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Abstract— The purpose of this paper is to continue to
develop the recently introduced concept of aregular positive-
real function and its application to the classification of low-
complexity two-terminal networks. This paper studies five-and
six-element series-parallel networks with three reactiveele-
ments and presents a complete characterisation and graphical
representation of the realisability conditions for these networks.
The results are motivated by an approach to passive mechanical
control which makes use of the inerter device.

I. I NTRODUCTION

A famous theorem in electrical networks by Bott and
Duffin [1] showed that any positive-real function could
be realised as the driving-point immittance of a network
consisting of resistors, capacitors and inductors only. The ap-
parent non-minimality of the construction has subsequently
intrigued many researchers and there were a number of
important papers which followed up on this question, e.g. [2],
[3], [4], [5]. Interest in the topic lost momentum in the early
1970s due to the growing importance of integrated circuits.

Recently, a new network element (the inerter) was intro-
duced for mechanical control [6] which has revived interest
in passive network realisations. The inerter is a mechanical
two-terminal element with the property that the applied force
at the terminals is proportional to the relative acceleration
across the terminals. Applications of the method to vehicle
suspension [7], [8], control of motorcycle steering insta-
bilities [9], [10] and vibration absorption [6] have been
identified. The inerter has been successfully deployed in
Formula One racing since 2005 [11].

For mechanical realisations, minimising network complex-
ity is important. As such, there is fresh motivation for a sys-
tematic classification of the realisability conditions of simple
networks. Within the electrical circuit literature, alongside
the powerful and general synthesis results of Cauer, Foster,
Brune, Bott-Duffin, Darlington, there was a long-running
attempt to classify the realisability condition for simple
networks by means of enumeration [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22]. Many partial results
were established but a complete picture was never obtained,
even for the apparently simple case of a biquadratic.

The present paper is a successor to [23] which formalised
the concept of aregular positive real function, introduced
the terminology of a network quartet, and gave a complete
reworking and characterisation of the class of transformerless
networks containing two reactive elements. The present paper
considers five- and six-element series-parallel networks with
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three reactive elements which draws on and reworks results
of Foster, Ladenheim, Vasiliu, Reichert and others [24],
[25]. Among the networks with three reactive elements it is
verified that there is one network quartet with five elements
and four network quartets with six elements which may
realise non-regular positive-real biquadratic functions. In
each case, the non-regular realisable regions for a biquadratic
function in canonical form are determined. It is shown that
the non-regular realisable regions for three of the six-element
network quartets are identical and have a boundary which
coincides with the realisability curve for the five-element
quartet. The fourth six-element quartet is shown to realise
a different non-regular region from the other quartets.

II. REGULAR POSITIVE-REAL FUNCTIONS

In this section we recall the concept of regularity and its
properties given in [23].

Definition: A positive-real functionZ(s) is defined to be
regular if the smallest value ofRe (Z(jω)) or Re

(

Z−1(jω)
)

occurs atω = 0 or ω = ∞.
Lemma 1:Let Z(s) be a regular positive-real function.

ThenαZ (s), Z (βs), Z
(

s−1
)

, Z−1(s) are all regular, where
α, β > 0.

Lemma 2:Let Z(s) be a regular positive-real function.
ThenZ(s) + R andZ−1(s) + R−1 are both regular, where
R is nonnegative.

Lemmas 1 and 2 imply that if a network can only realise
regular immittances, then so will the dual network (if it
exists), the network obtained by replacing inductors with
capacitors of reciprocal values (and vice versa) and the
network obtained by adding a resistor in series or in parallel
with the original one.

The next lemma follows from the fact that the impedance
Z (s) or admittanceY (s) of any network that has all reactive
elements of the same kind hasRe (Z(jω)) andRe (Y (jω))
monotonic ([26, Chapter 2.2]).

Lemma 3:Any network that has all reactive elements of
the same kind can only realise regular immittances.

Lemma 4:Any network that has a path between the two
external terminals1 and1′ or a cut set ([27]) that places1
and1′ in different connected parts consisting of one type of
reactive element can only realise regular immittances.

We now focus attention on biquadratic positive-real func-
tions

Z(s) =
As2 + Bs + C

Ds2 + Es + F
, (1)



where A, B, C, D, E, F ≥ 0. It is well known [14], [28],
[29] that Z (s) is positive real if and only if

σ = BE −
(√

AF −
√

CD
)2

≥ 0. (2)

We will make use of the resultant of the numerator and
denomerator in (1) which is given by

K = (AF − CD)2 − (AE − BD)(BF − CE).

