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Abstract – An important natural phenomenon surfaces that ultrafast consensus can be achieved
by introducing predictive mechanisms. By predicting the dynamics of a network several steps
ahead and using this information in the consensus protocol, it is shown that, without changing
the topology of the network, drastic improvements can be achieved in terms of the speed of
convergence towards consensus and of the feasible range of sampling periods, compared with the
routine consensus protocol. In natural science, this study provides an evidence for the idea that
some predictive mechanisms exist in widely-spread biological swarms, flocks, and schools. From
the industrial engineering point of view, inclusion of an efficient predictive mechanism allows for a
significant increase in the consensus speed and a reduction of the required communication energy.

Copyright c© EPLA, 2008

Over the last decade, scientists have been looking for
common, possibly universal, features of the collective
behaviors of animals [1], bacteria [2], cells [3], molecular
motors [4], as well as driven granular objects [5]. The
collective dynamics of networks of interconnected agents
is currently a subject of intensive research that has
potential applications in biology, physics and engineering.
In this area, one of the most general and attractive topic
is the consensus problem [6–8], where groups of agents
agree upon certain quantities such as attitude, position,
temperature and voltage. Furthermore, solving consensus
problem using distributed computational methods has
direct implications on sensor network data fusion, load
balancing, swarm control, unmanned air vehicles (UAVs),
attitude alignment of satellite clusters, congestion control
of communication networks, multi-agent formation
control, etc. [9–11].
One of the central problems in the study of collective

dynamics is the design of consensus protocols allowing
to reach consensus as quickly as possible using the least
amount of communication energy. Recently, by using
parallel and distributed computing approaches [12] or

(a)E-mail: mc274@le.ac.uk

numerical statistical analysis, some methods aiming at
enhancing the consensus speed have been proposed, such
as convex optimization [13], introduction of long-range
interactions [14], stability analysis [15], the relation
between communication intensity and convergence
speed [16], design of the heterogeneous influences [17], and
use of adaptive velocity [18]. Most of the previous studies
on the consensus of interconnected agents has been based
on the implicit assumption that an agent’s state at the
next discrete-time step is solely determined by the current
(network) state. However, in natural bio-groups, individ-
uals typically have some higher-level intelligence, namely
predictive intelligence, which is the ability of predicting
the future position of some group members based on
their past and current positions. Microscopically, recent
experiments on the bio-eyesight systems have revealed
the predictive functions of the optical and acoustical
apparatuses, especially the retina and cortex [19–21].
Macroscopically, experiments on bee groups [22,23]
have provided evidences for the existence of predictive
mechanisms in bee swarm formation and foraging. Unfor-
tunately, predictive mechanisms have been ignored in most
prior studies of consensus. In this letter, inspired by the
natural existence of predictive mechanisms, we a) design
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a consensus protocol incorporating some predictive mech-
anism; b) provide a mathematical framework with which
the robustness properties of the proposed protocol can be
demonstrated; c) illustrate, via numerical simulations, the
significant improvements of the consensus speed compared
with the routine protocol. This work highlights a potential
predictive consensus mechanism in swarms, which is of
practical significance in designing the communication
and motion protocols of distributed intelligent mobile
agents, such as mobile sensor networks and cooperative
robots.
We represent a network of interacting agents by a

digraph G= (V, A), where V = {v1, . . . , vN} is the set of
N nodes representing the agents, and A is the N ×N
adjacency matrix with aij � 0 denoting the edge weight
from node i to node j. No self-cycle is allowed, hence
aii = 0 for all i. Let xi(k)∈R denote the state of node i,
which could represent physical quantities such as attitude,
position, temperature, voltage, etc. Generally, we say the
nodes of a network have reached a consensus if and only
if xi(k) = xj(k) for all i, j ∈ V and for all k > k̄. Whenever
the nodes of a network are all in agreement, their common
value is called the group decision value. If this value
is x(0) = 1/N(

