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Abstract— The purpose of this paper is to formalise the con- The present paper formalises the concept ofegular
cept of aregular positive-real function and to demonstrate its positive-real function and demonstrates its usefulnesgien
usefulness in the classification of low-complexity two-teninal 5 ssification of low-complexity two-terminal networks. A

networks. We will develop a series of lemmas characterising . £l il be devel d to aid in this classi
the basic properties of regularity. We will give a simple prof series of lemmas will be developed to aid In this classi-

that all five-element series-parallel networks with two reative ~ fication. This paper also introduces the terminology of a
elements are regular, and we will show that there are only network quartetwhich consists of four networks related by
two bridge-networks with two reactive elements which may be  frequency inversion and duality. It will be seen that thessla
non-regular. We will discuss the class of two-terminal netwrks ¢ raqylar biquadratic functions can be realised with two
with two reactive elements and an arbitrary number of resistve o
elements and highlight a theorem of Reichert. The results a network quartetg and.that many other networks.fall within
motivated by an approach to passive mechanical control whit ~ the same class in a simple manner. Among the five-element
makes use of the inerter device. networks with two reactive elements it will be shown that
there is only one network quartet which contains two bridge
) i networks that can realise non-regular immittances.

A famous theorem in electrical networks by Bott and The conditions for a biquadratic positive-real function to
Duffin [1] showed that any positive-real function couldpe regular can be found in the paper of Vasiliu [15]. However,
be realised as the driving-point immittance of a networkne present paper goes further in formalising this concept
consisting of resistors, capacitors and inductors onlg dx 59 exploring its properties in a systematic manner. The
parent non-minimality of the construction has subseqyenttoncept illuminates results of Foster, Ladenheim and Lin
intrigued many researchers and there were a number ghq connects to the important theorem of Reichert [14]. The
important papers which followed up on this question, e.geoncept of a network quartet has appeared in the German

[2], [3]. Interest in the topic lost momentum in the earlyjjierature with the terminology “Untergruppe” [17].
1970s due to the growing importance of integrated circuits.

Recently, a new network element (the inerter) was introducd!- THE CONCEPT OFREGULARITY AND ITS PROPERTIES
for mechanical control [4] which has revived interest in Definition: A positive-real function Z(s) is defined
passive network realisations. The inerter is a mechani@l t to be regular if the smallest value ofRe(Z(jw)) or
terminal element with the property that the applied forc®e (Z_l(jw)) occurs atw = 0 or w = oc.

at the terminals is proportional to the relative accelerati Lemma 1:Let Z(s) be a regular positive-real function.
across the terminals. Applications of the method to vehiclghen oz (s), Z (8~ 's), Z (s7*), Z7!(s) are all regular,
suspension [5], [6], control of motorcycle steering indtab wherea, 3 > 0.

I. INTRODUCTION

ties [7], [8] and vibration absorption [4] have been ideatifi Proof: Obvious. [ ]
The inerter has been successfully deployed in Formula OneLemma 2:Let Z(s) be a regular positive-real function.
racing since 2005 [9]. ThenZ(s) + R andZ~!(s) + R~! are both regular, where

For mechanical realisations, minimising network complex® > 0.
ity is important. As such, a systematic classification of the  Proof: ConsiderZ(s) + R. If Re (Z(jw)) achieves its
realisability conditions of simple networks is needed.Wit minimum whenw = 0 or w = co, the conclusion is trivial.
the electrical circuit literature there was an attempt by &et us assume thdte (Z*l(jw)) achieve its minimum at
number of authors in the 1960s and early 1970s to carry out = 0. Let Z~!(jw) = Yr(jw) + jY1(jw), whereYg, Y;
such a classification [10], [11], [12], [13], [14], [15], [16 are real functions. By assumptioFir(0) < Yz (jw) for all
Many partial results were established but a complete gcturw andY;(0) = 0. Then
was never obtained, even for the apparently simple case of ) .

a biguadratic. Today, this literature is not easy to master, Re ((Z(Jw) +R) )

part because there is no convincing summary of the results R (Yr(jw) (Ya(jw) + R™Y) + Yi(jw)?)

that were obtained. This paper represents a fresh look at = ; 132 g

this topic and represents an attempt to rework, simplify and (Ya(jw) + R71)" + Yi(jw)

generalise existing results and provide an accessiblg entr LRU“’)
point into this field. ~ Yr(jw)+ R1
R_IYR(O)

