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Abstract— The purpose of this paper is to formalise the con-
cept of a regular positive-real function and to demonstrate its
usefulness in the classification of low-complexity two-terminal
networks. We will develop a series of lemmas characterising
the basic properties of regularity. We will give a simple proof
that all five-element series-parallel networks with two reactive
elements are regular, and we will show that there are only
two bridge-networks with two reactive elements which may be
non-regular. We will discuss the class of two-terminal networks
with two reactive elements and an arbitrary number of resistive
elements and highlight a theorem of Reichert. The results are
motivated by an approach to passive mechanical control which
makes use of the inerter device.

I. I NTRODUCTION

A famous theorem in electrical networks by Bott and
Duffin [1] showed that any positive-real function could
be realised as the driving-point immittance of a network
consisting of resistors, capacitors and inductors only. The ap-
parent non-minimality of the construction has subsequently
intrigued many researchers and there were a number of
important papers which followed up on this question, e.g.
[2], [3]. Interest in the topic lost momentum in the early
1970s due to the growing importance of integrated circuits.
Recently, a new network element (the inerter) was introduced
for mechanical control [4] which has revived interest in
passive network realisations. The inerter is a mechanical two-
terminal element with the property that the applied force
at the terminals is proportional to the relative acceleration
across the terminals. Applications of the method to vehicle
suspension [5], [6], control of motorcycle steering instabili-
ties [7], [8] and vibration absorption [4] have been identified.
The inerter has been successfully deployed in Formula One
racing since 2005 [9].

For mechanical realisations, minimising network complex-
ity is important. As such, a systematic classification of the
realisability conditions of simple networks is needed. Within
the electrical circuit literature there was an attempt by a
number of authors in the 1960s and early 1970s to carry out
such a classification [10], [11], [12], [13], [14], [15], [16].
Many partial results were established but a complete picture
was never obtained, even for the apparently simple case of
a biquadratic. Today, this literature is not easy to master,in
part because there is no convincing summary of the results
that were obtained. This paper represents a fresh look at
this topic and represents an attempt to rework, simplify and
generalise existing results and provide an accessible entry
point into this field.
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The present paper formalises the concept of aregular
positive-real function and demonstrates its usefulness inthe
classification of low-complexity two-terminal networks. A
series of lemmas will be developed to aid in this classi-
fication. This paper also introduces the terminology of a
network quartetwhich consists of four networks related by
frequency inversion and duality. It will be seen that the class
of regular biquadratic functions can be realised with two
network quartets and that many other networks fall within
the same class in a simple manner. Among the five-element
networks with two reactive elements it will be shown that
there is only one network quartet which contains two bridge
networks that can realise non-regular immittances.

The conditions for a biquadratic positive-real function to
be regular can be found in the paper of Vasiliu [15]. However,
the present paper goes further in formalising this concept
and exploring its properties in a systematic manner. The
concept illuminates results of Foster, Ladenheim and Lin
and connects to the important theorem of Reichert [14]. The
concept of a network quartet has appeared in the German
literature with the terminology “Untergruppe” [17].

II. T HE CONCEPT OFREGULARITY AND ITS PROPERTIES

Definition: A positive-real function Z(s) is defined
to be regular if the smallest value ofRe (Z(jw)) or
Re

(

Z−1(jw)
)

occurs atω = 0 or w = ∞.
Lemma 1:Let Z(s) be a regular positive-real function.

Then αZ (s), Z
(

β−1s
)

, Z
(

s−1
)

, Z−1(s) are all regular,
whereα, β > 0.

Proof: Obvious.
Lemma 2:Let Z(s) be a regular positive-real function.

ThenZ(s) + R andZ−1(s) + R−1 are both regular, where
R > 0.