∑N
i=1 xi(0)), the network is said to have

reached the average-consensus.
We consider the following discrete-time model for the

dynamics of agent i:

xi(k+1) = xi(k)+ ǫui(k), (1)

where ǫ denotes the sampling period or step size and
ui(k) denotes the control input. Although this model is
a simple linear one in which all nodes change behaviors
at the same time, it is a benchmark model [8,14,24–26] to
test the performance of different kinds of consensus proto-
cols. For such dynamic models, average consensus is typi-
cally asymptotically reached using the routine consensus
protocol

ui(k) =−

N
∑

j=1

aij∆xi,j(k), (i, j = 1, . . . , N), (2)

where ∆xi,j(k) = xi(k)−xj(k) denotes the state differ-
ence between the i-th and j-th agents [8]. The network
dynamics, under the routine protocol, is

x(k+1) = Pǫx(k), (3)

where Pǫ = IN − ǫL, and L is the Laplacian matrix of
G defined as lii =

∑N
l �=i ail and lij =−aij , ∀i �= j. Denote

by dmax =maxi(lii) the maximum out-degree of G. If
G is strongly connected and balanced (i.e. ∀i,

∑

j aij =
∑

j aji), and the sampling period ǫ∈ (0, 1/dmax), then the
routine consensus protocol (2) ensures global asymptotic
convergence to consensus [8,24].
We now introduce a predictive average-consensus proto-

col for complete digraphs, i.e. digraphs for which aij > 0,

Fig. 1: (Color online) Illustration of the prediction mechanism
ubiquitous in bio-groups.

∀i �= j. A general physical picture illustrating this para-
digm is given in fig. 1 and interpreted as follows: in widely
spread natural bio-groups composed of animals, bacteria,
cells, etc., the next-step behavioral decision is not solely
based on the current available state information (e.g. posi-
tion, velocity, etc.) of the other, neighboring or leading,
agents inside the group, but also on their predicted future
states. More precisely, keeping in mind a few past states of
its leader and neighbors, an agent can estimate its future
states several steps ahead and then make a decision on
its own next action. To integrate such mechanism into
the routine protocol, we consider an additional prediction
term vi(k) and add it to the routine control input given
in eq. (2):

ui(k) =

N
∑

j=1

aij∆xi,j(k)+ vi(k). (4)

The network dynamics are now given by

x(k+1) = Pǫx(k)+ v(k). (5)

Using the above protocol, the future states can be
predicted based on the current ones x(k) as indicated
below:

x(k+2) = P 2ǫ x(k)+Pǫv(k)+ v(k+1),

...

x(k+Hp) = P
Hp
ǫ x(k)+

Hp−1
∑

j=0

(PHp−j−1ǫ v(k+ j)),

where the integer Hp defines the number of predicted
steps. In this way, the future discrete-time evolution of
the network can be predicted Hp steps ahead as

X(k+1) = PXx(k)+PUU(k) (6)

with

XT (k+1) = [xT (k+1), . . . , xT (k+Hp)],

UT (k) = [vT (k), . . . , vT (k+Hp− 1)],
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Since the general goal of a consensus protocol is to
eliminate the disagreements between individuals, we first
calculate the state difference of the i-th and j-th agents,
m (1�m�Hp) steps ahead, as

∆xi,j(k+m) = xi(k+m)−xj(k+m) = ei,jx(k+m),
(7)

where ei,j = ei− ej and ej = [0, . . . , 0, 1
jth, 0, . . . , 0]

denotes the j-th row-extracting operator. Based on
eq. (7), the state difference vector, m steps ahead, is

∆x(k+m) = [∆xT1,2(k+m), . . . ,∆x
T
1,N (k+m),

∆xT2,3(k+m), . . . ,∆x
T
2,N (k+m), . . . ,∆x

T
N−1,N (k+m)]

T .