= Re ((Z(O) +R)‘1) :
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So Z(s) + R is regular. A similar argument holds if Proof: If K = 0, the numerator and denominator
Re (Z~'(jw)) achieves its minimum aty = co. The case have a factor in common, and so the function would reduce
of Z71(s) + R~1 is similar. B immediately to no more than a bilinear function, which is

Lemmas 1 and 2 imply that if a network can only realisgegular by our definition. Foster [10], [11] points out thft i
regular immittances, then so will the dual network (if it/ is negative, the reactive elements are of the same kind.
exists), the network obtained by exchanging the inducto8ased on Lemma 3, impedance (1) must be regular. m
(springs) and capacitors (inerters) and the network obthin Lemma 8: A positive-real biquadratic impedance (1) with
by adding a resistor (damper) in series or in parallel with thany of the parameterd, B, C, D, E and F equals zero is
original one. regular. Moreover, any such impedance can be realised by

Lemma 3:The positive-real driving pointimpedangds)  a series-parallel network with at most two reactive element
and admittancé’(s) of any network that has all reactive ele-and two resistive elements.

ments of the same kind satisfiBs (Z (jw)) andRe (Y (jw)) Proof: If B or E equals zero, since (2) holddF =
being monotonic ([18, Chapter 2.2]) and hence can onl¢'D. Based on Lemma 6, (1) is always regular. If any/f
realise regular immittances. C, D, F equals zero, this follows since either the impedance

Lemma 4:Any network that has a patfi, 1’) or cut set or the admittance has a zerosat= 0 or co. In any of the
(1,1’) consisting of one type of reactive elements can onlpbove cases the Foster preamble will result in a network of
realise regular immittancesl @nd 1’ are the two external the stated form. [ ]
terminals of the network; patfi, 1’) refers to a path between

these terminals, and cut s@t, 1') is a cut set which places ~ !ll- A CANONICAL FORM FOR BIQUADRATICS AND

1 and1’ in different connected parts.) NETWORK QUARTETS
Proof: This follows since either the impedance or the The classification of networks is facilitated by the follow-
admittance has a zero at= 0 or co. B ing transformations on the impedanZgs):
We now focus attention on biquadratic positive-real func- 1) Extraction of a constant multiplier,
tions i -1
As? + Bs 4 C g) Frequency §cal|ngs — 0 751,
Z(s) = ——2T~ (1) ) Frequency inversiors — s~ 1,
Ds*+ Es+ F 4) Impedance inversionZ — Z~1.
where A, B,C, D, E,F > 0. It can be shown tha¥ (s) is In network realisations, the first two transformations cor-
positive real if and only if respond to element scaling, the third to an interchange of
5 inductors (springs) and capacitors (inerters), and thetliou
o =BE — (\/ﬁ - \/@) > 0. (2) to taking the network dual. We remark that a network has a

dual if and only if it is planar. Furthermore, a two-terminal

Lemma 5:A positive-real biquadratic impedance (1) isnetwork with seven branches or less is guaranteed to be
regular if and only if at least one of the following four planar [19].

conditions is satisfied: Based on Lemma 8, without loss of generality, we can
Case 1.AF — CD > 0 and assume thatd, B,C, D, E, F > 0 for (1). Using the first
A\ = E(BF —CE) — F(AF —CD) >0, two transformationsZ (s) can be reduced to a canonical
Case 2.AF —CD >0 and form
Case 3.AF — CD <0 and Ze(s) = — LUV, W >0) (3)
A3 = D(AF — CD) — E(AE — BD) >0, s +(2V/VW)S+1/W
Case 4.AF — CD <0 and . . o
Ay = C(AZ;— CD) — B(BF — CE) >0 wherea = A/D andjg = {/AD/ (CF). ltis easily verified