Proof: ConsiderZ(s) + R. If Re (Z(jw)) achieves its
minimum whenw = 0 or w = ∞, the conclusion is trivial.
Let us assume thatRe

(

Z−1(jw)
)

achieve its minimum at
w = 0. Let Z−1(jw) = YR(jw) + jYI(jw), whereYR, YI

are real functions. By assumption,YR(0) ≤ YR(jw) for all
w andYI(0) = 0. Then

Re
(

(Z(jw) + R)−1

)

=
R−1

(

YR(jw)
(

YR(jw) + R−1
)

+ YI(jw)2
)

(YR(jw) + R−1)
2

+ YI(jw)2

≥ R−1YR(jw)

YR(jw) + R−1

≥ R−1YR(0)

YR(0) + R−1
= Re

(

(Z(0) + R)
−1

)

.



So Z(s) + R is regular. A similar argument holds if
Re

(

Z−1(jw)
)

achieves its minimum atw = ∞. The case
of Z−1(s) + R−1 is similar.

Lemmas 1 and 2 imply that if a network can only realise
regular immittances, then so will the dual network (if it
exists), the network obtained by exchanging the inductors
(springs) and capacitors (inerters) and the network obtained
by adding a resistor (damper) in series or in parallel with the
original one.

Lemma 3:The positive-real driving point impedanceZ(s)
and admittanceY (s) of any network that has all reactive ele-
ments of the same kind satisfiesRe (Z(jw)) andRe (Y (jw))
being monotonic ([18, Chapter 2.2]) and hence can only
realise regular immittances.

Lemma 4:Any network that has a path(1, 1′) or cut set
(1, 1′) consisting of one type of reactive elements can only
realise regular immittances. (1 and 1′ are the two external
terminals of the network; path(1, 1′) refers to a path between
these terminals, and cut set(1, 1′) is a cut set which places
1 and1′ in different connected parts.)

Proof: This follows since either the impedance or the
admittance has a zero ats = 0 or ∞.

We now focus attention on biquadratic positive-real func-
tions

Z(s) =
As2 + Bs + C

Ds2 + Es + F
, (1)

whereA, B, C, D, E, F ≥ 0. It can be shown thatZ (s) is
positive real if and only if

σ = BE −
(√

AF −
√

CD
)2

≥ 0. (2)

Lemma 5:A positive-real biquadratic impedance (1) is
regular if and only if at least one of the following four
conditions is satisfied:

Case 1.AF − CD ≥ 0 and
λ1 = E (BF − CE) − F (AF − CD) ≥ 0,

Case 2.AF − CD ≥ 0 and
λ2 = B (AE − BD) − A (AF − CD) ≥ 0,

Case 3.AF − CD ≤ 0 and
λ3 = D (AF − CD) − E (AE − BD) ≥ 0,

Case 4.AF − CD ≤ 0 and
λ4 = C (AF − CD) − B (BF − CE) ≥ 0.

Proof: Without loss of generality, let us assume
Re (Z(jw)) achieves its minimum whenw = 0. This is
equivalent toZ(s)−Z(0) being positive-real, which happens
if and only if the conditions of Case 1 are satisfied. Similar
arguments hold for the other three cases.

Lemma 6:A positive-real biquadratic impedance (1) with
Z (0) = Z (∞) 6= 0,∞ (which impliesAF − CD = 0) is
regular.

Proof: It can be seem from Lemma 5 that whenAF −
CD = 0, at least two of the cases must be satisfied.

Lemma 7:A positive-real biquadratic impedance (1) with
the resultantK = (AF −CD)2−(AE−BD)(BF −CE) ≤
0 can be realised by at most one kind of reactive element,
hence is regular.

Proof: If K = 0, the numerator and denominator
have a factor in common, and so the function would reduce
immediately to no more than a bilinear function, which is
regular by our definition. Foster [10], [11] points out that if
K is negative, the reactive elements are of the same kind.
Based on Lemma 3, impedance (1) must be regular.

Lemma 8:A positive-real biquadratic impedance (1) with
any of the parametersA, B, C, D, E andF equals zero is
regular. Moreover, any such impedance can be realised by
a series-parallel network with at most two reactive elements
and two resistive elements.

Proof: If B or E equals zero, since (2) holds,AF =
CD. Based on Lemma 6, (1) is always regular. If any ofA,
C, D, F equals zero, this follows since either the impedance
or the admittance has a zero ats = 0 or ∞. In any of the
above cases the Foster preamble will result in a network of
the stated form.

