
1

Stochastic optimization on continuous domains

with finite-time guarantees by Markov chain

Monte Carlo methods

A. Lecchini-Visintini∗, J. Lygeros† and J. Maciejowski‡

Abstract

We introduce bounds on the finite-time performance of Markov chain Monte Carlo (MCMC)

algorithms in solving global stochastic optimization problems defined over continuous domains. It is

shown that MCMC algorithms with finite-time guarantees can be developed with a proper choice of the

target distribution and by studying their convergence in total variation norm. This work is inspired by

the concept of finite-time learning with known accuracy and confidence developed in statistical learning

theory.

I. INTRODUCTION

Simulated annealing is a general method for approaching the solution of a global optimization

problem [1]. Simulated annealing can be implemented on continuous domains using the general

family of Markov chain Monte Carlo (MCMC) methods [2]. In this paper, we introduce rigor-

ous guarantees on the finite-time performance of simulated annealing on continuous domains.

We will show that it is possible to derive MCMC algorithms to implement simulated annealing

which can find an approximate solution to the problem of optimizing a function of continuous

variables, within a specified tolerance and with an arbitrarily high level of confidence after a

known finite number of steps.

The background of our work is twofold. On the one hand, our notion of ‘approximate domain

optimizer’ is inspired by the definition of ‘probably approximate near minimum’ introduced by

Vidyasagar in [3], [4]. In the control field, the work of Vidyasagar [3], [4] has been seminal in

the development of the so-called randomized approach. Inspired by statistical learning theory,
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this approach is characterized by the construction of algorithms which make use of independent

sampling in order to find probabilistic approximate solutions to difficult control system design

applications see e.g. [5], [6]. In our work, the definition of approximate domain optimizer will

be essential in establishing rigorous guarantees on the finite-time performance of simulated

annealing. On the other hand, we show that our rigorous finite-time guarantees can be achieved

by the wider class of algorithms based on MCMC sampling and we ground our results on the

theory of convergence, with quantitative bounds on the distance to the target distribution, of the

Metropolis-Hastings algorithm and MCMC methods [7]–[10]. In addition, we demonstrate how,

under some quite weak regularity conditions, our definition of approximate domain optimizer

can be related to the standard notion of approximate optimization considered in the stochastic

programming literature [11], [12]. This link provides theoretical support for the use of simulated

annealing and MCMC optimization algorithms, which have been proposed, for example, in [13]–

[15], for solving stochastic programming problems.

In this paper, beyond the presentation of a simple example, we will not develop any ready-

to-use optimization algorithm. Our results enable one to study the computational complexity

of MCMC algorithms for stochastic optimization. However, the application of these results to

create new efficient algorithms goes beyond the scope of the paper.

The appendix contains the technical proof of the main result. The reader is referred to the

extended version of this note [16] for all other proofs. Some of the results of this paper were

included in preliminary conference contributions [17], [18].

II. APPROXIMATE OPTIMIZERS

Consider an optimization criterion U : Θ → R, with Θ ⊆ R
n, and let

U∗ := sup
θ∈Θ

U(θ). (1)

The following will be a standing assumption for all our results.

Assumption 1: Θ has finite Lebesgue measure. U is well defined point-wise, measurable, and

bounded between 0 and 1 (i.e. U(θ) ∈ [0, 1] ∀θ ∈ Θ).

For some results another assumption will be needed.

Assumption 2: Θ is compact. U is Lipschitz continuous.

We use L to denote the Lipschitz constant of U , i.e. ∀θ1, θ2 ∈ Θ, |U(θ1)−U(θ2)| ≤ L‖θ1−θ2‖.

Assumption 2 implies the existence of a global optimizer, i.e. under Assumption 2, we have

Θ∗ := {θ ∈ Θ | U(θ) = U∗} 6= ∅.
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If, given an element θ in Θ, the value U(θ) can be computed directly, we say that U is

a deterministic criterion. In problems involving random variables, the value U(θ) can be the

expected value

U(θ) =

∫

g(x, θ)Px(dx; θ) (2)

of some function g which depends on both the optimization variable θ, and on some random

variable x with probability distribution Px(·; θ) (which may itself depend on θ). In such problems

it is usually not possible to compute U(θ) directly. In this cases one must perform stochastic

simulations and construct a Monte Carlo estimate of U(θ). The results of this paper apply in

the same way to the optimization of both deterministic and expected-value criteria.