Proof: Without loss of generality, let us assumethat W = Cp?/A = Dp2/F, U = Bp/ (QA\/W)’
Re (Z(jw)) achieves its minimum whemw = 0. This is VvV = EgyW/ (2D). Clearly, any circuit that realises.. (s)
equivalent taZ(s) — Z(0) being positive-real, which happenswill also realiseZ (s) after the appropriate transformation of
if and only if the conditions of Case 1 are satisfied. Similathe element$R — aR,L — 3L/a,C — aC/(3). Thus, for
arguments hold for the other three cases. B the realisation of the biquadratic, it is sufficient to restr
Lemma 6:A positive-real biquadratic impedance (1) withattention to the class in (3). This canonical form was first
Z(0) = Z (00) # 0,00 (which impliesAF — CD = 0) is  considered in [14].
regular. Next we observe that frequency inversipn— s—!) cor-
Proof: It can be seem from Lemma 5 that whdi” —  responds to the transformatidii — W ~! in the canonical
CD =0, at least two of the cases must be satisfied. B form and impedance inversion (duality) corresponds to the
Lemma 7:A positive-real biquadratic impedance (1) withtransformationsi/ — V, W — W~1. This means that, if
the resultank = (AF —CD)?—(AE—BD)(BF—-CE) < the realisability conditions in terms &f, V, W are known for
0 can be realised by at most one kind of reactive elemerd, given network, they can be written down routinely for a
hence is regular. quartet of related networks. This is illustrated in Fig. lend
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Fig. 1. Transformations relating members of a network eart
Ae >0
the four networks Iy, Ny, N., Ny are related by interchange
of inductors (springs) and capacitors (inerters) (dendtgd o "o
. . . Oc e =
s « s~ 1) and duality, and the corresponding transformations
of U, V, W in the canonical form. 0 7e=0

From the above it is clear that the setlafl/, W which can
be realised by a quartet of networks is invariant under both
transformationst/ < V andW « W 1. It is obvious from Fig. 2. The regular impedances of (3) withf € (0,1).
Lemma 1 that the transformations 1) — 4) do not change the
regularity of a given impedance, and if one of the networks

in a network quartet can only realise regular immittances, &, > 0. We call the region withe; > 0 or e; > 0 the

will the other networks in this quartet. regular regionwith 1 < 1. This plot can also be found in
It follows from (2) thatZ. (s) is positive real if and only [14]. For the caséV > 1, we obtain a plot which is visually
if ) identical with curves generated by and ¢} instead ofe,
o.=40V +2—(—=+W) >0. andes. Theregular regionwith W > 1 is defined bye; > 0
w or es > 0.
The resultant ofZ,. (s) is
K. =4U% +4V? — 4UV(% + W)+ (% - W) IV. FIVE-ELEMENT TWO-REACTIVE ELEMENT

. . . SYNTHESIS OF THE BIQUADRATIC
For any polynomiap (U, V, W) we introduce the notation

p* (U,V,W) = p (U,V,IW~!). We can now restate Lemmas
5-7 for the canonical form (3):

f Lzmmagg:_lljﬁt Z_C (s) be a positive-real biquadratic de- Lemma 10:The network quartet in Fig. 3 (which contains
ined in ( )'_ en: _ _ only two distinct networks) with all elements positive and
1) Zc(s) is regular if and only if at least one of the finjte can only realise regular immittances.

following four conditions is satisfied: Proof: The impedance of the network shown in
Case L.W <1and Fig. 3(a) can be calculated to be

6 =AUV — 4AV2W — (& — W) >0,
Case 2.W <1 and

e = AUV — AU?W — (
Case 3.W > 1 andej > 0,
Case 4.W > 1 ande; > 0.

A. Series-Parallel Networks

L101R252 + (R1R201 + Ll) s+ Ry
W) =0, (5) Ci1L1s?+Ci (R1 + Ra)s+1 )

L
W

: Comparing (1) with (4) we obtaik A = L1C1Rs, kB =
2) WhenW:l,Zc(S) IS regular. ) R1R201+L1,kC:Rl,kD201L1,]€E201 (R1+R2)
3) WhenK, <0, Z.(s) can be realised by at most one,nqrr — 1, wherek is any positive constant. Substituting

kind of reactive element, hence is regular. A, B, C, D, E and F we obtain the following expressions
We now illustrate the regions in th@/, V')-plane charac- corresponding to Cases 1-4 in Lemma 5:
terised in Lemma 9 which correspond to a regular biquadratic

for W < 1. Clearly, when(U, V) is in the shaded region
of Fig. 2, (3) is not positive-real, hence cannot be realised®” (AF —CD) = CiLi (B2 — Ra),

passively. When(U,V) is in the hatched region, (3) is kA1 = CiRy(2L1 — C1R1 (R1 + Ry)),
regular. The remaining white region in th@/, V)-plane X = C1L; (C’leR;’—Lf),

contains all the non-regular positive real impedances pf (3 3y 2

It follows from Lemma 3 that the region df . < 0 is always k3)\3 N C;L;RQ (2L12 Cifs (i + R2))
constrained in the intersection of the regien > 0 and kA = CiR{Ry — L.
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Let us assume thaky, > Ry, which means thalF — CD is
nonnegative. Suppose <0, soL; > C1Rov/R1R>. Then O . sers—1

2L1 — OlRl (R1 + RQ)
Z 201R2\/ RlRQ - ClRl (Rl + RQ)

> 2C (RQ\/ RiRy — RlRQ) [ dual
I

> 0.