III. A CANONICAL FORM FOR BIQUADRATICS AND

NETWORK QUARTETS

The classification of networks is facilitated by the follow-
ing transformations on the impedanceZ (s):

1) Extraction of a constant multiplierα,
2) Frequency scaling:s → β−1s,
3) Frequency inversion:s → s−1,
4) Impedance inversion:Z → Z−1.

In network realisations, the first two transformations cor-
respond to element scaling, the third to an interchange of
inductors (springs) and capacitors (inerters), and the fourth
to taking the network dual. We remark that a network has a
dual if and only if it is planar. Furthermore, a two-terminal
network with seven branches or less is guaranteed to be
planar [19].

Based on Lemma 8, without loss of generality, we can
assume thatA, B, C, D, E, F > 0 for (1). Using the first
two transformations,Z (s) can be reduced to a canonical
form

Zc(s) =
s2 + 2U

√
Ws + W

s2 +
(

2V/
√

W
)

s + 1/W
, (U, V, W > 0) (3)

whereα = A/D andβ = 4

√

AD/ (CF ). It is easily verified

that W = Cβ2/A = Dβ−2/F , U = Bβ/
(

2A
√

W
)

,

V = Eβ
√

W/ (2D). Clearly, any circuit that realisesZc (s)
will also realiseZ (s) after the appropriate transformation of
the elements(R → αR, L → βL/α, C → αC/β). Thus, for
the realisation of the biquadratic, it is sufficient to restrict
attention to the class in (3). This canonical form was first
considered in [14].

Next we observe that frequency inversion
(

s → s−1
)

cor-
responds to the transformationW → W−1 in the canonical
form and impedance inversion (duality) corresponds to the
transformations:U → V , W → W−1. This means that, if
the realisability conditions in terms ofU, V, W are known for
a given network, they can be written down routinely for a
quartet of related networks. This is illustrated in Fig. 1 where



Fig. 1. Transformations relating members of a network quartet.

the four networks Na, Nb, Nc, Nd are related by interchange
of inductors (springs) and capacitors (inerters) (denotedby
s ↔ s−1) and duality, and the corresponding transformations
of U, V, W in the canonical form.

From the above it is clear that the set ofU, V, W which can
be realised by a quartet of networks is invariant under both
transformations:U ↔ V andW ↔ W−1. It is obvious from
Lemma 1 that the transformations 1) – 4) do not change the
regularity of a given impedance, and if one of the networks
in a network quartet can only realise regular immittances, so
will the other networks in this quartet.

It follows from (2) thatZc (s) is positive real if and only
if

σc = 4UV + 2 − (
1

W
+ W ) ≥ 0.

The resultant ofZc (s) is

Kc = 4U2 + 4V 2 − 4UV (
1

W
+ W ) + (

1

W
− W )2.

For any polynomialρ (U, V, W ) we introduce the notation
ρ∗ (U, V, W ) = ρ

(

U, V, W−1
)

. We can now restate Lemmas
5–7 for the canonical form (3):

Lemma 9:Let Zc (s) be a positive-real biquadratic de-
fined in (3). Then:

1) Zc (s) is regular if and only if at least one of the
following four conditions is satisfied:

Case 1.W ≤ 1 and
ǫ1 = 4UV − 4V 2W − ( 1

W
− W ) ≥ 0,

Case 2.W ≤ 1 and
ǫ2 = 4UV − 4U2W − ( 1

W
− W ) ≥ 0,

Case 3.W ≥ 1 andǫ∗1 ≥ 0,
Case 4.W ≥ 1 andǫ∗2 ≥ 0.

