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Abstract: This paper provides a direct comparison of two stochastic optimisation techniques
(Markov Chain Monte Carlo and Sequential Monte Carlo) when applied to the problem of
conflict resolution and aircraft trajectory control in air traffic management. The two methods
are then also compared to another existing technique of Mixed-Integer Linear Programming
which is also popular in distributed control.

Keywords: Air Traffic Control, Stochastic Control, Optimal Trajectory, Model Predictive
Control, Aerospace Trajectories.

1. INTRODUCTION

Air Traffic Management (ATM) is concerned with the
routing, safety and scheduling of aircraft in regions of
airspace. Currently this role is performed by Air Traffic
Control (ATC) and is a very human orientated process
though steps towards autonomy have been made in recent
years Atkin et al. (2008). ATC has complete control of the
aircraft through all stages of flight, from pre-flight flight
plans, updates and additional instructions based on traffic
flow to landing scheduling. The majority of ATC concern
lies with the avoidance of dangerous encounters through
maintenance of safe separation between aircraft. Loss of
the minimum safe separation between two or more aircraft
is defined as a conflict. If a conflict does not have safety
repercussions (for example in mid-long term detection)
the priorities of the aircraft are considered by the ATC
when resolving the conflict. These priorities could include
avoidance of turbulence or desired time of arrival.

It is acknowledged that the current system of ATM is
near the upper limit of traffic it can safely accommodate
(European Commission (2000)). The level of anticipated
growth in aviation travel is debated, however it is currently
agreed that it will increase in the next 20 years by
up to 200% (Federal Aviation Authority (2009)). It is
untenable to accommodate this anticipated traffic growth
without a shift in paradigm. The aviation authorities have
also set aggressive targets to handle the traffic growth
whilst achieving cuts in emissions (Advisory Council for
Aeronautics Research in Europe (2002)). A portion of
these emission cuts will come from the next generation of
ATM.

The role of ATC is further complicated by the introduction
of uncertainty. This uncertainty is introduced by the
effect of the wind, incomplete knowledge of the physical
coefficients of the aircraft and imprecision in the execution
of ATC commands. With the addition of uncertainty tasks
such as conflict detection become a matter of assessing
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the probability of a conflict given the current state of the
airspace and the uncertainty of the future positions of the
aircraft. Probabilistic models can be used to estimate the
distribution of the future state of the aircraft given the
current state.

In model predictive control (MPC) an open loop optimal
control problem is solved at each time step (Maciejowski
(2002)). This optimisation problem can be nonconvex,
with nonlinear dynamics, constraints and an objective
function. Such optimisation problems are challenging to
solve and can require sophisticated optimisation tech-
niques. This paper is concerned with using stochastic op-
timisation methods to solve the control problem at each
time step. Stochastic optimisation allows for modelling the
uncertainty present in ATC whilst also able to cope with
nonlinear dynamics, constraints and an objective function.

Two forms of Stochastic Optimisation have previously
been proposed for use in an MPC framework. The first,
Markov Chain Monte Carlo (MCMC), is a set of methods
for sampling from probability distributions based on con-
structing a Markov Chain that has the desired distribution
as its equilibrium distribution. The state of this generated
chain after a large number of iterations is then sampled
to yield a nearly-optimal action (Müller et al. (2004)).
MCMC has been used on ATC problems previously by
Lecchini-Visintini et al. (2006), where it demonstrated
capability for distinguishing between different manoeuvres
and their associated costs through density of samples.
Other work has focused on MPC stability analysis when
MCMC is used Siva et al. (2009) with demonstration on
another trajectory planning application. Current research
into MCMC focuses predominantly on attempting to find
finite-time guarantees for convergence (Lecchini-Visintini
et al. (2007, 2010)).

Sequential Monte Carlo (SMC) optimisation is better
known for its use in ’particle filtering’ for model estimation
(Doucet et al. (2000) and Kantas et al. (2009)). It was
observed that MPC optimisation shares similar features
to that of model estimation and through this connection



SMC was applied to MPC optimisation by Kantas et al.
(2008). The work of Kantas et al. (2008) included examples
of SMC applied to MPC of multiple vehicles flying in
two dimensions under the predicted effects of wind and
additional Gaussian noise.

Both of the stochastic methods compared are better suited
to situations where quick control responses are not re-
quired. However there is potential for improving the solve
times of both of the MCMC and SMC methods through
parallelisation. This paper provides a direct comparison
of the two mentioned stochastic optimisation techniques
when applied to the problem of conflict resolution in air
traffic management. The paper focuses on how to tailor
the two methods to the application and comparison of the
resulting runtimes.

