
must be robust to changes in the local mapped environment.
However, for many scenarios typical of UAV operations, it is still
desirable to implement waypoint-driven guidance trajectories off-line
to ensure optimality of the chosen flight profile. This is particularly
true of lightweight micro-UAVs where optimal path planning is
essential to maximise operational effectiveness against the low range
and endurance induced by weight constraints on the powerplant.

Path planning for UAVs, both on-line and off-line, has been an
active research area for well over the past decade or more(3-5). Many
approaches have been proposed using techniques developed from a
variety of different engineering and computing disciplines, however
all techniques can be classified as belonging to one of two types:
either a globally optimal or locally adaptive process. Locally
adaptive algorithms are very popular with the mobile robotics
community forming an integral part of the wider activity of self-
localisation and mapping (SLAM)(6). Many such techniques are
based upon graph theoretic algorithms originally developed within
the artificial intelligence community such as Dijkstra, A*, D* etc.(7 8)

and more recent graph or search-tree construction algorithms based
on random searches such as the Rapidly-exploring Random Tree
(RRT) algorithm(9). However, tree construction and search can be a
computationally intensive process if the desired path trajectories are
of high dimension, for example when position, rate, attitude, orien-
tation, time and other kinematic constraints are required. The
resulting computational constraints mean that finding the optimal
path by such methods is due more to luck than design.

Global, optimal waypoint-driven path-planning techniques are

ABSTRACT

Operating micro-UAVs autonomously in complex urban areas
requires that the guidance algorithms on-board are robust to changes
in the operating environment. Limited endurance capability demands
an optimal guidance algorithm, which will change as the
environment does. All optimal path-planning routines are computa-
tionally intensive, with processor load a function of the environ-
mental complexity. This paper presents a new algorithm, the reactive
route selection algorithm, for storing a bank of optimal trajectories
computed off-line and blending between these optimal trajectories as
the operating environment changes. An example is presented using a
mixed-integer linear program to generate the optimal trajectories. 

1.0 INTRODUCTION

Arguably one of the most mission-critical components in the
guidance system of airborne autonomous vehicles is the path-
planning algorithm. The operational viability of the platform is
crucially interwoven with the efficacy of the chosen path planning
algorithm to provide timely, reactive and robust guidance commands,
especially in uncertain operational environments(1). Such environ-
mental considerations are increasingly becoming prevalent in the
algorithm design and selection process as many military UAV opera-
tional requirements are now moving from long-range/standoff ISR
(Intelligence, Surveillance and Reconnaissance) missions to local
intelligence and surveillance gathering in tightly-constrained urban
environments(2). Practically, this requires that the guidance algorithm
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2.0 ONLINE RE-ROUTING

2.1 General concept

In most operational environments the UAV will have to react to
changes in threat level, unforeseen blockages or other deviations
from the assumed state-space map, requiring transition to an alter-
native optimal trajectory. As all optimal trajectory algorithms (such
as MILP) require the specification of intermediate waypoints in their
formulation, each of these locations can be used as local goals.
Ideally, each waypoint is selected to lie within the range of the
primary platform sensor, meaning that at the jth waypoint on the ith

trajectory, xwp
i,j, the platform can determine whether the next waypoint

on the current trajectory is valid. A waypoint is declared valid if
there are no obstacles detected on the path segment between xwp

i,j and
xwp

i,j+1. If the next waypoint is invalid, an alternative trajectory must be
chosen. To do this, the RRS algorithm computes a database of trajec-
tories offline by introducing potential obstacles at each waypoint
along each individual trajectory and re-planning the mission from
the previous waypoint. Used online, it also selects the most appro-
priate trajectory from the database in the aircraft guidance system.
Assuming all trajectories have the same number of enumerated
waypoints, the database architecture is that of a binary graph Γ with
the nodes in each layer representing a candidate waypoint along each
trajectory. All but the penultimate node (final waypoint) has
therefore two branches as there are two choices for the next
waypoint: clear or blocked. Figure 1 illustrates the graph for a
complete set of trajectories corresponding to the scenario shown in
Fig. 2.

2.2 RRS algorithm theory

Consider a global state-space, EE. The centres of the vehicle xv, the kth

obstacle xo
k, the goal xg and waypoint positions on the ith trajectory Φi

(where the jth column of Φ is xwp
i,j can be defined in EE. Next consider Fig.