2) WhenW = 1, Zc (s) is regular.
3) WhenKc ≤ 0, Zc (s) can be realised by at most one

kind of reactive element, hence is regular.
We now illustrate the regions in the(U, V )-plane charac-

terised in Lemma 9 which correspond to a regular biquadratic
for W ≤ 1. Clearly, when(U, V ) is in the shaded region
of Fig. 2, (3) is not positive-real, hence cannot be realised
passively. When(U, V ) is in the hatched region, (3) is
regular. The remaining white region in the(U, V )-plane
contains all the non-regular positive real impedances of (3).
It follows from Lemma 3 that the region ofKc < 0 is always
constrained in the intersection of the regionǫ1 > 0 and

σc < 0

Kc < 0λ†
c > 0

λc > 0

σc = 0

λc = 0

λ†
c = 0

Kc = 0

U

V

W=0.5

σc < 0

Kc < 0λ†
c > 0

λc > 0

σc = 0

λc = 0

λ†
c = 0

Kc = 0

0 1 2
0

1

2

Fig. 2. The regular impedances of (3) withW ∈ (0, 1).

ǫ2 > 0. We call the region withǫ1 ≥ 0 or ǫ2 ≥ 0 the
regular regionwith W < 1. This plot can also be found in
[14]. For the caseW > 1, we obtain a plot which is visually
identical with curves generated byǫ∗1 and ǫ∗2 instead ofǫ1
andǫ2. Theregular regionwith W > 1 is defined byǫ∗

1
≥ 0

or ǫ∗2 ≥ 0.

IV. F IVE-ELEMENT TWO-REACTIVE ELEMENT

SYNTHESIS OFTHE BIQUADRATIC

A. Series-Parallel Networks

Lemma 10:The network quartet in Fig. 3 (which contains
only two distinct networks) with all elements positive and
finite can only realise regular immittances.

Proof: The impedance of the network shown in
Fig. 3(a) can be calculated to be

Z(s) =
L1C1R2s

2 + (R1R2C1 + L1) s + R1

C1L1s2 + C1 (R1 + R2) s + 1
. (4)

Comparing (1) with (4) we obtainkA = L1C1R2, kB =
R1R2C1+L1, kC = R1, kD = C1L1, kE = C1 (R1 + R2)
andkF = 1, wherek is any positive constant. Substituting
A, B, C, D, E andF we obtain the following expressions
corresponding to Cases 1–4 in Lemma 5:

k2 (AF − CD) = C1L1 (R2 − R1) ,

k3λ1 = C1R1 (2L1 − C1R1 (R1 + R2)) ,

k3λ2 = C1L1

(

C2

1R1R
3

2 − L2

1

)

,

k3λ3 = C2

1
L1R2 (2L1 − C1R2 (R1 + R2)) ,

k3λ4 = C2

1R3

1R2 − L2

1.



R1

C1R2

L1

dual

(a) (b)

Fig. 3. The network realisation of the impedance in Lemma 10 and the
other network in this quartet.

aZ1

bZ1 cZ2

a′Z1

b′Z1

c′Z2

(a) (b)

Fig. 4. Two equivalent networks.

Let us assume thatR2 ≥ R1, which means thatAF −CD is
nonnegative. Supposeλ2 ≤ 0, soL1 ≥ C1R2

√
R1R2. Then

2L1 − C1R1 (R1 + R2)

≥ 2C1R2

√

R1R2 − C1R1 (R1 + R2)

≥ 2C1

(

R2

√

R1R2 − R1R2

)

≥ 0.

So λ1 is nonnegative. Hence whenR2 ≥ R1, λ1 and λ2

cannot both be negative. The case thatR2 ≤ R1 is similar in
thatλ3 andλ4 cannot both be negative. Hence the impedance
(4) must satisfy the conditions of one of the four cases in
Lemma 5.

Note that the network of Fig. 3(b) is the dual network
of the network shown in Fig. 3(a). Based on Lemma 1, the
network of Fig. 3(b) can only realise regular immittances.

Lemma 11:([20]) For arbitrary impedancesZ1(s), Z2(s)
and positive constantsa, b, c, the networks of Fig. 4(a) and
(b) are equivalent under the transformations:a′ = a + b,
b′ = a (a + b) /b, c′ = c ((a + b) /b)2 [a = a′b′/ (a′ + b′),
b = a′2/ (a′ + b′), c = c′ (a′/ (a′ + b′))

2].
Theorem 1:A biquadratic impedance (3) can be realised

by series-parallel five-element networks with two reactive
elements if and only if it is regular. Moreover, all regular
biquadratics (3) can be realised by the network quartet of
Fig. 5 (Kc < 0) or Fig. 6 (Kc > 0). Furthermore, only two
networks from the quartet of Fig. 5 are needed to cover all
cases whenKc < 0 (Table I).