We introduce two different definitions of approximate solution to the optimization problem (1).

The first is the definition of approximate domain optimizer. It will be essential in establishing

finite-time guarantees on the performance of MCMC methods.

Definition 1: Let ǫ ≥ 0 and α ∈ [0, 1] be given numbers. Then θ is an approximate domain

optimizer of U with value imprecision ǫ and residual domain α if

λ({θ′ ∈ Θ : U(θ′) > U(θ) + ǫ}) ≤ αλ(Θ) (3)

where λ denotes the Lebesgue measure.

That is, the function U takes values strictly greater than U(θ) + ǫ only on a subset of values of

θ no larger than an α portion of the optimization domain. If both α and ǫ are equal to zero then

U(θ) coincides with the essential supremum of U [19]. We will use

Θ(ǫ, α) := {θ ∈ Θ | λ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ}) ≤ αλ(Θ)}

to denote the set of approximate domain optimizers with value imprecision ǫ and residual domain

α.

Vidyasagar introduced in [3], [4] the similar definition of ‘probably approximate near mini-

mum’ in order to obtain rigorous finite-time guarantees in the optimization of expected value

criteria based on independent sampling of the optimization domain.

The following is a more common notion of approximate optimizer.

Definition 2: Let ǫ ≥ 0 be a given number. Then θ is an an approximate value optimizer of

U with imprecision ǫ if U(θ′) ≤ U(θ) + ǫ for all θ′ ∈ Θ.

This notion is commonly used in the stochastic programming literature [11], [12] and provides

a direct bound on U∗: θ ∈ Θ is an approximate value optimizer with imprecision ǫ > 0 if and
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only if U∗ ≤ U(θ) + ǫ. We will use

Θ∗(ǫ) := {θ ∈ Θ | ∀θ′ ∈ Θ, U(θ′) ≤ U(θ) + ǫ}

to denote the set of approximate value optimizers with imprecision ǫ.

It is easy to see that for all ǫ if Θ∗ 6= ∅ then Θ∗ ⊆ Θ∗(ǫ). Notice that Θ∗(ǫ) does not coincide

with Θ(ǫ, 0). For all ǫ and all α, if Θ∗(ǫ) 6= ∅ then Θ∗(ǫ) ⊆ Θ(ǫ, α). Conversely, given an

approximate domain optimizer it is in general not possible to draw any conclusions about the

approximate value optimizers. A relation between domain and value approximate optimality can,

however, be established under Assumption 2.

Theorem 1: Let Assumption 2 hold. Let θ be an approximate domain optimizer with value

imprecision ǫ and residual domain α. Then, θ is also an approximate value optimizer with

imprecision

ǫ+
L√
π

[n

2
Γ
(n

2

)]
1

n

[αλ(Θ)]
1

n

where Γ denotes the gamma function.

The result allows us to select the value of α in such a way that an approximate domain optimizer

with value imprecision ǫ and residual domain α is also an approximate value optimizer with

imprecision 2ǫ. To do this, we need to select α so that L√
π

[

n
2
Γ
(

n
2

)]
1

n [αλ(Θ)]
1

n ≤ ǫ hence

α ≤

[

ǫ
√
π

L

]n

λ(Θ)
[

n
2
Γ
(

n
2

)] . (4)

To illustrate the above inequality consider the case where the domain Θ is contained in an n-

dimensional ball of radius R. Notice that under Assumption 2 the existence of such an R is

guaranteed. In this case λ(Θ) = 2π
n
2

nΓ(n
2
)
Rn . Therefore (4) becomes

α ≤
(

1

L

ǫ

R

)n

. (5)

Note that, as n increases, α has to decrease to zero rapidly to ensure the required imprecision

of the approximate value optimizer. In this case, α needs to decrease to zero as ǫn.

III. OPTIMIZATION WITH MCMC: FINITE TIME GUARANTEES

In simulated annealing, a random search based on the Metropolis-Hastings algorithm is carried

out, such that the distribution of the elements of the domain visited during the search converges

to an equilibrium distribution concentrated around the global optimizers.
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Here we adopt equilibrium distributions defined by densities proportional to [U(θ)+δ]J , where

J and δ are strictly positive parameters. We use

π(dθ; J, δ) ∝ [U(θ) + δ]Jλ(dθ) (6)

to denote this equilibrium distribution. The presence of δ is a technical condition required in the

proof of our main result and will be discussed later on in this section. In our setting, the so-called

‘zero-temperature’ distribution is the limiting distribution π( · ; J, δ) for J → ∞ denoted by π∞.

