], and
x̂ = [xT0 , r

T , 1]T , f = F̂ x̂ — another matrix multiplication.



Fig. 8. Calculate difference

Fig. 9. Update y

This is implemented as a separate block outside of the main
algorithm (not shown for space reasons). To simplify the
external interface, the first three input ports of the FGM
block are replicated (although DIN is here a 32-bit unsigned
integer, extended to 41-bit before being re-output), and
passed through modified or unmodified depending on the
value of LOADMODE. The vector x̂ is input in serial as a 32-
bit signed data type with 20-bit fraction length. F̂ is stored as
a sequence of its row vectors with a 25-bit signed data type
with 20-bit fraction length. The matrix-vector multiplication
is performed serially since the vector is only of length 11
(5 states, 5 references and a constant of unity) and this only
happens once per QP. When complete, the “TRIG” output,
connected to the FGM state machine, is raised. The 32× 25
bit multiplication requires two DSP48E units. The 32-bit
word is manually split into two parts and long multiplication
carried out with a pipeline stage in-between. The latency of
calculating f is (after loading) (nθ × 11) + 9 cycles, where
nθ is the number of decision variables.

D. General design considerations

Addition, subtraction, comparison and switching are
chained with a delay of one cycle. Each multiplier is chained
with a pipeline delay of two cycles, since the DSP48E units
contain two built in pipeline stages. Whilst HDL Coder
generates generic VHDL, this construct is inferred by the
Xilinx ISE 14.4 toolchain used to synthesise and implement
the generated design. The total latency of a single FGM
iteration is nθ + log2(nθ) + 19. (For nθ = 120, the main
path latency is 24, with an extra delay of 2 cycles in the
iteration counter.)

HDL Coder is configured so that any “reset” signals are
synchronous and active high. All delay blocks and “MATLAB
function” blocks are configured with reset type “none” to
allow the Xilinx toolchain to efficiently synthesise the design.

The resulting VHDL synthesises with an estimated fea-
sible operating clock frequency of 261 MHz on the Virtex
6 LX240T FPGA on the ML605 Evaluation Board targeted

TABLE III
RESOURCE UTILISATION FGM (MICROBLAZE)

Resource Register LUT Block RAM DSP48E
Total 8119(19108) 3852(17047) 66(24) 123(5)
V6 LX240T 2.7%(6.3%) 2.6%(11.3%) 15.9%(5.8%) 16.0%(0.7%)
V6 LX75T 8.7%(20.5%) 8.3%(36.6%) 42.3%(15.4%) 42.7%(1.7%)
A7 50SL 1.9%(4.6%) 1.8%(8.1%) 69.5%(25.3%) 68.3%(2.8%)
K7 70T 9.9%(23.3%) 9.4%(41.6%) 48.9%(17.8%) 51.3%(2.1%)
V7 585T 1.1%(2.6%) 1.1%(4.7%) 8.3%(3.0%) 9.8%(0.4%)
Zynq 7020 7.6% 7.2% 47.1% 55.9%

with default settings in the Xilinx ISE toolchain. Whilst for
the proposed application this is inappropriately high, there is
flexibility (due to pipeline registers) to route the design in a
smaller FPGA, or around another circuit on the same FPGA.

IV. INTEGRATION AND TESTING

The designed circuit is connected as a peripheral core
to a Xilinx MicroBlaze soft core processor in a similar
way to [22] (although here, the generated VHDL code is
imported into Xilinx System Generator for DSP, which is
used to generate the memory-mapped interface logic). The
MicroBlaze has two tasks. The first is as a convenient
bridge to the outside world using UDP over 100 MBit/s
Ethernet. The second is to initialise the QP matrices with
their operational values, by loading them into the DATA IN
port with an appropriate schedule of values of LOADMODE.
The FGM circuit and the MicroBlaze are clocked at 50 MHz.

FPGA resource usage is presented in Table III, based
on synthesis estimates. The design comfortably fits inside
the smallest Virtex 6 FPGA (V6 LX75T). The register and
lookup-table (LUT) usage of the custom FGM circuit is small
compared with that used by the MicroBlaze, whilst the Block
RAM and DSP48E usage is substantially greater.