The paper is organised as follows. Section 2 describes
the problem statement. Section 3 reviews both stochastic
optimisation methods and introduces the customisation to
fit them to the considered problem. Section 4 presents the
results of the comparison simulations using the firstly the
two stochastic methods and then comparison to another
existing non-stochastic method. Finally, Section 5 presents
conclusions.

2. PROBLEM STATEMENT

For the sake of comparison a common dynamics model is
used between both stochastic optimisation methods. This
section reviews the dynamics model used. The aircraft
are modelled in discrete time in three dimensions with
a constant speed in the horizontal plane. For simplicity
the vertical and horizontal dynamics have been decoupled.
This is not a limitation of either of the stochastic optimisa-
tion methods which can readily accept any nonlinear and
non-convex dynamics model as it requires no assumptions
on the dynamics or distributions.

The horizontal motion of each of the aircraft is modelled
as:
Xk+1 = Xk + V Ts[sin(θk+1), cos(θk+1)]T +Wk+1 (1)

Where Xk is the state, θk is the bearing of the vehicle and
Wk is the noise at discrete time step k. V is the speed and
Ts is the length of the discrete time step. Similarly the
vertical motion of the aircraft is described by:

Hk+1 = Hk + hk+1 +Mh,k+1 (2)
Where Hk is the altitude at time step k, hk is the change
in altitude and Mh,k is the altitude noise. Mh,k is mutually
independent of Wk. In this paper our attention is restricted
to the fully observed case with finite horizon problems for
the MPC formulation.

The control inputs are the change in heading, δθ, and
change in altitude, h. These control inputs are both
bounded:

θ−max ≤ δθ ≤ θ+max (3)
h−max ≤ h ≤ h+

max (4)
Further constraints are imposed upon each aircraft that
they must avoid all other aircraft in the problem. The
protection zone around each aircraft is modelled as a
cylinder throughout this paper with horizontal radius Pr
and altitude separation of Ph.

(xi,k − xj,k)2 + (yi,k − yj,k)2 ≥ (2Pr)2

∨|hi,k − hj,k| ≥ 2Ph
∀k, ∀i, j ∈ {1, ..., Nv} : i 6= j (5)

Each aircraft is given an initial condition:
X0,i = [x0,i, y0,i, h0,i]T∀i ∈ {1, ..., Nv} (6)

and an aircraft is deemed to have finished its path once it
has reached a terminal set if there exists a k such that:

(xTf ,i − xk,i)2 + (yTf ,i − yk,i)2 ≤ G2
r

|hTf ,i − hk,i| ≤ Gh
∀i ∈ {1, ..., Nv} (7)

Finally we determine a non-negative open loop cost. This
paper assumes that the aim is to find the shortest distance
between the start to the goals for each of the vehicles.

Jdist(k) =
Nv∑
i=0

||[Xk,iHk,i]− [XTf ,iHTf ,i]|| (8)

This is then used as a non-negative cost for the MPC
formulation with Ns steps in the horizon length by adding
the costs for each of the Ns steps then scaling.

Jk:k+Ns
=
k+Ns∑
s=k

Jdist(s)/(s+ 1− k) (9)

The importance of terms are scaled to put greater em-
phasis on the earlier steps in the horizon with greater
concern for minimising the effects of noise. Without this
scaling each step in the horizon carried the same weight
in the cost. Noise which affects the δθ in the early steps
has a large effect on the final position of the vehicle at
the end of a horizon. By giving a higher cost to these
early steps the cost seeks to mimic simple robust control
methods. The weighting of each step decays slowly to avoid
later steps having no effect on the cost. The objective of
our optimisation is to find the controls δθ and h which
minimise Jk:k+Ns

Jmin
k:k+Ns

= minJk:k+Ns
(10)

3. STOCHASTIC METHODS

3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a set of methods
for sampling from probability distributions based on con-
structing a Markov Chain that has the desired distribution
as its equilibrium distribution. The state of this generated
chain after a large number of iterations is then used as a
sample from the desired distribution.