Lemma 5:A positive-real biquadratic impedance (1) is
regular if and only if the conditions of at least one of the
following four cases are satisfied:

Case 1.AF − CD ≥ 0 and
λ1 = E (BF − CE) − F (AF − CD) ≥ 0,

Case 2.AF − CD ≥ 0 and
λ2 = B (AE − BD) − A (AF − CD) ≥ 0,

Case 3.AF − CD ≤ 0 and
λ3 = D (AF − CD) − E (AE − BD) ≥ 0,

Case 4.AF − CD ≤ 0 and
λ4 = C (AF − CD) − B (BF − CE) ≥ 0.

Lemma 6:A positive-real biquadratic impedance (1) with
Z (0) = Z (∞) 6= 0,∞ (which impliesAF − CD = 0) is
regular.

Lemma 7:A positive-real biquadratic impedance (1) with
the resultantK ≤ 0 has Re (Z(jω)) and Re (Y (jω))
monotonic, hence is regular.

Lemma 8:A positive-real biquadratic impedance (1) with
any of the parametersA, B, C, D, E andF equals zero is
regular. Moreover, any such impedance can be realised by
a series-parallel network with at most two reactive elements
and two resistive elements.

III. A CANONICAL FORM FOR BIQUADRATICS AND

NETWORK QUARTETS

The classification of networks is facilitated by the follow-
ing transformations on the impedanceZ (s):

1) Multiplication by a constant multiplierα,
2) Frequency scaling:s → βs,
3) Frequency inversion:s → s−1,
4) Impedance inversion:Z → Z−1.

Based on Lemma 8, it is clear that we can restrict further
analysis of the synthesis problem for biquadratics (1) to
the case thatA, B, C, D, E, F > 0. Using the first two
transformations,Z (s) can be reduced to a canonical form

Zc(s) =
s2 + 2U

√
Ws + W

s2 +
(

2V/
√

W
)

s + 1/W
, (U, V, W > 0) . (3)

For the realisation of the biquadratic, it is sufficient to restrict
attention to the class in (3). This canonical form was first
considered in [18].

Next we observe that frequency inversion
(

s ↔ s−1
)

cor-
responds to the transformationW ↔ W−1 in the canonical
form and impedance inversion (duality) corresponds to the
transformations:U ↔ V , W ↔ W−1. This is illustrated in
Fig. 1 where the four networks Na, Nb, Nc, Nd are related
by interchange of inductors and capacitors (denoted bys ↔

Fig. 1. Transformations relating members of a network quartet and
corresponding transformation in the canonical form (3).

s−1) and duality. Such a family of 4 related networks has
appeared in [22] with the terminology “Untergruppe”.

It follows from (2) thatZc (s) is positive real if and only
if

σc = 4UV + 2 − (
1

W
+ W ) ≥ 0.

The resultant ofZc (s) is

Kc = 4U2 + 4V 2 − 4UV (
1

W
+ W ) + (

1

W
− W )2.

For any polynomialρ (U, V, W ) we introduce the nota-
tion ρ∗ (U, V, W ) = ρ

(

U, V, W−1
)

and ρ† (U, V, W ) =
ρ (V, U, W ). We observe thatσ∗

c = σ†
c = σc and K∗

c =
K†

c = Kc. Let

λc = 4UV − 4V 2W − (
1

W
− W ).

We can now restate Lemmas 5–7 for the canonical form (3):
Lemma 9:Let Zc (s) be a positive-real biquadratic de-

fined in (3). Then:

1) Zc (s) is regular if and only if at least one of the
following four conditions is satisfied:

Case 1.W ≤ 1 andλc ≥ 0,
Case 2.W ≤ 1 andλ†

c ≥ 0,
Case 3.W ≥ 1 andλ∗

c ≥ 0,
Case 4.W ≥ 1 andλ∗†

c
≥ 0.

2) WhenW = 1, Zc (s) is regular.
3) WhenKc ≤ 0, Zc (s) is regular.
Lemma 9-1) defines theregular regionof a biquadratic in

the (U, V )-plane, as shown in Fig. 2. In [23] the following
theorem was shown.

Theorem 1:A biquadratic impedance (1) can be realised
by series-parallel five-element networks with two reactive
elements if and only if it is regular.

