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Abstract. An approach to reconfiguring control systems in the event of major fail-
ures is advocated. The approach relies on the convergence of several technologies
which are currently emerging: Constrained predictive control, High-fidelity modelling
of complex systems, Fault detection and identification, and Model approximation and
simplification. Much work is needed, both theoretical and algorithmic, to make this
approach practical, but we believe that there is enough evidence, especially from ex-
isting industrial practice, for the scheme to be considered realistic. After outlining
the problem and proposed solution, the paper briefly reviews constrained predictive
control and object-oriented modelling, which are the essential ingredients for practical
implementation. The prospects for automatic model simplification are also reviewed
briefly. The paper emphasises some emerging trends in industrial practice, especially
as regards modelling and control of complex systems. Examples from process control
and flight control are used to illustrate some of the ideas.
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1. INTRODUCTION

We are interested in reconfiguring control systems when
a major failure occurs. For example the partial or com-
plete loss of a control surface on an aircraft, or failure
of an important compressor in a process plant. In the
event of such a failure, several questions arise:

(1) Is it possible to continue to control the plant closely
enough to the original specification that continua-
tion of the original mission, or of the usual product,
is possible?

(2) Is it possible to control the plant, but with a much
reduced specification, so that modifying the origi-

1 My thanks to SAST Ltd, to the British Gas Research Centre,
and to M.Huzmezan for many discussions and the examples pre-
sented in this paper.

nal mission, or production of a lower-quality prod-
uct, is necessary?

(3) Is it possible to abandon the mission, or to shut
down the plant, without incurring disaster (‘Get
me home’ mode)?

We make an initial assumption that it is not possible to
anticipate all possible failure modes, so that an approach
involving switching to precomputed control strategies
is not possible. Most proposals for reconfigurable con-
trol systems take the ‘precomputed’ approach (Maybeck
and Stevens, 1991; Moerder et al., 1989; Musgrave et
al., 1997), although (Rauch, 1995) detects a trend to-
wards the kind of approach advocated in this paper
and (Kwong et al., 1995) makes the same assumption
as ours. Of course it is sensible to precompute strategies
for a set of failure modes which are relatively likely to
occur, so our interest is in what to do if the failure mode



is outside this anticipated set. The reasons for doing so
are, firstly, that the set of anticipated failure modes,
such as those revealed by a FMECA assessment, can
be very large, and it is impractical or too expensive to
precompute strategies for all the eventualities. Secondly,
unanticipated failures also occur. Thirdly, a subjective
impression is that single-mode failures are generally han-
dled successfully, for example in aircraft operations; dis-
asters generally occur when an initial failure is associ-
ated with other collateral damage, so that two or more
of the anticipated failure modes occur simultaneously.
In this case the number of possibilities grows combina-
torially with the number of single-mode failures, and of
course it becomes quite impossible to anticipate more
than a small proportion of them.

The problem we have defined does not fit the usual
paradigms of adaptive or robust control, in that the sets
of available inputs and outputs can change, and that the
control specifications may change. The dynamics of the
plant can change drastically and discontinuously, which
is outside the usual robust control paradigm but within
that of some adaptive control research.

Of course it is also true that the problem is well beyond
the range of any control theory we currently have. It
is not enough to propose a problem; there should be
at least some prospect of being able to solve it, before
it becomes interesting. Our belief is that technologies
are currently emerging, and entering industrial practice,
which make it plausible to envision a general approach
to the solution of the problem we have posed. There are
4 technologies which we have in mind:

(1) Constrained Model Based Predictive Control (MBPC),
increasingly widely used in the petrochemical sec-
tor, and being introduced into other process indus-
tries.

(2) ‘High-fidelity’ first-principles nonlinear simulation
models, sufficiently detailed to contain representa-
tions of individual components.

(3) Effective approximation and identification algorithms
for multivariable systems.

(4) Fault detection and identification (FDI) capability.