(c) (b)
So A1 is nonnegative. Hence wheRy > Ri, A1 and A2 Fig. 6. The series-parallel five-element network quartdhwivo reactive
cannot both be negative. The case tRat< R; is similar in  elements that can realise all the regular biquadratic irapegs (3) with
that\; and\4 cannot both be negative. Hence the impedancée > 0:
(4) must satisfy the conditions of one of the four cases in
Lemma 5.

Note that the network of Fig. 3(b) is the dual network i .
of the network shown in Fig. 3(a). Based on Lemma 1, thg'g'”S' according to tk’}e conditions of Table |. FAE > 0,
network of Fig. 3(b) can only realise regular immittancas. 1€ "Foster preamble” [21], [22] corresponding to each of

Lemma 11:([20]) For arbitrary impedances; (s), Z2(s) tue four c?(ses in Lerfnlr:r?a 2'1) Ieagl.s to thﬁ realizg?ions ?S
and positive constants, b, ¢, the networks of Fig. 4(a) and the network quartet of Fig. 6 according to the conditions o

(b) are equivalent under the transformations:= a + b, Table . It can be Ch(?Cked that whei. < 0, W cannot
bW = ala+b)/b ¢ = c((atb)/b)?[a=ab/(a+b) equal 1; whenk. > 0, if W =1 or any ofe; » ande; , are
b=a?/(d + b’)' c=¢ (/) (d + V)] ' zero the realisation may have fewer than five elements.

Theorem 1:A biguadratic impedance (3) can be realised Necessitylf no distinction is made among the elements,
by series-parallel five-element networks with two reactivéhere are 24 distinct two-terminal series-parallel strces
elements if and only if it is regular. Moreover, all regularwith five elements [23]. These structures may be divided into
biguadratics (3) can be realised by the network quartet ofvo classes, any structure in one class having its dual in the
Fig. 5 (K. < 0) or Fig. 6 (K. > 0). Furthermore, only two other. Based on Lemma 1, the analysis may be performed
networks from the quartet of Fig. 5 are needed to cover allpon only one class. In Fig. 7, all the series-parallel five-
cases wherk,. < 0 (Table 1). element structures in one class are presented. Based on

Proof: Sufficiencyln caseK,. = 0, (3) is bilinear or Lemma 3, we only need to investigate the networks with
a constant and can be realised with at most two resistonso reactive elements of different kinds. Based on Lemmas
and one reactive element. In cagg& < 0, the poles and 2 and 4, structures 1-5, 8, 10 and 11 are eliminated. Using
zeros of (3) lie on the negative real axis and interlace eadh addition Lemma 10, structures 6, 7 and 9 are eliminated.
other [18, Chapter 2.2]. There are various standard forms @he final elimination of structure 12 uses Lemma 11 as well.
networks that realise these cases, e.g. the network quértet [ ]



TABLE |

THE REALISABILITY CONDITIONS OF THE NETWORK QUARTETS SHOWN

IN FIG. 5AND 6 FOR THE BIQUADRATIC IMPEDANCE(3).

Networks Realisability Conditions
Fig. 5(@), (b) | K. <0, W <1

Fig. 5(c), (d) | K. <0, W >1

Fig. 6(a) Ke>0,W<1,€e >0
Fig. 6(b) Ke>0,W <1, e >0
Fig. 6(c) Kc>0,W>1,€¢ >0
Fig. 6(d) Kc>0,W>1,€¢>0

=

Fig. 7. One-Half of the Five-Element Series-Parallel Stres.

Fig. 8. The two-reactive five-element bridge network quanteich based

on Lemma 12 can only realise regular impedances (1).

C11 L1
000
R2

Fig. 9. The two-reactive five-element bridge network quattet can
transfer to series-parallel networks By— A andA — Y transformations.

Ly

Ry
— 1
Ro R3
a)

(

Fig. 10. The two-reactive five-element bridge network cetathat can

. m

dual
5« s 1
(b)

realise non-regular impedances (1).