It can be shown that under some technical conditions, π∞ is a uniform distribution on the set

Θ∗ of the global maximizers of U [20].

In Fig. 1, we illustrate two algorithms which implement Markov transition kernels with

equilibrium distributions π( · ; J, δ). Algorithm I is the classical Metropolis-Hastings algorithm

for the case in which U is a deterministic criterion [2]. Algorithm II is a suitably modified version

of the Metropolis-Hastings algorithm for the case in which U is an expected-value criterion in

the form of (2). This latter algorithm was devised by Müller [13], [15] and Doucet et al. [14].

In the simulated annealing scheme, one would simulate an inhomogeneous chain in which

the equilibrium distributions tends to the zero-temperature distribution according to a suitably

chosen ‘cooling schedule’ [21]–[27]. Usually, in an optimization problem defined over continuous

variables, the set of global optimizers Θ∗ has zero Lebesgue measure (e.g. a set of isolated points).

This implies that, in general, convergence to the zero-temperature distribution on continuous

domains can only be obtained in the weak sense, see [21, Theorem 3.3]. Notice that this is not

the case for a finite domain, where the set of global optimizers is of non-null measure with

respect to the reference counting measure [28]–[31].

Weak convergence to π∞ implies that, asymptotically, θk hits the set of approximate value

optimizers Θ∗(ǫ), for any ǫ > 0, with probability one [21]–[25]. In recent works, bounds on

the expected number of iterations before hitting Θ∗(ǫ) [26], or on Pθk
(Θ∗(ǫ)) [27], have been

obtained. In [27], under some technical conditions, it is proven that ∀ǫ > 0 there is a number

Cǫ such that Pθk
({θ ∈ Θ | U(θ) ≤ U∗ − ǫ}) ≤ Cǫk

− 1

3 (1 + log k) at each step k. In general, the

expressions in these bounds cannot be computed. For example, in the bound reported here, Cǫ

is not known in advance. Hence, existing bounds can be used to asses the asymptotic rate of

convergence as k → ∞, i.e. as the number of steps grows to infinity, but not as stopping criteria.

Here we show that finite-time guarantees for stochastic optimization by MCMC methods on

continuous domains can be obtained by selecting a distribution π( · ; J, δ) with a finite J as the

target distribution in place of the zero-temperature distribution π∞. Our definition of approximate
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Algorithm I : MCMC for deterministic criteria

0 Assume that the current state of the chain is θk.

1 Generate a proposed state θ̃k+1 according to q
θ̃
(θ|θk).

2 Calculate the acceptance probability

ρ = min

{

q
θ̃
(θk|θ̃k+1)

q
θ̃
(θ̃k+1|θk)

[U(θ̃k+1) + δ]J

[U(θk) + δ]J
, 1

}

.

3 With probability ρ, accept the proposed state and set θk+1 = θ̃k+1. Otherwise leave the current state
unchanged, i.e. set θk+1 = θk.

Algorithm II : MCMC for expected-value criteria

0 Assume that the current state of the chain is [θk, {x
(j)
k |j = 1, . . . , J} ] where {x

(j)
k |j = 1, . . . , J} are

J independent extractions generated according to Px(dx;θk).

1 Propose a new state [ θ̃k+1, {x̃
(j)
k+1|j = 1, . . . , J} ] where θ̃k+1 is generated according to q

θ̃
(θ|θk) and

{x̃
(j)
k+1|j = 1, . . . , J} are J independent extractions generated according to Px(dx; θ̃k+1).

2 Calculate the acceptance probability

ρ = min



























q
θ̃
(θk|θ̃k+1)

q
θ̃
(θ̃k+1|θk)

J
∏

j=1

[g(x̃
(j)
k+1, θ̃k+1) + δ]

J
∏

j=1

[g(x
(j)
k ,θk) + δ]

, 1



























3 With probability ρ, accept the proposed state and set θk+1 = θ̃k+1 and {x
(j)
k+1 = x̃

(j)
k+1|j = 1, . . . , J}.