Accordingly, the future evolution of the network’s state
difference can be predicted as follows:

∆X(k+1) = [∆x(k+1)T , . . . ,∆x(k+Hp)
T ]T

= PXEx(k)+PUEU(k) (8)

with PXE =EPX , PUE =EPU , E =diag(e, . . . , e) and
e= [eT1,2, . . . , e

T
1,N , e

T
2,3, . . . , e

T
2,N , . . . , e

T
N−1,N ]

T .
To solve the average-consensus problem, we first set the

moving horizon optimization index that defines our model
predictive control (MPC) consensus problem as below:

J(k) =‖∆X(k+1) ‖2Q + ‖U(k) ‖
2
R, (9)

where Q and R are compatible weighting matrices which
are generally set as Q= qIHpN(N−1)/2 (q > 0), R= IHpN ,

and ‖M ‖2Q=M
TQM . In eq. (9), the first term penalizes

the state difference (the disagreement) in the network
over the future Hp steps, while the second term penalizes
the additional MPC control energy v(k). The minimum
J(k) corresponds to the condition ∂J(k)/∂U(k) = 0.
Consequently, one obtains the optimal MPC action
v(k) = PMPCx(k), where

PMPC =−[IN ,0N , . . . ,0N]·(P
T
UEQPUE +R)

−1PTUEQPXE.

(10)

Of course, large N will inevitably increase the computa-
tional burden. However, no matter how large the size N
is, one can still compute the MPC term v(k) according to
eqs. (5) and (10), which will be directly distributed to each
node. Thus, theoretically speaking, the MPC protocol (4)
is always feasible even for networks of very large size.

2 4 6 8
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Fig. 2: (Color online) Time evolution of the instantaneous
disagreement D(k) of the routine (black) and MPC (blue)
protocols on a symmetric, complete network of N = 10 nodes.
Here, lij =−1 (i �= j) and lii =N − 1. Case 1: ǫ= 1/9 = 1/dmax,
♦: MPC, ©: routine protocol; Case 2: ǫ= 0.03< 1/dmax, ▽:
MPC,△: routine protocol; Case 3: ǫ= 2.00> 1/dmax, �: MPC,
⋆: routine protocol. In the MPC protocol, Hp = 4, q= 2, and
the initial state xi(0) are selected randomly in [0,15].

The proposed algorithm is based on (9) and shows some
consistency with the routine protocol (2). More precisely,
the latter is solely based on the current state difference
∆xi,j(k) of each pair in the network, while the former
roots not only in ∆xi,j(k) but also in the future state
difference ∆xi,j(k+m). This new consensus algorithm
is characterized by four important properties: i) for the
case of symmetric (i.e. aij = aji), complete networks,
the state matrix Pǫ+PMPC is also symmetric and has
the same eigenvectors as the matrix Pǫ; ii) for the case
of complete, balanced networks, the matrix PMPC is also
balanced in the sense that PMPC1= P

T
MPC1= 0 with

1= [1, . . . , 1]TN×1 and 0= 0 ·1; iii) for the case of complete,
balanced networks, average consensus will be achieved if
and only if the matrix Pǫ+PMPC has a simple eigenvalue
at 1 and all its other eigenvalues inside the open unit circle;
iv) for the case of complete, balanced networks, if you
denote each entry of Pǫ+PMPC by βij (i, j = 1, . . . , N),
then average consensus will be achieved, provided that
βij � 0 (i �= j) and βii ∈ (0, 1]. The mathematical proofs of
these properties are beyond the scope of this letter and
will thus be published elsewhere. As a consequence to the
above properties, the proposed MPC protocol yields the
following two improvements compared with the routine
protocol: (A1) the feasible range of the sampling period
ǫ (i.e. the set of values of ǫ leading to average consensus)
is remarkably expanded; (A2) for feasible values of ǫ, the
convergence speed is significantly improved.
To illustrate the advantages of the MPC proto-

col, we present some numerical results comparing the
convergence speeds of the MPC and routine protocols.
Since the objective is to reach average consensus, the
instantaneous disagreement index is typically set as
D(k) =‖ x(k)−1x̄(0) ‖22 (here ‖ x ‖2= (x

Tx)1/2) and the
consensus steps Tc(Dc) can be defined as the number of
steps required for D(k) to reach a small threshold value,
Dc. A reasonable measurement of the consensus speed is
given by 1/Tc(Dc). As shown in fig. 2, the addition of
the predictive mechanism defined in (10) yields a drastic

40003-p3



Hai-Tao Zhang et al.