B. Bridge Networks

Lemma 12:The network shown in Fig. 8 with all elements
positive and finite can only realise regular immittances.
Proof: See [24]. ]
Theorem 2:All bridge networks with two reactive and
three resistive elements can only realise regular imna#an
except for the network quartet of Fig. 10.
Proof: See [24]. [ ]
We can verify that the network of Fig. 10(a) can realise
the impedance function

115+ 17s + 12
2(s) = 352 +4s+7 ©)
with Ry =2, R, =2, R3 =10, L1 =2 and01 = 1/4
It can be checked that (5) does not belong to any of the
four cases in Lemma 5, and hence fails to be regular. Based
on Lemma 1, the network of Fig. 10(b) can realise non-
regular impedances as well. The necessary and sufficient
realisability conditions and the non-regular realisakelgions
for the network quartet of Fig. 10 can be found in [24].

V. MINIMUM REACTIVE REALISATIONS OF THE
BIQUADRATIC WITH AN ARBITRARY NUMBER OF
RESISTIVE ELEMENTS

The following result of Lin [20] can be given a new proof
using the methods of this paper.

Theorem 3:Any series-parallel one-port network consist-
ing of two reactive elements and an arbitrary number of
resistive elements is equivalent to a network consistirtgvof
reactive elements and no more than three resistive elements

Proof: Consider a finite collection of elements consist-
ing of an arbitrary (finite) number of resistors (dampersispl
two reactive elements. We will consider a sequence of steps
where at each stage two existing elements or two-terminal
networks are connected together in series or in parallel to
obtain a new two-terminal network. Using this procedure,
any series-parallel network which can be formed from the
original set of elements can be obtained. After each step we
will carry out any obvious simplifications of the new network
to obtain a simpler but equivalent two-terminal networkt Fo
example, if two resistors (dampers) are connected in series
or in parallel they will be reduced again to a single resistor
(damper).

Now suppose that at some stage the two reactive elements
belong to different networks. Then we claim that the col-
lection of networks consists of isolated resistors (damsper
or networks comprising one reactive element and at most
two resistors (dampers) in either of the equivalent forms of
Fig. 4. This situation will only change when the two networks
containing a reactive element are combined together at some
step. In this step, a network with two reactive elements and
at most four resistors (dampers) will be obtained. It islgasi
seen that the number of resistors in this network can always
be reduced to three and that the resulting network has a
regular immittance. Any subsequent step involves a series 0
parallel connection of this network with a resistor (damper
which by Lemma 2, does not change the immittance of
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Ly Ry Ry [1]
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g = [2
RZ R3 = [3]
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(5]

(@) (b)

Fig. 11. The two networks in [25, Fig. (6)] that can realisensmegular
biquadratics.

(6]
the network from being regular. Hence, by Theorem 1,
any series-parallel network with two reactive elements ig7]
equivalent to one which uses at most three resistive element
[ |

It has been shown in [25] that four resistors are sufficients]
to synthesize the biquadratic functions with one inductat a
one capacitor. Using the concept of regularity we can deducg,
here a stronger result.

Theorem 4:A biquadratic admittancé&”(s) can be re-
alised with at most two reactive elements if and onl¥’ifs)
satisfies one of the following conditions: [11]

1) Y (s) is regular, [12]

2) Y (s) is the driving-point admittance of the networks

shown in Fig. 11(a) or Fig. 11(b). (13]

Proof: In [25], it is shown that the relevant classyy
of mechanical admittances can be parametrised in terms
of five circuit arrangements each containing four resistors
(dampers). Based on Lemma 2, Lemma 12 and Theorem ids)
three of the networks can only realise regular admittances.
The remaining two networks are shown in Fig. 11(a) ané®l
(b). It can be seen that they are slight generalisationsef tr[117]
networks of Figs. 10(a) and (b). ]

In the terminology of the present paper we express the
main result of [14] as follows.

Theorem 5:(Reichert [14]) A biquadratic admittance [18]

[10]

Y (s) can be realised with at most two reactive elements Flg]
and only if Y (s) satisfies one of the following conditions:
1) Y (s) is regular, [20]

2) Y(s) is the driving-point admittance of the networksp,y;
shown in Fig. 10(a) or Fig. 10(b).

Both Theorem 4 and Theorem 5 make use of a geré?l
eral necessary and sufficient condition of paramountcy {93
characterise transformerless resistive 3-port [26]. &nily,
the non-regular positive-real functions which can be seali [24]
using one inductor and one capacitor are covered by the
bridge networks of Fig. 10(a), (b) or Fig. 11(a), (b). [25]

VI. CONCLUSIONS 126}
This paper has introduced the formal concept of reg-

ularity for positive-real functions. A number of lemmas
were presented illustrating the basic properties. The eginc
was shown to be useful in classifying the passive networks
comprising two reactive elements. This set was seen to be
covered by six networks which realise all regular impedance
plus two bridge networks.
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