Otherwise leave the current state unchanged, i.e. set θk+1 = θk and {x
(j)
k+1 = x

(j)
k |j = 1, . . . , J}.

Fig. 1. The basic iterations of the Metropolis-Hastings algorithm with equilibrium distributions π(·; J, δ) for the maximization

of deterministic and expected-value criteria. In both algorithms, q
θ̃
(·|θk) is the density of the ‘proposal distribution’.

domain optimizer given in Section II is essential for establishing this result. The definition of

approximate domain optimizers carries an important property, which holds regardless of what

the criterion U is: if ǫ and α have non-zero values then the set of approximate global optimizers

Θ(ǫ, α) always has non-zero Lebesgue measure. The following theorem establishes a lower

bound on the measure of the set Θ(ǫ, α) with respect to a distribution π(·; J, δ) with finite J .

It is important to stress that the result holds universally for any optimization criterion U on a

bounded domain. The only minor requirement is that U takes values in [0, 1].

Theorem 2: Let Assumption 1 hold. Let Θ(ǫ, α) be the set of approximate domain optimizers

of U with value imprecision ǫ and residual domain α. Let J ≥ 1 and δ > 0, and consider the

distribution π(dθ; J, δ) ∝ [U(θ)+δ]Jλ(dθ). Then, for any α ∈ (0, 1] and ǫ ∈ [0, 1], the following

inequality holds

π(Θ(ǫ, α); J, δ) ≥ 1

1 +

[

1 + δ

ǫ+ 1 + δ

] J [
1

α

1 + δ

ǫ+ δ
− 1

]

1 + δ

δ

. (7)



7

Notice that, for given non-zero values of ǫ, α, and δ the right-hand side of (7) can be made

arbitrarily close to 1 by choice of J . The importance of the choice of a target distribution

π( · ; J, δ) with a finite J is that the total variation distance ‖Pθk
− π( · ; J, δ)‖TV between the

distribution of the state of the chain Pθk
and the target distribution π( · ; J, δ) is a meaningful

quantity [10]. Convergence of the Metropolis-Hastings algorithm and MCMC methods in total

variation distance is a well studied problem. The theory provides simple conditions under which

one derives upper bounds on ‖Pθk
− π( · ; J, δ)‖TV that decrease to zero as k → ∞ [7]–[10]. It

is then appropriate to introduce the following finite-time result.

Proposition 3: Let Assumption 1 hold. Let θk with distribution Pθk
be the state of the chain

of an MCMC algorithm with target distribution π( · ; J, δ). For given α ∈ (0, 1], ǫ ∈ (0, 1] and

σ ∈ (0, 1), if

J ≥ 1 + ǫ+ δ

ǫ

[

log
σ

1− σ
+ log

1

α
+ 2 log

1 + δ

δ

]

(8)

then,

Pθk
(Θ(ǫ, α); J, δ) ≥ σ − ‖Pθk

− π( · ; J, δ)‖TV .

In other words, the statement “θk is an approximate domain optimizer of U with value impre-

cision ǫ and residual domain α” can be made with confidence σ − ‖Pθk
− π( · ; J, δ)‖TV.

Inequality (8) is derived from inequality (7) Then, the result follows directly from the definition

of the total variation distance [10].

If the optimization criterion is Lipschitz continuous, Theorem 2 can be used together with

Theorem 1 to derive a lower bound on the measure of the set of approximate value optimizers

with a given imprecision. An example of such a bound is the following.

Proposition 4: Let Assumption 1 and 2 hold. In addition, assume that Θ is contained in an

n-dimensional ball of radius R. Let θk with distribution Pθk
be the state of the chain of an

MCMC algorithm with target distribution π( · ; J, δ). For given ǫ ∈ (0, 1] and σ ∈ (0, 1), if

J ≥ 1 + ǫ+ δ

ǫ

[

log
σ

1− σ
+ n log

(

LR

ǫ

)

+ 2 log
1 + δ

δ

]

(9)

then

Pθk
(Θ∗(2ǫ); J, δ) ≥ σ − ‖Pθk

− π( · ; J, δ)‖TV .

In other words, the statement “θk is an approximate value optimizer of U with value imprecision

2ǫ” can be made with confidence σ − ‖Pθk
− π( · ; J, δ)‖TV.