Proof: Sufficiency.In caseKc = 0, (3) is bilinear or
a constant and can be realised with at most two resistors
and one reactive element. In caseKc < 0, the poles and
zeros of (3) lie on the negative real axis and interlace each
other [18, Chapter 2.2]. There are various standard forms of
networks that realise these cases, e.g. the network quartetof

R1

R3

R2

L2

L1

dual

dual

s↔s−1 s↔s−1

(a)

(b)(c)

(d)

Fig. 5. The series-parallel five-element network quartet with two reactive
elements that can realise all the regular biquadratic impedances (3) with
Kc < 0.

R1

C1

R2

R3

L1

dual

dual

s↔s−1
s↔s−1

(a)

(b)(c)

(d)

Fig. 6. The series-parallel five-element network quartet with two reactive
elements that can realise all the regular biquadratic impedances (3) with
Kc > 0.

Fig. 5, according to the conditions of Table I. ForKc > 0,
the ”Foster preamble” [21], [22] corresponding to each of
the four cases in Lemma 9-1) leads to the realisations as
the network quartet of Fig. 6 according to the conditions of
Table I. It can be checked that whenKc < 0, W cannot
equal 1; whenKc > 0, if W = 1 or any ofǫ1,2 andǫ∗1,2 are
zero the realisation may have fewer than five elements.

Necessity.If no distinction is made among the elements,
there are 24 distinct two-terminal series-parallel structures
with five elements [23]. These structures may be divided into
two classes, any structure in one class having its dual in the
other. Based on Lemma 1, the analysis may be performed
upon only one class. In Fig. 7, all the series-parallel five-
element structures in one class are presented. Based on
Lemma 3, we only need to investigate the networks with
two reactive elements of different kinds. Based on Lemmas
2 and 4, structures 1–5, 8, 10 and 11 are eliminated. Using
in addition Lemma 10, structures 6, 7 and 9 are eliminated.
The final elimination of structure 12 uses Lemma 11 as well.



TABLE I

THE REALISABILITY CONDITIONS OF THE NETWORK QUARTETS SHOWN

IN FIG. 5 AND 6 FOR THE BIQUADRATIC IMPEDANCE(3).

Networks Realisability Conditions
Fig. 5(a), (b) Kc < 0, W < 1
Fig. 5(c), (d) Kc < 0, W > 1
Fig. 6(a) Kc > 0, W < 1, ǫ1 > 0
Fig. 6(b) Kc > 0, W < 1, ǫ2 > 0
Fig. 6(c) Kc > 0, W > 1, ǫ∗

1
> 0

Fig. 6(d) Kc > 0, W > 1, ǫ∗
2

> 0

Fig. 7. One-Half of the Five-Element Series-Parallel Structures.

R1

C1

R2

R3

L1

Fig. 8. The two-reactive five-element bridge network quartet which based
on Lemma 12 can only realise regular impedances (1).

R1

C1

R2 R3

L1

dual

Fig. 9. The two-reactive five-element bridge network quartet that can
transfer to series-parallel networks byY → ∆ and∆ → Y transformations.

R1

C1

R2 R3

L1

dual

s ↔ s−1

(a) (b)

Fig. 10. The two-reactive five-element bridge network quartet that can
realise non-regular impedances (1).

B. Bridge Networks

Lemma 12:The network shown in Fig. 8 with all elements
positive and finite can only realise regular immittances.

Proof: See [24].
Theorem 2:All bridge networks with two reactive and

three resistive elements can only realise regular immittances
except for the network quartet of Fig. 10.

Proof: See [24].
We can verify that the network of Fig. 10(a) can realise

the impedance function

Z(s) =
11s2 + 17s + 12

3s2 + 4s + 7
(5)

with R1 = 2, R2 = 2, R3 = 10, L1 = 2 and C1 = 1/4.
It can be checked that (5) does not belong to any of the
four cases in Lemma 5, and hence fails to be regular. Based
on Lemma 1, the network of Fig. 10(b) can realise non-
regular impedances as well. The necessary and sufficient
realisability conditions and the non-regular realisable regions
for the network quartet of Fig. 10 can be found in [24].