Our optimisation problem to minimise cost function J
previously defined in Section 2 is unsuitable for MCMC as
this requires a maximisation problem. However a simple
transformation of variables can change (9) into a maximi-
sation problem.

gk:k+nS = −Jmin
k:k+nS + sup

X,H,δθ,h
Jk:k+nS (11)

Unlike the standard negation of a minimisation to yield
a maximisation the MCMC method and SMC method
both still require a non-negative cost. To ensure this the
maximum possible value of the cost is added. Typically it
is difficult to calculate exactly the maximal value of the
cost. However due to the nature of the application and



the limited horizon we can approximate this simply by
measuring the furthest distance from the goals the vehicles
can reach in the number of horizon steps ignoring turning
and avoidance constraints. Similarly the minimum cost
would be the closest distance the vehicles can reach to the
goals again disregarding turning and avoidance constraints
(used later in (12)).

This cost function however behaves somewhat differently
at different stages of the vehicles’ travel. Ideally we want
the cost function to distinguish well between poor paths
from good paths. When the vehicles are far from the goal,
the dominating factor is that of the overall distance left
to the goal. The effect of noise or poor control decisions
are poorly scaled in comparison. As the vehicle gets closer
to the goal this effect is gradually negated. To try and
offset this the cost function will be normalised and rescaled
between the maximum possible distance the vehicle could
be from to the goal given its current starting point, and
the minimum possible distance it could be to the goal from
its starting point.

gk:k+nS =
−Jmin

k:k+nS + supX,H,δθ,h Jk:k+nS
supX,H,δθ,h Jk:k+nS − infX,H,δθ,h Jk:k+nS

(12)
In MCMC there are two main methods of handling con-
straints which cannot be dealt with by distribution design.
The first, resampling, requires each sample to be tested to
see if it obeys the constraint, and rejected if it does not. A
fresh sample is then drawn from the prior distribution and
the process repeats. This method is acceptable in situa-
tions where constraints are few and the samples unlikely to
be close to constraint boundaries. Alternatively, the second
method is that of penalty functions. In this case instead of
rejecting outright a sample which violates a constraint it
is instead penalised, which in turn affects the chance of it
being accepted. The penalty functions do weaken the guar-
antee that a conflict could not occur between two vehicles.
However the penalty can be increased incrementally as the
number of iterations and samples increase in order to dis-
courage the propagation of samples where the constraints
have been breeched. The vehicle avoidance constraints are
ideal candidates for implementation as penalty functions.
In the following augmentation of the cost equation (9) a
penalty per constraint broken has been added.

Ĵmin
k:k+nS = min

k+nS∑
s=k

( (Jdist(s) +NC ∗ penalty ∗ j)
(s+ 1− k)

)
(13)

Where NC is the number of constraints broken and j is
the current number of samples. As the sample schedule
increases the level of penalty associated with breaking a
constraint also increases. This alters equation 12 to:

gk:k+nS =
−Ĵmin

k:k+nS + supX,H,δθ,h Ĵk:k+nS
supX,H,δθ,h Ĵk:k+nS − infX,H,δθ,h Ĵk:k+nS

(14)

Algorithm 1 shows the implementation of MCMC into
an MPC framework for the problem in question. It in-
corporates a Metropolis-Hastings update in Steps 20-21,
described in greater depth in Robert and Casella (1999).

Many prior distributions (sampled during Step 7) are
compatible with MCMC and selecting an appropriate
distribution is one of the elements of the tailoring of the

Algorithm 1. Markov Chain Monte Carlo MPC

1: select a prior distribution q0(· )
2: k ← 0
3: Define a monotonically increasing SampleSchedule of

length Jmax

4: while all vehicles have not reached their terminal sets
do

5: k ← k + 1
6: j ← SampleSchedule(1)
7: Draw a sample for δθ0 and h0 (collectively consid-

ered as U0) from q0
8: U ← U0

9: Generate j copies of the samples and apply j reali-
sations of noise to them

10: Evaluate the cost of the each of the j realisations
11: The total cost of the sample g =

∏j
i=1 Jk:k+nS(i)

12: g ← g(1/j)

13: for n = 1 to maxIterations do
14: Ja← SampleSchedule(n)
15: Draw a new sample Ũn ∼ q(· |U)
16: Generate j copies of the samples and apply j

realisations of noise to them
17: Evaluate the cost of each of the j realisations using

(14)
18: The total cost of the proposed sample

g̃ =
∏j
i=1 J̃k:k+nS(i)

19: g̃ ← g̃(1/j)

20: Evaluate the acceptance probability
ρj = min

[
1, g̃

jq(U |Ũ)

gjq(Ũ |U)

]
21: Accept proposal Ũ with probability ρj and set

U = Ũ . Otherwise leave U unchanged with prob-
ability 1− ρj

22: end for
23: apply first step of control of current U to the current

position with gaussian noise.
24: end while

method to the specific application. In our application we
will be sampling from the prior distribution for values
of δθ and h. These are both bounded values due to
the constraints outlined in (3) and (4). Therefore the
prior distribution selected should be bounded accordingly.
To improve the speed of convergence to the equilibrium
distribution some previous memory of samples would be
useful in the prior distribution thus we have chosen to
model the prior distribution as a truncated Gaussian
distribution with a mean of the previous accepted sample
and fixed variance.