The proof follows by substituting α with the right-hand side of (5) in (8) and from the definition

of the total variation distance.
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Finally, Theorem 2 provides a criterion for selecting the parameter δ in π( · ; J, δ). For given

ǫ and α, there exists an optimal choice of δ which minimizes the value of J required to ensure

π(Θ(ǫ, α); J, δ) ≥ σ. The advantage of choosing the smallest J , consistent with the required

σ, is computational. The exponent J coincides with the number of Monte Carlo simulations of

random variable x which must be done at each step in Algorithm II. The smallest J reduces

also the peakedness of π(·; J, δ). In turn, reducing the peakedness of π(·; J, δ) will decrease the

number of steps required to achieve the desired reduction of ‖Pθk
− π( · ; J, δ)‖TV.

The optimal choice of δ is specified by the following result.

Proposition 5: For fixed ǫ > 0, α > 0, and σ ∈ (0.5, 1), the function

f(δ) =
1 + ǫ+ δ

ǫ

[

log
σ

1− σ
+ log

1

α
+ 2 log

1 + δ

δ

]

,

i.e. the right hand side of inequality (8), is convex in δ and attains its global minimum at the

unique solution (for δ) of the equation

log
1 + δ

δ
+ log

√
σ√

1− σ
+ log

1√
α

=
1 + ǫ+ δ

δ(1 + δ)
.

For example, if ǫ = 0.01, α = 0.01 and σ = 0.99, then one obtains δ = 0.15 and J = 1540.

Notice that the result of Proposition 5 holds also for inequality (9) provided that α in the

statement of Proposition 5 is replaced by the right hand side of (5).

IV. CONVERGENCE

In this section we illustrate the statement of Propositions 3 and 4. We base the discussion on the

simplest available result on the convergence of MCMC methods in total variation distance, taken

from [9]. In this case, the proposal distribution, denoted by its density q
θ̃
(θ|θk) in Algorithms I

and II, is independent of the current state θk.

Theorem 6 ( [9]): Let Pθk
be the distribution of the state of the chain in the Metropolis-

Hastings algorithm with an independent proposal distribution. Let π denote the target distribution.

Let p and q denote respectively the density of π and the density of the proposal distribution

and assume that p(θ) > 0, ∀θ ∈ Θ and q(θ) > 0, ∀θ ∈ Θ. If there exists M such that p(θ) ≤
Mq(θ) , ∀θ ∈ Θ, then

‖π − Pθk
‖

TV
≤

(

1− 1

M

)k

. (10)

Proof: See [9, Theorem 2.1], or [2, Theorem7.8].

Here, we chose q
θ̃

as the uniform distribution over Θ. Sampling using an independent uniform
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proposal distribution is a naı̈ve strategy in an MCMC approach and cannot be expected to

perform efficiently [2]. However, it allows us to present some simple illustrative examples where

convergence bounds can be derived with a few basic steps.

In some cases the naı̈ve strategy can produce approximate domain optimizers very efficiently.

One such case occurs under the assumption that the optimization criterion U(θ) has a ‘flat top’,

i.e. the set of global optimizers Θ∗ has non-zero Lebesgue measure. The same assumption has

been used in [21, Theorem 4.2] to obtain the strong convergence of simulated annealing on a

continuous domain. In this case, the application of Theorem 6 provides the following result.

Proposition 7: Let the notation and assumptions of Proposition 3 hold. In particular, assume

that θk is the state of the chain of the Metropolis-Hastings algorithm with independent uniform

proposal distribution. In addition, given ρ ∈ (0, 1), let σ = (1+ γ)ρ for some γ ∈ (0, 1−ρ

ρ
). Let

Θ∗ be the set of global optimizer of U and assume that λ(Θ∗) ≥ βλ(Θ) for some β ∈ (0, 1). If

k ≥ log γρ

log(1− β)
(11)

then Pθk
(Θ(ǫ, α); J, δ) ≥ ρ.

In (11), it is convenient to choose γ ≈ 1−ρ

ρ
. Hence, the number of iterations grows approximately

as − log(1 − ρ) = log( 1
1−ρ

) and − 1
log(1−β)

and is independent of ǫ and α. In Algorithm II the

total number of required samples of x is given by the number of iterations multiplied by J . In

this case, it can be shown that a nearly optimal choice is γ = 1
2
1−ρ

ρ
. Hence, using (8) for the

case of approximate domain optimization, we obtain that the required samples of x grow as

1
ǫ
, log 1

α
, and approximately as (log 1

1−ρ
)2. Instead, using (9) for the case of approximate value

optimization, we obtain that the required samples of x grow as 1
ǫ
log 1

ǫ
, (log 1

1−ρ
)2, logLR and n.