For a nominal scenario with measurement and thrust
uncertainty, but the simulation model otherwise matching
the prediction model including an assumption of instanta-
neous control on sampling, a comparison of the FPGA-
based solver with EML-based FGM implementations and an
FGM solver synthesised using FiOrdOs (version R20121210)
[23] is presented in Table IV (all FGM solvers carry out
300 iterations). The loss of accuracy for the fixed point
implementations is small. The FGM/EML solver on the
desktop is faster than FiOrdOs due to use of BLAS (without
this enabled, they are comparable) but slightly slower on
the MicroBlaze since BLAS is not used. The fixed point
software implementations are slow due to use of multi-word
arithmetic. The MicroBlaze has a single precision hardware
floating point unit — if emulation is used instead, the QP
takes almost 40 seconds. The computation time for the
FPGA-based design is more than 2000 times faster than
the fastest software implementation on the MicroBlaze. The
FPGA clock frequency could be halved or even quartered,
whilst keeping computation time insignificant with respect
to Ts. However, communication time is significant for the
FPGA-based implementation and other interfacing technolo-
gies would be more appropriate if used with a real plant.



TABLE IV
QP SOLVER TIMING AND ACCURACY COMPARISON

Mean Norm err (u0)
Solver Precision Time (ms) Max Mean

2.8 GHz Desktop (via MEX)
CPLEX Dbl 7.9 – –

FGM/EML Dbl 3.6 2.7× 10−4 2.7× 10−7

FGM/EML Sgl 2.7 2.7× 10−4 7.5× 10−7

FGM/EML Fix 26.0 3.4× 10−3 9.9× 10−5

FGM/FiOrdOs Sgl 5.6 2.4× 10−4 4.0× 10−7

50 MHz MicroBlaze
FGM/EML Sgl 2334 (Same as desktop)
FGM/EML Fix 7426 (Same as desktop)

FGM/FiOrdOs Sgl 2003 (Same as desktop)
50 MHz Custom FPGA Circuit

FGM Fix 0.95 3.4× 10−3 6.7× 10−5

+ 0.04 ms transfer Microblaze to FGM
+ 0.92 ms Ethernet communication

−0.2 −0.1 0 0.1 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y (m)

z
 (

m
)

Capture accuracy

7.5 cm tolerance
10 cm tolerance

20 cm tolerance

(a) z − y position at capture

1400 1450 1500 1550 1600 1650 1700
0

200

400

600

Completion time (s)

F
re

q

Histogram of completion times

0 1 2 3 4
0

200

400

600

∆ V usage (m/s)

F
re

q

Histogram of ∆ V usage

(b) Histograms

Fig. 10. FPGA-in-the-loop control performance over 2000 simulations with
perturbed parameters

To verify the control system, a Monte-Carlo simula-
tion with the FPGA-based controller in the loop (com-
municating using UDP/IP over Ethernet) is run from a
range of initial conditions surrounding the nominal con-
dition. Mismatch is introduced into the simulation model
parameters. The seed used for thrust and navigation error
is also varied. The initial position, velocity, orbital radius
and mass are sampled from uniform distributions of range
(±10 m, ±0.3 ms−1, ±50 km, ±235 kg) respectively. Fig-
ure 10 shows the position in the y − z plane at capture for
each of the simulations and histograms of capture time and
cumulative impulsive velocity change (∆V ). All are well
within the 20 cm tolerance considered in [6]. All are within
a 10 cm tolerance with 99.55% within 7.5 cm of the origin.

V. CONCLUSIONS

This paper has presented the design of a constrained
MPC controller with a `asso cost on an FPGA, using fixed
point arithmetic and implemented using SIMULINK and HDL
Coder. The design was tested on an FPGA evaluation board,
connected to the outside world using a MicroBlaze soft
core processor and UDP/IP over Ethernet. The system is
demonstrated in a closed-loop with a simulated plant, and
delivers the solution within 1.91 ms (of which 0.96 ms was
communication) despite a clock frequency of only 50 MHz.

REFERENCES

[1] J. M. Maciejowski, Predictive Control with Constraints. Harlow,
U.K.: Prentice Hall/Pearson Education, 2002.

[2] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory
and design. Madison, WI: Nob Hill Publishing, 2009.

[3] J. L. Jerez, K. V. Ling, G. A. Constantinides, and E. C. Kerrigan,
“Model predictive control for deeply pipelined field-programmable
gate array implementation: Algorithms and circuitry,” IET Control
Theory Appl., vol. 6, no. 8, pp. 1029–1041, May 2012.