IV. F IVE-ELEMENT THREE-REACTIVE ELEMENT

SYNTHESIS OFTHE BIQUADRATIC

In [17], Ladenheim claims there are eight series-parallel
networks which can realise classes of biquadratic immit-
tances which otherwise would require a full Bott-Duffin
synthesis. Vasiliu [19] later shows that four of these networks
can be realised by networks of two reactive and three
resistive elements. In [17], [19] it is not shown whether the
remaining four networks can realise biquadratic immittances
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Fig. 2. The regular impedances of (3) withW ∈ (0, 1).

which cannot be realised in a simpler manner. Here we
provide the range of parameter values corresponding to
non-regular biquadratics in the canonical form which are
realisable by this network quartet (Theorem 3 and Table I).

Theorem 2:All series-parallel networks with three re-
active and two resistive elements can only realise regular
immittances except for the network quartet of Fig. 3.

Proof: The procedure used to reduce to eight series-
parallel networks is not described in [17]. A complete
elimination process based on the regularity concept is given
in [30].

It can be calculated that the positive real biquadratic
impedance (1) with all parameters positive and the resultant
K 6= 0 can be realised as in Fig. 3(a) withR1, R2, L1, C1

andC2 positive and finite, if and only if

D (BE − CD)
2 − AE2 (BE − CD) + A2E2F = 0 (4)

(the extra inequalityBE − CD > 0 given in [17] for
this network can be seen to be redundant). The realisability
conditions for the other three networks can be obtained by
the transformationss ↔ s−1, Z ↔ Z−1. The realisability
condition of the network Fig. 3(a) for the canonical form (3)
can be derived from (4), which is:

γ3 = γ3+γ3− = 16 U2W 2V 2 − 8 UW
(

2 U2W 2 + 1
)

V

+ 4 U2W 2 + 4 U2W 4 + 1 = 0,

where

γ3± = 4 V WU − 2 W 2

(

U2 ± U
√

U2 − 1
)

− 1.

It is interesting to note that a necessary condition for real-
isability in this quartet is thatU ≥ 1 or V ≥ 1. We now
describe explicitly the non-regular realisable regions inthe
(U, V )-plane for this quartet.

Theorem 3:The impedance (3) can be realised by the
network shown in Fig. 3(a) (Fig. 3(b)) if and only if(U, V )

R1

C1

C2R2

L1

dual

dual

s↔s
−1

s↔s
−1

(a)

(b)(c)

(d)

Fig. 3. The series-parallel three-reactive five-element network quartet that
can realise non-regular biquadratics.

TABLE I

THE REALISABILITY CONDITIONS OF THE NETWORK QUARTET OFFIG. 3

FOR A BIQUADRATIC IMPEDANCE IN THE CANONICAL FORM (3).

Networks Necessary and Suffi-
cient conditions for a
non-regular (3) to be
realisable

Range of W for
which non-regular
region is non-empty

Fig. 3(a) γ3 = 0 W ∈ (0, 0.3702)

Fig. 3(b) γ†
3

= 0 W ∈ (0, 0.3702)
Fig. 3(c) γ∗

3
= 0 W ∈ (1/0.3702,∞)

Fig. 3(d) γ∗†
3

= 0 W ∈ (1/0.3702,∞)

is on the curveγ3 = 0 (γ†
3 = 0). Furthermore, (3) can only

be non-regular whenW ∈ (0, 0.3702).
Proof: See [31].

The conditions for a non-regular biquadratic impedance in
the canonical form (3) to be realisable by the network quartet
of Fig. 3 are summarised in Table I.

V. SIX -ELEMENT THREE-REACTIVE ELEMENT

SYNTHESIS OF THEBIQUADRATIC

Vasiliu [20] claims that, there are in total 16 series-parallel
networks with three reactive elements, which can realise
biquadratic immittances which otherwise would require a
full Bott-Duffin synthesis. In this section, a restudy of this
topic based on the concept of regular positive-real functions
is presented. We go beyond [20] to identify the non-regular
realisable regions in the(U, V )-plane for each quartet. We
will show that the non-regular realisable regions are identical
for three of the quartets.

A. Elimination of the Networks that Can Only Realise Reg-
ular Biquadratics

Lemma 10:The network shown in Fig. 4 can only realise
regular biquadratic impedances (1).