Basically the idea is that the following sequence of steps
occurs:

(1) When a failure occurs, the FDI system pinpoints
the nature of the failure.

(2) The ‘high-fidelity’ model is updated to reflect the
failure.

(3) Approximation and/or identification algorithms are
run on data generated from the updated high-fidelity
model, and/or from the failed system, to get a sim-
ple linearised model — probably augmented by lin-
ear inequalities — which captures the new external

behaviour.
(4) Constrained MBPC is run on the resulting model;

it is given enough degrees of freedom (a big enough
set of manipulated variables) to allow it to find a
feasible control strategy.

In this paper we will briefly review 3 of the 4 technologies
listed above (omitting FDI), and explain their relevance
to the overall scheme, emphasising particularly predic-
tive control and object-oriented modelling. We will then
present a brief example, which will illustrate some as-
pects discussed in the paper.

2. PREDICTIVE CONTROL

2.1 Review of predictive control

Constrained Model Based Predictive Control (MBPC)
is now the most widely used advanced control technique
in the process industries, and it is the control methodol-
ogy at the heart of this proposal (Cutler and Ramaker,
1980; Clarke et al., 1987; Mayne and Polak, 1993). It is
distinguished from other control methodologies by the
following three key ideas:

• An explicit ‘internal model’ is used to obtain pre-
dictions of system behaviour over some future time
interval, assuming some trajectory of control vari-
ables.
• The control variable trajectory is chosen by opti-

mizing some aspect of system behaviour over this
interval.
• Only an initial segment of the optimized control

trajectory is implemented; the whole cycle of pre-
diction and optimization is repeated, typically over
an interval of the same length. The necessary com-
putations are performed on-line.

It naturally handles the control of multivariable plant,
and takes account of information on constraints arising
from equipment limitations, safety requirements, etc.
In its usual form it does this by combining linear dy-
namic models with linear inequalities, which seems to
be a very powerful combination, since the linear model
keeps the dynamics simple, while the inequalities can
be used to represent important nonlinearities, as well as
constraints. The usual formulation of MBPC also has a
quadratic cost functional; when combined with a linear
model and linear inequalities this leads to a Quadratic
Programming optimization problem. Since this problem
must be solved on-line, the fact that the problem is
convex is most important, and the additional structure
available in a QP problem is important for predicting
properties such as solution time.



To be specific, the cost to be minimised typically has
the form

J(k) =
N2∑
i=N1

||Mx̂(k + i|k)− r(k + i)||2Q(i)

+
Nu∑
i=1

||∆u(k + i)||2R(i) (1)

and the minimisation is performed subject to constraints
such as

|∆uj(k + i)| ≤ Vj (2)

|uj(k + i)| ≤Uj (3)

|(Mx̂)j(k + i|k)| ≤Xj (4)

where u(k) is the (control) input vector at time k, ∆u(k) =
u(k) − u(k − 1), and Mx(k) is the vector of variables
which are to be controlled; x(k) is the state of the plant.
x̂(k+ i|k) is a prediction of x(k+ i) made at time k, and
M is some matrix. (For example, M = C in the usual
linear state-space model if only outputs are to appear
in J(k)). r(k) is some reference (desired) trajectory for
Mx(k). The integers N1, N2 and Nu, as well as the
weighting matrices Q(i) and R(i), are in principle cho-
sen to represent some real performance objectives (such
as profit maximisation in a process application (Prett
and Garcia, 1988)), but in practice they are often tuning
parameters for the controller. It is assumed that the con-
trol signals are constant after the end of the optimiza-
tion horizon, namely that ∆u(k + i) = 0 for i > Nu. In
the inequalities uj(k) denotes the j’th component of the
vector u(k), etc, and Vj , Uj , Xj are problem-dependent
nonnegative values.