If the ‘flat top’ condition is not met it can be easily seen that the use of a uniform proposal

distribution can lead to an exponential number of iterations. In the general case, by applying

Theorem 6 we obtain the following result.

Proposition 8: Let the notation and assumptions of Proposition 3 hold. In particular, assume

that θk is the state of the chain of the Metropolis-Hastings algorithm with independent uniform

proposal distribution. In addition, given ρ ∈ (0, 1), let σ = (1 + γ)ρ for some γ ∈ (0, 1−ρ

ρ
). If

k ≥
(

1+δ
δ

)J
log

(

1
γρ

)

or, equivalently,

k ≥
[

(1 + γ)ρ

1− (1 + γ)ρ

1

α

(

1 + δ

δ

)2
]

1+ǫ+δ
ǫ

log( 1+δ
δ )

log
1

γρ
(12)

then Pθk
(Θ(ǫ, α); J, δ) ≥ ρ.
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Fig. 2. Function U(θ) (left panel) and its level sets (right panel). The 0.9 level set is highlighted as a dashed ellipse.

Hence, the number of iterations turns out to be exponential in 1
ǫ
. Therefore, using Theorem 6

with q
θ̃

as the independent uniform proposal distribution, the only general bounds that we can

guarantee are exponential.

V. NUMERICAL EXAMPLE

Let θ ∈ Θ = [−3, 3] × [−3, 3] and consider the function V (θ) = 3(1 − θ1)
2e−θ21−(θ2+1)2 −

10( θ1
5
−θ31−θ52)e

−θ21−θ22 − 1
3
e−(θ1+1)2−θ22 (the Matlab function peaks). We define the function U :

Θ → [0, 1] by U(θ) = |V (θ)|
maxθ′∈Θ |V (θ′)| . The scaling factor maxθ′∈Θ |V (θ′)| = 8.1062 and a Lipschitz

constant of U(θ), L = 1.725, were computed numerically using a grid on Θ. Multiplicative noise

was added using the function g(x, θ) = (1+x)U(θ) where x is normally distributed with mean

0 and variance 0.25. The objective is to maximize the expected value of g(x, θ) which is indeed

equal to U(θ). The function U and its level sets are shown in Fig. 2. The 0.9 level set, which

coincides with Θ∗(0.1), is highlighted in the figure.

The MCMC Algorithm II of Fig. 1 was applied to this function. The design parameter δ = 0.1

and an independent uniform proposal distribution q were used throughout. To demonstrate the

convergence of the algorithm, 2, 000 independent runs of the algorithm, of 10, 000 steps each,

were generated. We then computed the fraction of runs that found themselves in Θ∗(0.1) at

different time points; for simplicity we refer to this fraction as the ‘success rate’. In all cases

the success rate quickly settled to a steady state value, suggesting that the algorithm converged.

To demonstrate the bound of Proposition 4 the steady state success rate as a function of the

exponent J is reported in Fig. 3; more precisely, the figure shows the decay of 1 minus the
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Fig. 3. Left panel: Decay of (1− success rate) as a function of the exponent J . Empirical value (solid) and the bound based

on Proposition 4 (dashed). Right panel: Success rate for J = 100 at each step (solid) and the bound (10) (dashed). In both

panels the plots are in semi logarithmic scales.

steady state success rate as a function of J . The figure also shows the corresponding theoretical

bound based on Proposition 4. In the right panel of Fig. 3 we concentrate on the case J = 100

and plot the absolute value of the difference between the success rate at different time points

and the steady state success rate. According to Theorem 6, one would expect this difference to

decay to 0 geometrically at a rate 1 − 1
M

. For comparison purposes, the corresponding curve,

for the numerically estimated value M = 1475, is also plotted.