[4] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C.
Kerrigan, and M. Morari, “Embedded predictive control on an FPGA
using the fast gradient method,” in Proc. European Control Conf.,
Zurich, July 17–19 2013, pp. 3614–3620.

[5] A. Richards, W. Stewart, and A. Wilkinson, “Auto-coding implemen-
tation of model predictive control with application to flight control,” in
Proc. European Control Conf., Budapest, Hungary, Aug. 23–26 2009,
pp. 150–155.

[6] E. N. Hartley, P. A. Trodden, A. G. Richards, and J. M. Maciejowski,
“Model predictive control system design and implementation for
spacecraft rendezvous,” Control Eng. Pract., vol. 20, no. 7, pp. 695–
713, Jul. 2012.

[7] M. Kögel and R. Findeisen, “Fast predictive control of linear systems
combining Nesterov’s gradient method and the method of multipliers,”
in Proc. 50th Conf. Decision and Control and European Control Conf.,
Orlando, FL, Dec. 12–15 2011, pp. 501–506.

[8] G. Binet, R. Krenn, and A. Bemporad, “Model predictive control appli-
cations for planetary rovers,” in Proc. Int. Symp. Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), Turin, Italy, Sep. 4–6
2012.

[9] F. Mura, “Mars Sample Return: ENG-02 Mission Architecture Defi-
nition,” European Space Agency, Tech. Rep., 2007.

[10] D. Beaty, M. Grady, L. May, and B. Gardini, “Preliminary planning
for an international Mars Sample Return mission,” Report of the
International Mars Architecture for the Return of Samples (iMARS)
Working Group, Jun. 2008.

[11] W. Fehse, Introduction to Automated Rendezvous and Docking of
Spacecraft. Cambridge University Press, 2003.

[12] M. J. Sidi, Spacecraft dynamics and control: A practical engineering
approach. Cambridge University Press, 1997.

[13] E. N. Hartley, M. Gallieri, and J. M. Maciejowski, “Terminal space-
craft rendezvous and capture using LASSO MPC,” To Appear in Int
J. Control, 2013.

[14] H. Ohlsson, F. Gustafsson, L. Ljung, and S. Boyd, “Trajectory gen-
eration using sum-of-norms regularization,” in Proc. 49th IEEE Conf.
Decision and Control, Dec. 15–17 2010, pp. 540–545.

[15] M. Nagahara and D. E. Quevedo, “Sparse representations for pack-
etized predictive networked control,” in Proc. 18th IFAC World
Congress, Milano, Italy, 2011, pp. 84–89.

[16] M. Gallieri and J. M. Maciejowski, “LASSO MPC: Smart regulation
of over-actuated systems,” in Proc. American Control Conf., Montreal,
Canada, Jun. 27–29 2012, pp. 1217–1222.

[17] S. Richter, C. N. Jones, and M. Morari, “Real-time input-constrained
MPC using fast gradient methods,” in Proc. 48th IEEE Conf. Decision
and Control and 28th Chinese Control Conf., Shanghai, China, Dec.
15–18 2009, pp. 7387–7393.

[18] ——, “Computational complexity certification for real-time MPC with
input constraints based on the fast gradient method,” IEEE Trans.
Automat. Control, vol. 57, no. 6, pp. 1391–1403, 2012.

[19] P. Zometa, M. Kögel, T. Faulwasser, and R. Findeisen, “Implemen-
tation aspects of model predictive control for embedded systems,” in
Proc. American Control Conf., Montreal, Canada, Jun. 27–29 2012,
pp. 1205–1210.

[20] E. C. Kerrigan, J. L. Jerez, S. Longo, and G. A. Constantinides,
“Number representation in predictive control,” in Proc. IFAC Conf.
Nonlinear Model Predictive Control, Noordwijkerhout, NL, Aug. 23–
27 2012, pp. 60–67.

[21] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “Towards a
fixed point QP solver for predictive control,” in Proc. 51st IEEE Conf.
Decision and Control, Maui, HI, USA, Dec 2012.

[22] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control of a Boeing 747 aircraft
using an FPGA,” in Proc. IFAC Conf. Nonlinear Model Predictive
Control, Noordwijkerhout, NL, Aug. 23–27 2012.

[23] F. Ullmann, “FiOrdOs: A Matlab Toolbox for C-Code Generation for
First Order Methods,” Master’s thesis, ETH Zurich, Zurich, 2011.