Proof: See [32].
Lemma 11:The networks shown in Fig. 5 can only realise

regular biquadratic impedances (1).
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Fig. 4. The series-parallel six-element network with threereactive elements
which based on Lemma 10 can only realise regular biquadratics.
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Fig. 5. Three series-parallel six-element networks with three reactive
elements which based on Lemma 11 can only realise regular biquadratics.

Proof: See [32].
Theorem 4:A non-regular biquadratic immittance can be

realised by a series-parallel network with three reactive and
three resistive elements if and only if it is realisable by some
network in the four network quartets of Fig. 6.

Proof: The proof makes use of Lemmas 10, 11 and the
properties of regularity introduced in Section II. The detailed
proof is provided in [30].

B. The Non-Regular Realisable Region of the Network Quar-
tet Fig. 6-I, II, III

By the method introduced in [20], the realisability condi-
tions of the network Fig. 6-I(a) for (1) can be derived, which
are:

B2 − 4 CA ≥ 0 (5)

and

C (E − Cµ)
2

> F (B (E − Cµ) − AF ) > 0, (6)

where

µ =
D

(

B ±
√

B2 − 4 AC
)

2AC
. (7)

It can be calculated thatλc = 0 (λ∗
c

= 0) is equivalent to
eitherλc− = 0 or λc+ = 0 (λ∗

c− = 0 or λ∗
c+ = 0), where

λc± = 2V W − (U ±
√

U2 − 1 + W 2).

Lemma 12:Any (U, V, W ) satisfying W < 1, U ≥ 1,
λc− > 0 (W > 1, U ≥ 1, λ∗

c− > 0) is inside the regular
region.

Proof: See [32].
Theorem 5:A non-regular biquadratic impedance (3) is

realisable by the network of Fig. 6-I(a) if and only ifU ≥ 1,
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Fig. 6. The four network quartets of the series-parallel three-reactive six-
element networks that can realise non-regular biquadratics.
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Fig. 7. The non-regular impedance (3) that can be realised bythe networks
of Figs. 6-I(a), II(a) and III(a) withW ∈ (0, 0.3702).

γ3− > 0. (See hatched region of Fig. 7.) Moreover, this non-
regular region is non-empty if and only ifW ∈ (0, 0.3702).

Proof: We first rewrite the realisability conditions for
the network of Fig. 6-I(a) for the canonical form (3). Note
that (5) is equivalent toU ≥ 1 and the right hand inequality
in (6) is equivalent toγ3− > 0 or γ3+ > 0, depending on
whether the− or + sign is chosen forµ in (7).

WhenW < 1, we first consider the case that negative sign
is chosen forµ. The left hand inequality in (6) is equivalent
to γ6 = γ6+γ6− > 0, where

γ6± = 2V W − W 2

(

U −
√

U2 − 1
)

−
(

U ±
√

U2 − 1
)

,

which is equivalent toU ≥ 1, (U, V ) is aboveγ6+ = 0 or
belowγ6− = 0. It can be calculated that the resultant of the
polynomialsγ6− andλc− is

2W
(

W 2

(

√

U2 − 1 − U
)

+
√

U2 − 1 −
√

U2 − 1 + W 2

)

which cannot equal zero. Further, it can be checked that
the curveγ6− = 0 is always above the curveλc− = 0
(see Fig. 7). Sinceγ6+ ≤ γ6−, if (U, V ) is in the non-
regular region forW < 1, γ6 > 0 is equivalent toγ6− < 0
(by Lemma 12), which is then redundant. For the case that
positive sign is chosen forµ, sinceγ3+ > 0 impliesγ3− > 0
we do not find any additional non-regular region in the
(U, V )-plane. Based on Theorem 3 we know thatγ3− = 0
can be outside of the regular region withW < 1 if and
only if W ∈ (0, 0.3702). This proves the result for the case
W < 1.

WhenW > 1, it follows from the proof of Theorem 3 that
the curvesγ3± = 0 are inside the regular regionλ∗

c > 0.
Then based on Lemma 12, neitherγ3− > 0 nor γ3+ > 0
covers any non-regular region withW > 1.

The realisability conditions for the biquadratic (1) for the
networks of Figs. 6-II(c) and III(c) are given in [20]. It can

TABLE II

THE REALISABILITY CONDITIONS OF THE NETWORK QUARTETS OF

FIG. 6-I,II,III FOR A BIQUADRATIC IMPEDANCE IN THE CANONICAL

FORM (3).