VI. CONCLUSIONS

In this paper, we have introduced a novel approach for obtaining rigorous finite-time guaran-

tees on the performance of MCMC algorithms in the optimization of functions of continuous

variables. In particular we have established the values of the the temperature parameter in the

target distribution which allow one to reach a solution, which is within the desired level of ap-

proximation with the desired confidence, in a finite number of steps. Our work was motivated by

the MCMC algorithm (Algorithm II), introduced in [13]–[15], for solving stochastic optimization

problems. Our results enable novel research on the development of efficient MCMC algorithms

for the solution of stochastic programming problems with rigorous finite-time guarantees. The

extended version of this paper [16] contains some observations on the computational complexity

of MCMC algorithm for optimization which can be drawn from our results, and a preliminary

comparison with some other approaches to stochastic optimization.



12

ACKNOWLEDGMENTS

Work supported by EPSRC, Grant EP/H021558/1 and EP/C014006/1, and by the European

Commission under projects HYGEIA FP6-NEST-4995 and iFly FP6-TREN-037180.

APPENDIX

Proof of Theorem 2: Let ᾱ ∈ (0, 1] and ρ ∈ (0, 1] be given numbers. To simplify the notation,

let Uδ(θ) := U(θ) + δ and let πδ be a normalized measure such that πδ(dθ) ∝ Uδ(θ)λ(dθ),

i.e. πδ(dθ) := π(dθ; 1, δ). In the first part of the proof we establish a lower bound on

π ({θ ∈ Θ | πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ}; J, δ) .

Let yᾱ := inf{y | πδ({θ ∈ Θ | Uδ(θ) ≤ y}) ≥ 1 − ᾱ}. To start with we show that the set

{θ ∈ Θ | πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ} coincides with {θ ∈ Θ | Uδ(θ) ≥ ρ yᾱ}. Notice

that the quantity πδ({θ ∈ Θ | Uδ(θ) ≤ y}) is a non decreasing right continuous function of y

because it has the form of a distribution function (see e.g. [32, p. 162], see also [4, Lemma

11.1]). Therefore we have πδ({θ ∈ Θ | Uδ(θ) ≤ yᾱ}) ≥ 1− ᾱ and

y ≥ ρ yᾱ ⇒ πδ({θ′ ∈ Θ | ρUδ(θ
′) ≤ y}) ≥ 1− ᾱ ⇒ πδ({θ′ ∈ Θ | ρUδ(θ

′) > y}) ≤ ᾱ .

Moreover,

y < ρ yᾱ ⇒ πδ({θ′ ∈ Θ | ρUδ(θ
′) ≤ y}) < 1− ᾱ ⇒ πδ({θ′ ∈ Θ | ρUδ(θ

′) > y}) > ᾱ

and taking the contrapositive one obtains πδ({θ′ ∈ Θ | ρUδ(θ
′) > y}) ≤ ᾱ ⇒ y ≥ ρ yᾱ.

Therefore {θ ∈ Θ | Uδ(θ) ≥ ρ yᾱ} = {θ ∈ Θ | πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ}.

We now derive a lower bound on π ({θ ∈ Θ | Uδ(θ) ≥ ρ yᾱ}; J, δ). Let us introduce the notation

Aᾱ := {θ ∈ Θ | Uδ(θ) < yᾱ}, Āᾱ := {θ ∈ Θ | Uδ(θ) ≥ yᾱ}, Bᾱ,ρ := {θ ∈ Θ | Uδ(θ) < ρyᾱ}
and B̄ᾱ,ρ := {θ ∈ Θ | Uδ(θ) ≥ ρ yᾱ}. Notice that Bᾱ,ρ ⊆ Aᾱ and Āᾱ ⊆ B̄ᾱ,ρ. The quantity

πδ({θ ∈ Θ | Uδ(θ) < y}) as a function of y is the left continuous version of πδ({θ ∈ Θ | Uδ(θ) ≤
y}) [32, p. 162]. Hence, the definition of yᾱ implies πδ(Aᾱ) ≤ 1 − ᾱ and πδ(Āᾱ) ≥ ᾱ. Notice

that

πδ(Aᾱ) ≤ 1− ᾱ ⇒ δλ(Aᾱ)
[∫

Θ
Uδ(θ)λ(dθ)

] ≤ 1− ᾱ because U(θ) ≥ 0 ∀θ ,

πδ(Āᾱ) ≥ ᾱ ⇒ (1 + δ)λ(Āᾱ)
[∫

Θ
Uδ(θ)λ(dθ)

] ≥ ᾱ because U(θ) ≤ 1 ∀θ .