V. M INIMUM REACTIVE REALISATIONS OF THE

BIQUADRATIC WITH AN ARBITRARY NUMBER OF

RESISTIVE ELEMENTS

The following result of Lin [20] can be given a new proof
using the methods of this paper.

Theorem 3:Any series-parallel one-port network consist-
ing of two reactive elements and an arbitrary number of
resistive elements is equivalent to a network consisting oftwo
reactive elements and no more than three resistive elements.

Proof: Consider a finite collection of elements consist-
ing of an arbitrary (finite) number of resistors (dampers) plus
two reactive elements. We will consider a sequence of steps
where at each stage two existing elements or two-terminal
networks are connected together in series or in parallel to
obtain a new two-terminal network. Using this procedure,
any series-parallel network which can be formed from the
original set of elements can be obtained. After each step we
will carry out any obvious simplifications of the new network
to obtain a simpler but equivalent two-terminal network. For
example, if two resistors (dampers) are connected in series
or in parallel they will be reduced again to a single resistor
(damper).

Now suppose that at some stage the two reactive elements
belong to different networks. Then we claim that the col-
lection of networks consists of isolated resistors (dampers),
or networks comprising one reactive element and at most
two resistors (dampers) in either of the equivalent forms of
Fig. 4. This situation will only change when the two networks
containing a reactive element are combined together at some
step. In this step, a network with two reactive elements and
at most four resistors (dampers) will be obtained. It is easily
seen that the number of resistors in this network can always
be reduced to three and that the resulting network has a
regular immittance. Any subsequent step involves a series or
parallel connection of this network with a resistor (damper),
which by Lemma 2, does not change the immittance of



R1

C1

R2 R3

R4

L1

dual

(a)

R1

C1

R2 R3

R4

L1

(b)

Fig. 11. The two networks in [25, Fig. (6)] that can realise non-regular
biquadratics.

the network from being regular. Hence, by Theorem 1,
any series-parallel network with two reactive elements is
equivalent to one which uses at most three resistive elements.

It has been shown in [25] that four resistors are sufficient
to synthesize the biquadratic functions with one inductor and
one capacitor. Using the concept of regularity we can deduce
here a stronger result.

Theorem 4:A biquadratic admittanceY (s) can be re-
alised with at most two reactive elements if and only ifY (s)
satisfies one of the following conditions:

1) Y (s) is regular,
2) Y (s) is the driving-point admittance of the networks

shown in Fig. 11(a) or Fig. 11(b).
Proof: In [25], it is shown that the relevant class

of mechanical admittances can be parametrised in terms
of five circuit arrangements each containing four resistors
(dampers). Based on Lemma 2, Lemma 12 and Theorem 1,
three of the networks can only realise regular admittances.
The remaining two networks are shown in Fig. 11(a) and
(b). It can be seen that they are slight generalisations of the
networks of Figs. 10(a) and (b).

In the terminology of the present paper we express the
main result of [14] as follows.

Theorem 5:(Reichert [14]) A biquadratic admittance
Y (s) can be realised with at most two reactive elements if
and only if Y (s) satisfies one of the following conditions:

1) Y (s) is regular,
2) Y (s) is the driving-point admittance of the networks

shown in Fig. 10(a) or Fig. 10(b).
Both Theorem 4 and Theorem 5 make use of a gen-

eral necessary and sufficient condition of paramountcy to
characterise transformerless resistive 3-port [26]. Evidently,
the non-regular positive-real functions which can be realised
using one inductor and one capacitor are covered by the
bridge networks of Fig. 10(a), (b) or Fig. 11(a), (b).

VI. CONCLUSIONS

This paper has introduced the formal concept of reg-
ularity for positive-real functions. A number of lemmas
were presented illustrating the basic properties. The concept
was shown to be useful in classifying the passive networks
comprising two reactive elements. This set was seen to be
covered by six networks which realise all regular impedances
plus two bridge networks.
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