Networks Nec. and Suff.
conditions for a
non-regular (3) to
be realisable

Range of W for which
non-regular region is non-
empty

Fig. 6-I,II,III(a) U ≥ 1, γ3− > 0 W ∈ (0, 0.3702)

Fig. 6-I,II,III(b) V ≥ 1, γ†
3− > 0 W ∈ (0, 0.3702)

Fig. 6-I,II,III(c) U ≥ 1, γ∗
3− > 0 W ∈ (1/0.3702,∞)

Fig. 6-I,II,III(d) V ≥ 1, γ∗†
3− > 0 W ∈ (1/0.3702,∞)

TABLE III

THE REALISABILITY CONDITIONS OF THE NETWORK QUARTET OF

FIG. 6-IV FOR A BIQUADRATIC IMPEDANCE IN THE CANONICAL FORM

(3).

Networks Realisability Conditions

Fig. 6-IV(a) {(U, V )|∃x ∈
“

0, min(1, W 2, UW

V
)
”

: f3(x) = 0}

Fig. 6-IV(b) {(U, V )|∃x ∈
“

0, min(1, W 2, V W

U
)
”

: f†
3
(x) = 0}

Fig. 6-IV(c) {(U, V )|∃x ∈
“

0, min(1, 1

W2
, U

V W
)
”

: f∗
3
(x) = 0}

Fig. 6-IV(d) {(U, V )|∃x ∈
“

0, min(1, 1

W2
, V

UW
)
”

: f∗†
3

(x) = 0}

be checked that the realisable region in the(U, V )-plane for
the canonical form (3) of the network quartets of Figs. 6-II
and III differ and are also different from the network quartet
of Fig. 6-I. However it turns out that the set of non-regular
biquadratics which are realisable by these network quartets
is the same. The conditions for a non-regular biquadratic
impedance (3) to be realisable by the network quartets of
Fig. 6-I, II, III are summarised in Table II.

C. The Non-Regular Realisable Region of the Network Quar-
tet Fig. 6-IV

For any polynomial f(x, U, V, W ) we introduce
the notation f∗(x, U, V, W ) = f(x, U, V, W−1), and
f †(x, U, V, W ) = f(x, V, U, W ). The complete realisability
conditions of the network quartet of Fig. 6-IV for
the biquadratic canonical form (3) can be deduced
from [20]. These are summarised in Table III, where
f3(x) = x3 + l1x

2 + l2x − γ3 = 0, and

l1 = 12V 2 − 16V 4 − 3 − 4V 2W 2 + 16UV 3W − 8V UW,

l2 = 8U2W 2 − 8UV W (4V UW − W 2 + 1 − 4V 2)

− 8V 2 + 3.

The conditions of Table III can be made more explicit
using the method of sturm chains, though the polynomials
in the sturm sequence are quite complex. Fig. 8 shows
the realisable regions in the(U, V )-plane whenW equals
0.35 for the network of Fig. 6-IV(a). Part of the boundary
curve for the non-regular realisable region for the network
of Fig. 6-IV(a) is determined by the zero set of a high order
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Fig. 8. The whole region in the(U, V )-plane that can be realised by the
network of Fig. 6-IV(a) withW = 0.35.

polynomialγ8 involving U , V andW . It is to be noted that
the non-regular regions which are realisable by the quartet
of Fig. 6-IV are different from the previous three. The full
characterisation of the realisable regions for this quartet are
given in [32].

VI. CONCLUSION

This paper studies five- and six-element series-parallel
two-terminal networks with three reactive elements and
presents a complete characterisation and graphical represen-
tation of the realisable conditions for these networks. It is
shown that the non-regular realisable regions for three of
the six-element network quartets are identical and have a
boundary which coincides with the realisability curve for
the five-element quartet. The fourth six-element quartet is
shown to realise a different non-regular region from the other
quartets.
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vol. 23, pp. 201–208, Apr. 1969.

[19] C. G. Vasiliu, “Three-reactive five-element structures,” IEEE Trans.
Circuit Theory, vol. CT-16, p. 99, Feb. 1969.

[20] ——, “Series-parallel six-element synthesis of the biquadratic
impedances,”IEEE Trans. on Circuit Theory, pp. 115–121, 1970.

[21] ——, “Correction to ‘series-parallel six-element synthesis of the
biquadratic impedances’,” p. 207, November 1970.

[22] G. Dittmer, “Zur realisierung von RLC-Brückenzweipolen mit zwei
Reaktanzen und mehr als drei Widerständen (on the realisation of
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