3. There are four principal distances shown in Fig. 3 that require expla-
nation. The first, δr is the desired turn radius of the vehicle and is a
function of the aerodynamics, current flight state and desired opera-
tional strategy. This last variable requires further explanation. For a
system where the search time should be minimised for example, more
aggressive manoeuvring is warranted and therefore the desired turn
radius may be the minimum achievable turn radius for that flight state.
However for a mission where endurance or fuel consumption is more
important, the desired turn radius will be that which maximises lift/drag

necessarily computed off-line because the entire world state-space
needs to be represented in the optimisation algorithm: host
platform, enemy (red), own (green) and allied (blue) forces,
geographic obstacles and targets etc. Depending on the number of
states, quantity (and type) of constraints and the cost function, a
variety of nonlinear optimisation techniques have been employed.
Some effective techniques include ad-hoc approaches using
spatial/temporal segmentation with Voronoi diagrams and
dynamic programming(3), nonlinear programming(5,10) and multi-
modal techniques(11). Another popular approach borrowed from
robotics is the use of artificial potential fields(12), although this
method requires some skill in defining the problem to obtain time-
optimal trajectories. A technique that has gained some prominence
as one of the most effective optimal waypoint generation
techniques is that of Mixed-Integer Linear Programming
(MILP)(13-15). However, one of the main problems with the MILP
planning algorithm is that finding the solution to the constrained
optimisation problem is a computationally intensive process and
one which must be repeated each time the environment changes.
In modern control theory, real-time implementation of computa-
tionally intensive optimisations is a crucial research objective for
Model Predictive Control (MPC) of fast systems(16,17). Essentially,
all of the techniques currently under development either simplify
the optimisation problem or move large sections of the compu-
tation off-line. The resulting controller is then implemented on-
line using a look-up table(18,19).

Therefore, our assertion is that a practical solution to the
problem of implementing optimal path re-planning onboard
micro-UAVs with limited processing capability is to store and
search a bank of pre-calculated optimal trajectories corresponding
to a finite, but highly probable, subset of all possible configuration
spaces. The algorithm managing this process we have entitled the
Reactive Route Selection (RRS) algorithm and is the main contri-
bution of this paper. In RRS, the optimal trajectory that minimises
mission completion time is calculated offline using information
about known obstacles and pre-specified waypoints positioned
well within the platforms primary sensor range. Potential
obstacles are then sequentially introduced at each waypoint along
the trajectory with the remaining optimal trajectory re-planned
using the new obstacles. This process is repeated for all the trajec-
tories in order to build up a bank that can be used along with
sensor data by the UAV online. Although the path-planning
method used in this paper was MILP, in theory any optimisation
process could be used.
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Figure 1. Trajectory graph Γ: each path to goal represents a candidate
trajectory that is computed offline. A solid line denotes the optimal

path from a given waypoint, dashed line denotes the alternative path.
Path Φ1 represents the original optimal trajectory.

Figure 2. Simple scenario involving a UAV (triangle), a goal (large dot)
and an obstacle (circle). Each trajectory is broken into time-steps

(small dots) and waypoints (dots). Plots (a)–(d) show the generation of
trajectories Φ1-Φ4 from Fig. 1 by placing potential obstacles along

previous trajectories.



● The UAV is flying with zero sideslip (flight vector is aligned
with the body x-axis),

● The evasive manoeuvre most likely to maximise survivability is
the maximum constant turn rate achievable for the current flight
state.

● The most benign evasive manoeuvre is the turn rate which
maximises the lift/drag ratio of the vehicle and is known a
priori.

These conditions mean that the centre of the turning circle is a
distance δr along a vector orthogonal to the flight velocity, the UAV 
y-axis in this case. Then, the closest the vehicle comes to the obstacle
in normal RRS operation yields the maximum new obstacle size;

where the max(·,·) function encodes the choice between a right or
left turn evasive manoeuvre and y ̂ is the unit vector along the UAV
y-axis. This gives the condition that δo

i ≤ δi
o,max. An additional

constraint that the new obstacle does not cover the goal and therefore
render the problem infeasible must also be included. In some cases it
may be more desirable to increase δr to reduce induced drag and so
increase likely endurance. Such an approach may be appropriate if,
for example, the UAV sensor range δs far exceeds the distance
between waypoints or the operating state space has few obstacles.