Hence, λ(Āᾱ) > 0 and
λ(Aᾱ)

λ(Āᾱ)
≤ 1− ᾱ

ᾱ

1 + δ

δ
.
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Notice that λ(Āᾱ) > 0 implies λ(B̄ᾱ,ρ) > 0. We obtain

π ({θ ∈ Θ | Uδ(θ) ≥ ρ yᾱ}; J, δ) = π
(

B̄ᾱ,ρ; J, δ
)

=

∫

B̄ᾱ,ρ
Uδ(θ)

Jλ(dθ)
∫

Θ
Uδ(θ)Jλ(dθ)

=
1

1 +

∫

Bᾱ,ρ
Uδ(θ)

Jλ(dθ)
∫

B̄ᾱ,ρ
Uδ(θ)Jλ(dθ)

≥ 1

1 +

∫

Bᾱ,ρ
Uδ(θ)

Jλ(dθ)
∫

Āᾱ
Uδ(θ)Jλ(dθ)

≥ 1

1 +
ρ JyJᾱ
yJᾱ

λ(Bᾱ,ρ)

λ(Āᾱ)

≥ 1

1 + ρ J λ(Aᾱ)

λ(Āᾱ)

≥ 1

1 + ρ J 1− ᾱ

ᾱ

1 + δ

δ

.

Since {θ ∈ Θ | Uδ(θ) ≥ ρ yᾱ} = {θ ∈ Θ | πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ} the first part

of the proof is complete.

In the second part of the proof we show that the set {θ ∈ Θ | πδ({θ′ ∈ Θ | ρUδ(θ
′) >

Uδ(θ)}) ≤ ᾱ} is contained in the set of approximate domain optimizers of U with value

imprecision ǫ̃ := (ρ−1 − 1)(1 + δ) and residual domain α̃ := 1+δ
ǫ̃+δ

ᾱ. Hence, we show that

{θ ∈ Θ | πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ} ⊆

{θ ∈ Θ | λ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}) ≤ α̃ λ(Θ)} .

We have U(θ′) > U(θ) + ǫ̃ ⇔ ρUδ(θ
′) > ρ [Uδ(θ) + ǫ̃] ⇒ ρUδ(θ

′) > Uδ(θ) which is

proven by noticing that ρ [Uδ(θ) + ǫ̃] ≥ Uδ(θ) ⇔ (1 − ρ) ≥ U(θ)(1 − ρ) and U(θ) ∈ [0, 1].

Hence, {θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)} ⊇ {θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}. Therefore,

πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ ⇒ πδ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}) ≤ ᾱ .

Let Qθ,ǫ̃ := {θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃} and notice that

πδ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}) =

∫

Qθ,ǫ̃

U(θ′)λ(dθ′) + δλ(Qθ,ǫ̃)

∫

Θ

U(θ′)λ(dθ′) + δλ(Θ)
.
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We obtain

πδ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}) ≤ ᾱ ⇒ ǫ̃ λ(Qθ,ǫ̃) + δλ(Qθ,ǫ̃) ≤ ᾱ(1 + δ)λ(Θ)

⇒ λ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}) ≤ α̃ λ(Θ) .

Hence we can conclude that

πδ({θ′ ∈ Θ | ρUδ(θ
′) > Uδ(θ)}) ≤ ᾱ ⇒ λ({θ′ ∈ Θ | U(θ′) > U(θ) + ǫ̃}) ≤ α̃ λ(Θ)

and the second part of the proof is complete.

We have shown that given ᾱ ∈ (0, 1], ρ ∈ (0, 1], ǫ̃ := (ρ−1 − 1)(1 + δ) and α̃ := 1+δ
ǫ̃+δ

ᾱ, then

π (Θ(ǫ̃, α̃); J, δ) ≥ 1

1 + ρ J 1− ᾱ

ᾱ

1 + δ

δ

=
1

1 +

[

1 + δ

ǫ̃+ 1 + δ

]J [
1

α̃

1 + δ

ǫ̃+ δ
− 1

]

1 + δ

δ

.

Notice that ǫ̃ ∈ [0, 1] and α̃ ∈ (0, 1] are linked through a bijective relation to ρ ∈ [1+δ
2+δ

, 1] and

ᾱ ∈ (0, ǫ̃+δ
1+δ

]. Hence, the statement of the theorem is eventually obtained by setting the desired

ǫ̃ = ǫ and α̃ = α in the above inequality.
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