3.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) optimisation is better
known for its use in ’particle filtering’ for model estima-
tion. It was observed that MPC optimisation shares similar
features to that of model estimation and through this con-
nection SMC was applied to MPC optimisation by Kantas
et al. (2008). The work of Kantas et al. (2008) included
examples of SMC applied to MPC of multiple vehicles
flying in two dimensions under the predicted effects of wind
and additional Gaussian noise.



The underlying concept of SMC is to approximate a
sequence of distributions of interest as a collection of L
discrete masses of the variables (more commonly referred
to as particles) weighted by a collection of weights to reflect
the shape of the distribution. As the distribution to be
approximated can vary with time the weights and particles
are propagated iteratively using a sequential importance
sampling and resampling mechanism. This sampling and
resampling mechanism uses the particles of iteration i-
1 to obtain new particles at iteration i. In this way a
population of particles is iterated upon until a final sample
is drawn from the population to act as an estimator of the
maximisers. This final sample is sometimes taken as the
mean of the values of the particles however in multi modal
distributions this would given an inaccurate representation
of the distributions global optimisers. Thus it is essential
to select the modal value of the particles and this has been
followed in this paper’s implementation.

Algorithm 2. Sequential Monte Carlo MPC

1: k ← 0
2: Define a monotonically increasing SampleSchedule of

length Jmax

3: while all vehicles have not reached their terminal sets
do

4: k ← k + 1
5: Extract random samples for δθk,i and hk,i for each

of the L particles.
6: weight ← 1/L for particles 1 to L
7: for j = 1 to Jmax do
8: ja ← SampleSchedule(j)
9: Sample gaussian noise on δθk,i and hk,i for each

of L particles.
10: for jj = 1 to ja do
11: for each step in the horizon length do
12: Calculate future positions using (1-2) with

additional gaussian noise.
13: Calculate cost using (12)
14: end for
15: for each particle l = 1 to L do
16: if constraints (3-5) are broken by the particle

then
17: weight(l)← 0
18: end if
19: weight(l)← weight(l) ∗ cost
20: end for
21: Rescale all weights back to probabilities, such

that the sum of the particle weights = 1.
22: end for
23: Resample the particles based on the weights for a

new population of L particles.
24: weight ← 1/L for particles 1 to L
25: end for
26: Calculate next step using mode of all particles’ δθk

and hk
27: Set new position as current position.
28: end while

Unlike MCMC, SMC requires far less tuning to work suc-
cessfully on applications (observed in the work of Kantas
et al. (2008)). Therefore some of the complexities en-
countered by the MCMC implementation, such as careful
choice of distributions and penalty functions is not re-

quired here. The SMC method however also relies on max-
imising an optimisation problem, so like with the MCMC
cost function demonstrated in the previous section the
cost equation (9) is once more converted into a normalised
maximisation problem (12).

The algorithm used to apply the SMC to the current
application is shown in Algorithm 2, where k is the current
time step and L is the number of particles.

4. RESULTS

The two stochastic optimisation methods are compared
on test cases across a range of vehicle numbers. Both
algorithms were given the same test cases to solve. The
noise experienced by both methods was drawn from the
same distribution however the samples differed between
the methods. Each test case had between 3 and 10 vehicles
(though some examples involving up to 20 vehicles have
been generated). These vehicles were randomly given a
starting point and target on the perimeter of a cylinder
of height 5 and radius 30. Vehicles were given a starting
horizontal heading directly towards the centre of the
cylinder and all start and end points were designed such
that the vehicles had a minimum distance to travel to
encourage the chance of vehicle interaction. As the number
of vehicles increased the chance of conflict also increased.
No vehicles started off in conflict and no terminal points
were in conflict. Both methods were given a horizon length
of 6 steps to work with and the vehicles were constrained
with the same maximum turning rate and maximum
altitude changes. Twenty cases of each individual number
of vehicles from 3 to 10 were simulated. The tests were
done on a range of computers with 7GB memory and
3GHz speed processors. Both methods were implemented
in Matlab.