One problem with the algorithm as it stands is that if an obstacle
was detected just beyond waypoint xwp

i,j+1 (referring to Fig. 3) the
vehicle would have to wait until it reached that waypoint before
altering trajectory, and by that time the branching trajectory may not
avoid the obstacle either. However, it would still be possible for the
RRS algorithm to guide the UAV to the final goal using a trajectory
blending technique as shown in Fig. 4 (provided that the avoidance
manoeuvre is within the vehicle constraints). A general blending
strategy for non-overlapping trajectories is;

Φb (τ) = (1 – α) Φ1(τ) + αΦ2 (τ) . . . (7)

where τ ≔ t – tc and α ∈ [0,1] (note that here time t is used as the
dependant variable to conform with standard practice when solving
the flow of a differential equation). Equation (7) is used to blend
from the (possibly) nonlinear flow Φ1 (·) ∶ RR  → RRn, onto the
nonlinear flow Φ2 (·) ∶ RR  → RRn across a finite blending horizon τ of
length Δt. Instantaneous switching between trajectories is wholly
unrealistic due to the finite acceleration and velocity capabilities of
the UAV in flight, irrespective of which translational or angular state

ratio. We shall return to this point later. The second, δv, is the
maximum spatial extent of the vehicle. δs is the sensor range and finally
δo

k is the size of the kth obstacle. The physical extent of the vehicle and
obstacles can now be defined as the sets;

V = {∀x ∈ EE│δv > ║ x – xv ║} . . . (1)

Ok = {∀x ∈ EE│δ0
k> ║ x – xo

k║, k ∈ {1 … K}} . . . (2)

respectively, where K is the number of obstacles and ║.║ denotes the
Euclidean norm. With these sets the miss criteria, which also defines
all feasible locations in EE can be defined as;

EEfeas = {∀x ∈ EE│ (V ∪ Ok) = ∅, k ∈{1… K}} . . . (3)

Using this constraint it is possible to define an optimal trajectory
Φi

*(xv,t) as the flow from xv to xg using any of the global, optimal
path planning algorithms discussed earlier, provided they solve the
problem;

(minJ(Φ(xv,t), xg)

s.t.  Φ(xv,t)  ∈ EEfeas) . . . (4)

according to some cost function J and also respecting vehicle
dynamics and constraints. In the examples to follow, a MILP solver
was used exclusively, but any equivalent technique could be substi-
tuted. Each trajectory has n waypoints spaced evenly along Φi

* (xv,t)
such that the distance between waypoints is always within the range
of the vehicle sensor i.e.

. . . (5)

The RRS algorithm populates its trajectory tree by considering what
would happen if the next waypoint in Φi

* (xv,t) were blocked by some
change in EE. This can be simply achieved by re-classifying xwp

i,j (each
waypoint in turn, along the ith trajectory) as an obstacle and
computing b new trajectories Φ*

i+a (xv,t), a ∈{1…b} using the
modified state-space EEm. The value of b = n – 1 for all trajectories
except the initial optimal trajectory where b = n i.e. potential
obstacles are not placed on the first waypoint of a trajectory except
the initial optimal one. However, the question remains as to the
appropriate size of the new obstacle δo

j+1. To illustrate the concept the
following simplifying assumptions can be made without loss of
generality:
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Figure 3. UAV obstacle avoidance geometry.

Φ

x i, j+1
wp

i, j
wp

 s  

 

. . . (6)



by going back up the tree to node xwp
i,j–1 and traversing the blocked

branch. With reference to Fig. 1, this corresponds to the situation
where one discovers an obstacle between waypoint 1 and 2 of
trajectory Φ1 while traveling towards waypoint 1 rendering trajec-
tories Φ1 and Φ3 infeasible. In this case the algorithm would blend
into trajectory Φ2. Ideally, both remaining candidate trajectories
should be checked at all points in the neighbourhood of the obstacle,
but this is time consuming and contradicts the purpose of the RRS
algorithm. Consequently, only xwp

2,j+1 and xwp
4,j+1 are tested. If none of

these trajectories is found feasible, a return-to-base option is
triggered.  

3.0 MILP FORMULATION

MILP was used to implement the optimisation procedure in Equation
(4). The mathematical formulation, taken from Bellingham(14), will
now be described. The full, nonlinear UAV dynamics were not
implemented explicitly in the MILP formulation, rather we followed
the standard approach of modelling the kinematics as a simple point
mass and incorporating aerodynamic nonlinearities, couplings etc as
constraints on the kinematic model(14).