(a) (b)

10
−2

10
0

10
2

0

50

100

150

ε

P
c
(%

)

1/6.2 1/4.5

H
p
=4, q=2Routine

MPC

0 0.1 0.2 0.3 0.4
10

0

10
1

10
2

ε

T
c

Rountine
MPC

1/6.2 1/4.5

Fig. 3: (Color online) (a) Ultrafast convergence probability
(Pc(0.01)); (b) Average consensus steps (Tc(0.01)). Comparison
is addressed between the MPC and routine protocols with
different ǫ and 500 independent runs for each value of ǫ. For
these simulations, Hp = 4, q= 2, Dc = 0.01, entries lij(i �= j)
of L are selected randomly in [−1, 0) such that the resulting
network is complete and balanced, and xi(0) (i= 1, . . . , N) is
selected randomly in [0,15]. The associated values of dmax lie in
[4.5,6.2]. The vertical dotted lines correspond to the minimum
and maximum values of 1/dmax.

increase in convergence speed. In particular, for ǫ < 1/dmax
(dmax =maxi(lii)), the convergence speed is increased
more than 20 times (measured by the slope of D(k) curve)
by using the proposed MPC protocol. Furthermore, even
when the routine convergence condition is violated, i.e.
ǫ > 1/dmax, it is observed that the MPC protocol still
allows asymptotic convergence with high speed.
To further compare the performances of the MPC

and routine protocols, we examine in fig. 3(a) the ultra-
fast convergence probability Pc(Dc) with respect to ǫ on
complete, balanced networks. Here Pc(Dc) denotes the
ratio of ultrafast convergence runs over a total of 500 runs.
A convergence run is defined as ultrafast consensus if a
very small value of Dc of the disagreement index D(k)
can be reached within a short period of Z steps. Here, we
set Dc = 0.01 and Z = 100. The specific values ofDc and Z
are unimportant since qualitatively the results are invari-
ant to those values. In fig. 3(a), it can be observed that,
with the assistance of predictive mechanisms, Pc(0.01) is
significantly increased, especially when ǫ > 1/dmax. As a
consequence, the maximum feasible ultrafast convergence
sampling period (ǫmax) is sharply increased (more than
40 times), which nicely illustrates the improvement A1 of
the MPC protocol. Moreover, to study the effects of the
predictive mechanism on the feasible convergence range
of ǫ, we examine in fig. 3(b) the average consensus steps
Tc(0.01) of these two strategies with different ǫ. In this
comparison, for each value of ǫ, Tc denotes the average
consensus steps over all the successful convergence runs.
It can be seen that, compared with the routine protocol,
the MPC protocol allows for a significant increase in the
consensus speed T−1c (by a factor between 6 and 20 in our
simulations), which illustrates the improvement A2.
It is well known that the eigenvalue distribution of

the state matrix Pǫ+PMPC is closely related to the
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Fig. 4: (Color online) Eigenvalue distributions for different ǫ.
Blue (©) and red (+) represent the cases of Pǫ and Pǫ+PMPC
over 100 runs, respectively. The black circle denotes the unit
circle in the complex plane. Here, Hp = 4, q= 2, and each entry
lij (j �= i) of L is chosen randomly in [−1, 0) such that the
resulting network is complete and balanced. The associated
values of dmax lie in [4.5,6.2].

convergence speed of the associated consensus protocol.
Therefore, we display the eigenvalue distributions of Pǫ
and Pǫ+PMPC in fig. 4. With these eigenvalue distribu-
tions, we can interpret the advantages of the MPC proto-
col more lively. Indeed, since the eigenvalue cluster of Pǫ+
PMPC is always much smaller and closer to the origin of
the complex plane than the cluster of Pǫ, the MPC proto-
col generally exhibits faster consensus. When ǫ < 1/dmax
(ǫ= 0.05, see fig. 4(a)), the two eigenvalue clusters are
both kept inside the asymptotic stability region, i.e. the
unit circle in the complex plane. However, since each
eigenvalue of Pǫ+PMPC is much closer to the origin, the
consensus speed is sharply increased in the case of the
MPC protocol. Furthermore, when ǫ > 1/dmax (ǫ= 0.60,
see fig. 4(b)), some of the eigenvalues of Pǫ start escaping
the unit circle, making the disagreement function diverge,
whereas all the eigenvalues of Pǫ+PMPC remain inside
the unit circle, which guarantees its asymptotic conver-
gence.
In summary, motivated by the ubiquity of predict-