All cases tested were limited in time to 12 hours (roughly
4.3 ∗ 104 seconds in the figures), beyond this time the
problem was stopped and time taken recorded as 12 hours.
As previously mentioned and further demonstrated in
the results of this work, the runtimes of both stochastic
methods do make them unsuited to control applications
where fast response times are required. To provide some
form of benchmark to existing methods the stochastic
optimisation methods were compared to MPC Mixed
Integer Linear Programming (MILP). The MILP method
used was a receding horizon formulation solved centrally
for all vehicles. The horizon used was 20 steps to avoid
the need to use a cost-to-go estimate. A linearised version
of the model used in Section 2 was implemented using
Richards and How (2002) as a basis. The protection
zones of the aircraft were approximated as square prisms
(although higher polygon prisms could have been used
to give a closer approximation to the circular protection
region in the horizontal plane). The number of sides used
in approximating the cylindrical protection zone of the
vehicles directly relates to the number of binaries required
to represent the avoidance constraints. A reduced number
of binaries improves the runtime of the MILP method for
multi vehicle avoidance.

Figure 1 shows example paths generated by the two
stochastic methods and MILP on a variety of problem
sizes. There are some clear differences between the paths
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Fig. 1. Comparison of Paths Generated between the Two Stochastic Methods and MILP MPC

generated by MCMC and SMC. The noise rejection of
SMC seems to have been better than that of MCMC
with most paths direct towards their goals. MCMC paths
tended to meander towards their goals, though this could
have been due to MCMC not being provided enough
time to completely converge on a global maximiser. The
behaviour of beginning to circle around the terminal set
whilst waiting for other vehicles to reach their terminal
sets can be observed in both cases. The effect is greater
the larger number of vehicles in the problem. Figure 2
exhibits the loitering characteristic and also demonstrates
the number of vehicles that SMC was able to handle in the
amount of time allowed. MCMC was unable to solve the
20 vehicle case within the time limit.

Figure 3 shows the runtime comparison between SMC,
MCMC and MILP split between the number of vehicles
present in each model. It is worth noting only the MCMC
method experienced a cut off from the upper limit on solve
time. The lowest number of vehicles in a problem which
failed to finish when solved by MCMC was 6 vehicles. None
of the 9 vehicle cases were solved by MCMC within the
time span, however two of the 10 vehicle cases did solve.

The level of variation in time for problem completion
increases as the number of vehicles increase, this could
be due to a number of factors. As the number of vehicles
increase the chance of conflicts also increases and the
complication of conflicts would have a direct bearing on the
solve times of each of the methods. The runtime variation
for SMC remains the lowest throughout the test cases.
This is likely due to the minimal change in the amount of
computation required in the presence of conflicts.

The SMC method performs comparably with the MILP
approach and indeed shows a marked improvement on
scalability as the number of vehicles increases. Neither

MCMC or MILP were able to handle any of the proposed
20 vehicle test cases whereas SMC managed to solve all but
one within the allowed time. Even with the improvements
of penalty functions and well chosen prior distribution to
reduce resampling, MCMC was significantly slower than
both the other methods.

5. CONCLUSIONS

In this paper we compared two stochastic optimisation
methods, Markov Chain Monte Carlo (MCMC) and Se-
quential Monte Carlo (SMC), on a variety of air traf-
fic management (ATM) problems with multiple vehicles
within a model predictive control (MPC) setup. Both
methods were then compared to a MPC mixed-integer
linear programming approach. A series of test cases with
varying numbers of vehicles between 3 to 10 were used to
compare each of the algorithms though SMC was shown
to be capable of handling problems with up to twenty
vehicles.

Of the two stochastic methods SMC required less tuning
to perform well on the proposed ATM application which
confirms the statement in Kantas et al. (2008). Of the three
methods SMC and MILP achieved the best runtimes. The
variance of runtime was also the least in SMC. Solution
quality varied quite noticeably between the two stochastic
methods with MCMC failing to reject the noise as well as
the SMC despite the long time allowed for convergence.

As already observed, methods used in the paper are
unsuited for control applications which require a fast
response. However all three of the methods compared
in this paper can have their runtime reduced. In the
case of the stochastic methods future work can focus on
advantages of the methods being parallelised. Meanwhile
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Fig. 2. Twenty vehicle problem solved by SMC viewed from
two different angles
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the MILP method benefits greatly in runtime through
distributed control between each of the vehicles Kuwata
et al. (2007)
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