. . . (9)

where the state vector is s = [xv
T, x ̇vT]T and Δt is the discrete time-step

length. 
The cost function was taken as the mission completion time with a

small weighting on the force exerted by the UAV to penalise fuel
usage and ensure a unique optimal solution. It is given over a
horizon of N time-steps as follows:

. . . (10)

where at ∈ [0,1] is 1 if the UAV reaches the target at time t and 0
otherwise. To enforce the condition that the UAV reached the target
within N time-steps, the following constraints are added to the
optimisation problem;

║xv,t – xg ║ ≤ M (1 – at) . . . (11)

. . . (12)

trajectory is blended. The type of blending is controlled via the
parameter α. Linear blending is shown by Equation (8).

. . . (8)

The slope of the blending trajectory, which is also the local rate of
the state variable, is given by the difference between Φ2 (tc + Δt) and
Φ1(tc) divided by Δt. It is then simple to incorporate known velocity
constraints into the blend. However, the accelerations at the
beginning and end of each blend can be quite high. Following the
approach suggested in Dever(20) for example, a static nonlinearity
such as a boundary-value polynomial or the hyperbolic tangent
function may be substituted in the definition of α or perhaps even a
Dubins curve used to smooth the initial and terminal accelerations.
One of the benefits of the simple nonlinear functions however is the
existence of continuous derivatives which can be easily compared to
δr to ensure feasibility of the blending trajectory. Figure 5 shows a
simple example of linear and hyperbolic tangent blending between
two flows with tc = 4s and Δt = 2s.

Finally, all that is left is to select the best trajectory to blend into.
Assume that the vehicle sensors detect an obstacle centred on xwp

i,j+1

when traveling between xwp
i,j-1 and xwp

i,j and that δo
i+1 > δ0,max such that all

trajectories emanating from xwp
i,j are infeasible. The improved

algorithm then sets xwp
i,j to blocked and begins to traverse the tree Γ
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Figure 4. Trajectory blending using linear (or nonlinear) interpolation.

Figure 5. Linear and nonlinear interpolation of two divergent flows.

 

 

 



The path planning method outlined here has the advantages of
giving a low computational burden to the UAV computers as a full
MILP does not have to be solved at each time-step (as in the case of
MPC), and is able to provide a degree of robustness into the planner.
This degree of robustness could easily be increased by giving the
UAV m path options at each waypoint by introducing a potential
obstacle at the start of the first suboptimal trajectory, therefore
increasing the size of the trajectory bank to mn + ε cells. It can be
seen that there will be a trade-off between size of on-board memory
usage and robustness in the path.

5.0 CONCLUSIONS AND FURTHER WORK

This investigation has tackled the problem of optimal path re-
planning for a single UAV in a cluttered and dynamic environment
by proposing a novel approach to the computation, storage and
selection of optimal, feasible trajectories. By fusing the standard,
widely accepted approach of discretising the operating state space
with the constraints imposed by the UAV sensors range limitations a
workable, heuristic reduced-order dynamic state space was shown to
exist. Furthermore it was also shown that with careful waypoint
selection in the optimal trajectory generation program (in this case

where M is some large number that acts to relax the constraint for
all instances of time except one, where xvt must equal xg. For details
on how state, input and obstacle avoidance constraints were imple-
mented the reader is referred to(14).

4.0 EXAMPLE

The trajectory bank generator was coded in MATLAB with the
MILP computation carried out by CPLEX optimisation
software(21). A scenario involving three obstacles was passed
through the code. The resulting build-up of trajectories is
displayed in Fig. 6.

Figure 6(a) shows the optimal path from start location to target.
Figure 6(b) shows the generation of trajectories branching from the
optimal path. Figure 6(c), 6(d) and 6(e) show the generation from the
first, second and third suboptimal trajectories respectively. The
completed trajectory bank is then displayed in Fig. 6(f). The size of
this bank slightly exceeds the size of the corresponding binary tree,
which would contain 23 paths since the original trajectory contains
three waypoints. This is simply because some of the suboptimal
trajectories generated were long enough to warrant the inclusion of
an extra waypoint. 
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Figure 6. Trajectory bank generation for a three obstacle scenario where δs = 4, ║xv║= 2, ║u║= 2, δt = 0·5 s, N = 20 and ε = 0·1. UAV is  represented
by a triangle, target as a big dot and obstacles as circles. Each trajectory is broken into time-steps (small dots) and waypoints (dots).