ing abilities in natural bio-groups, we incorporated some
predictive mechanism into the routine consensus protocol
and yielded a novel MPC protocol. We presented analyti-
cal results as well as numerical simulations to demonstrate
its great advantages. The comparisons between the MPC
and routine protocols on complete, balanced networks led
to the following two conclusions: i) just a little vision
into the future can produce significant increases in conver-
gence speeds; ii) the feasible sampling period range can be
broadly expanded using this predictive mechanism, giving
the MPC consensus protocol the potential to effectively
save communication energy. These advantages have been
explained through an eigenvalue distribution analysis.
More precisely, due to the use of a prediction mechanism,
the eigenvalue cluster of the state matrix is compressed
and driven back towards the origin of the complex plane
even when the sampling period exceeds the routine conver-
gence threshold.

40003-p4



Ultrafast consensus via predictive mechanisms

Furthermore, to verify the generality of these conclu-
sions, we have applied the MPC protocol to partially
linked networks. Analogously, each individual predicts its
neighbors’ future behaviors according to their historical
trajectories (past state values), and makes its own
decision based on a minimization of the neighboring
state difference. The corresponding results for partially
linked networks are qualitatively similar (A1 and A2
are also valid in this case), except that the performance
improvements are slightly reduced due to the infor-
mation flow constraints due to the network topology,
which is quite reasonable. On the other hand, according
to eqs. (5) and (10), one may argue that the global
information of the whole network including the state
matrix Pǫ and the current state x(k) is required for each
individual’s prediction. This, however, is not true, and
it can be proven that sufficiently long local information
sequence observable for each individual is capable of
constituting the local prediction mechanism for each
individual. Consequently, the present predictive proto-
col can be implemented in a decentralized way, which
further improves its generality. More detailed reasoning
is provided as follows. Let Zi(k) = [z

T
1,i(k), . . . , z

T
iN,i(k)]

T

denote the N -length historical state sequence for the
i-th individual with zl,i(k) = xi(k+1− l), (l= 1, . . . , N),
then the state of an arbitrary neighbor j of i can be
predicted one step ahead by xj(k+1) =Bj,iZi(k) with
Bj,i = ejP

N+1
ǫ Φ−1i and Φi = [(eiP

N
ǫ )
T , . . . , (eiPǫ)

T ]T .
Fortunately, it can be proven that sufficiently long
historical information sequence observed by individual
i can yield accurate estimate of Bij . Therefore, local
information is qualified to yield accurate prediction.
For brevity, we omit the mathematical analysis of the
decentralized implementation.
Still worth mentioning is that our MPC protocol is not

just confined to linear networks. For networks governed
by nonlinear dynamics, MPC also has the potential to
yield nice performances since it can make full use of
the widely-spread individual predictive intelligence to
produce coordinated collective behavior [27]. Actually, in
another paper [28], we have also examined the capability
of predictive mechanism for two popular nonlinear flock
models, the Vicsek model [5] and the A/R model [29].
The corresponding results show that the MPC proto-
col outperforms the routine protocol in terms of the
consensus speed and the communication cost. For natural
science, the contribution of this work lies in its ability
to explain why members of biological swarms such as
firefly and deep-sea fish groups do not communicate very
frequently all along but just now and then during the
whole dynamic process. From the industrial application
point of view, the value of this work is that the consensus
speed can be significantly enhanced with remarkably
reduced communication energy or cost. All these merits
are only at the expense of giving the agents capability of
making predictions. In real-world applications, when it
is difficult to add controllers to all nodes for multi-agent

systems with large N , one possible approach is to use
the pinning control technique [30]. This work is a first
attempt aimed at achieving ultrafast consensus by adding
a prediction mechanism to the classical protocol, which
may open new avenues in that fascinating field.
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