.



7. NILSSON, N.J. Principles of Artificial Intelligence, Tioga Publishing
Company, 1980.

8. FERGUSON, D. and STENTZ, A. The Delayed D* Algorithm for Efficient
Path Replanning, IEEE International Conference on Robotics and
Automation, 2005, pp 2045-2050.

9. LAVALLE, S.M. Rapidly-Exploring Random Trees: A New Tool for Path
Planning, Iowa State University, Iowa, USA, C. S. Dept, 98-11, 1998.

10. EELE, A. and RICHARDS, A. Path-planning with avoidance using
nonlinear branch-and-bound optimization, AIAA J Guidance, Control
and Dynamics, March-April, 32, (2), pp 384-394.

11. GODBOLE, D., SAMAD, T. and GOPAL, V. Active Multi-Modal Control
for Dynamic Maneuver Optimization of Unmanned Aerial Vehicles,
IEEE International Conference on Robotics and Automation, San
Francisco, CA, USA, 2000, pp 1257-1262.

12. PAUL, T., KROGSTAD, T.R. and GRAVDAHL, J.T. Modelling of UAV
formation flight using 3D potential fields, Simulation Modeling
Practice and Theory, 16, (9), pp 1453-1462.

13. SCHOUWENAARS, T., DEMOOR, B., FERON, E. and HOW, J.P. Mixed-
Integer Programming for Multi-Vehicle Path Planning, European
Control Conference, Porto, Portugal, 2001, pp 2603-2608.

14. BELLINGHAM, J., TILLERSON, M., RICHARDS, A. and HOW, J.P.
Coordination and Control of Multiple UAVs, AIAA Guidance,
Navigation and Control Conference and Exhibit, Monteray, CA, USA,
2002, pp D12-D18.

15. KABAMBA, P.T., MEERKOV, S.M. and ZEITZ, F.H. Optimal path planning
for unmanned combat aerial vehicles to defeat radar tracking, AIAA J
Guidance, Control and Dynamics, March-April, 29, (2), pp 279-288.

16. WANG, Y. and BOYD, S. Fast Model Predictive Control Using Online
Optimization, 17th World Congress, Seoul, S Korea, 2008, pp 6794-
6979.

17. ANDERSON, D., LOO, M. and BRIGNALL, N. Fast model predictive
control of the Nadar singularity in electro-optic systems, AIAA J
Guidance, Control and Dynamics, March-April, 32, (2), pp 626-632.

18. BEMPORAD, A., MORARI, M., DUA, V. and PISTIKOPOULOS, E.N. The
explicit linear quadratic regulator for constrained systems, Automatica,
38, pp 3-20.

19. DUA, V., BOZINIS, N.A. and PISTIKOPOULOS, E.N. A New Multiparametric
Mixed-Integer Quadratic Programming Algorithm, 34th European
Symposium of the Working Party on Computer Aided Process
Engineering, 2001, pp 979-984.

20. DEVER, C., METTLER, B., FERON, E., POPOVIC, J. and MCCONLEY, M.
Nonlinear trajectory generation for autonomous vehicles via parame-
terized maneuver classes, AIAA J Guidance, Control and Dynamics,
March-April, 29, (2), pp 289-302.

21. CPLEX, ILOG CPLEX 9.0 User’s Manual, 2003.

mixed-integer linear programming), a practical solution exists for
computing off-line and storing a finite bank of feasible, optimal
trajectories corresponding to the most important dynamic changes in
the environment i.e. those prohibiting flight along pre-computed
waypoint legs. 

Although more research is required in categorising the most likely
changes in the configuration space, in moving the computationally
intensive global trajectory optimisation calculation off-line, the RRS
algorithm provides a potential framework for implementing optimal
and robust path-planning on low-cost micro and nano-scale
unmanned aerial vehicles. One interesting potential improvement is
the possibility of blending trajectories between trees. As mentioned
in Section 2.2, each tree is a function of the desired turn radius,
which essentially governs the level of aggressiveness in the evasive
manoeuvres. A future addition to the algorithm would therefore be
the computation of multiple trees, each with different manoeuvre
agility and through sensing the real-world obstacle select the most
appropriate alternative trajectory for the mission. This will be the
topic of a future paper.
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