The predicted values Mx̂(k + i) which appear in the
cost function are usually obtained from a linear ‘inter-
nal model’, which is a predictor derived from a linear
approximation to the plant. The predictions usually as-
sume a constant output disturbance over the prediction
horizon, the level of this disturbance being estimated
from the initial one-step prediction error. This distur-
bance model results in a kind of integral action being
present in the controller: a persistent error between the
output and set-point vectors is attributed by the con-
troller to an increasing disturbance, and consequently
an increasing control signal is generated, until the er-
ror is removed. The assumption about the nature of
the disturbance can be generalised (Huzmezan and Ma-
ciejowski, 1997b).

Relatively little is known about constrained MBPC the-
oretically, but it is now receiving a lot of attention.
Nominal stability has been well investigated, even when
constraints are active (Clarke, 1994). There are several

parameters to be chosen when an MBPC scheme is im-
plemented (principally prediction and control horizons,
and weights for the cost functional) and there are now
some reliable guidelines for choosing these so as to as-
sure nominal stability. Essentially, the prediction hori-
zon has to be made large enough, and theorems exist
which specify how large it has to be. Alternatively, ter-
minal constraints have to be imposed on the controlled
variables. The use of infinite horizons is attractive, ex-
cept that the imposition of constraints is then difficult,
but some proposals have been made even in this direc-
tion (Kothare et al., 1996).

It is still not really known how tolerant MBPC is to mis-
modelling, or how to improve its robustness to modelling
errors. One suggestion for obtaining robustness is to re-
place the quadratic optimization by a min-max formula-
tion, but this gives a much harder optimization problem.
Nevertheless Allwright has shown (Clarke, 1994) that
even this problem can be solved relatively efficiently.
Progress has also been made on tuning the various pa-
rameters in the standard MBPC formulation so as to
obtain robustness (Lee and Yu, 1994).

This usual MBPC formulation results in a piecewise-
constant linear control law, with switching between laws
occurring whenever the set of active constraints changes.

It is important to point out that constrained MBPC is
now an established control technique which is used rou-
tinely, particularly in the petrochemical sector, and on
very large problems — tens of controlled variables, hun-
dreds of manipulated variables, and thousands of con-
straints in some applications. On the other hand, it is
typically used to implement a higher-level control layer
on top of existing conventional controllers, and in an in-
dustry with very slow dynamics. This probably explains
why it was brought into use even before any kind of
stability proof was developed, since it was always pos-
sible to disable it if there were any signs of developing
problems. For the application to reconfigurable control
which we are proposing this is probably unacceptable,
and some theoretical advances to provide better reas-
surance of correct functioning will be necessary.

2.2 Predictive control as a tool for reconfiguration

Constrained MBPC has some inherent ‘self reconfigu-
ration’ capability (Maciejowski, 1997), if there are re-
dundant actuators and one of these actuators fails. In
systems with redundant actuators, a ‘daisy-chaining’ ar-
rangement in which one actuator is used in normal op-
eration, but another one is brought into operation if the
first one saturates or fails, is shown in figure 1. This fig-
ure shows the use of a model of the saturation character-



istic of an actuator. Such a scheme is usually intended to
deal with actuator saturation. But it is also effective in
case the actuator used for normal operation (Actuator
1) fails, for example by getting stuck at a constant value,
providing that integral action is present in the controller.
The back-up actuator is not brought into operation im-
mediately, but a persistent error in the controlled output
leads to an increasing control signal from the integral
action, until the daisy-chaining system ‘thinks’ that the
normal actuator has become saturated, whereupon the
back-up actuator (Actuator 2) is brought into play.

- To actuator 2

To actuator 1

+

Fig. 1. ‘Daisy-chaining’ of redundant actuators

Constrained MBPC exhibits essentially the same be-
haviour, providing that actuator saturation is modelled
by suitable hard constraints, and that integral action
is present (which it is in the standard problem formu-
lation). Suppose that a plant has redundant actuators,
and that one of these actuators becomes stuck at a posi-
tion other than its correct equilibrium position. The con-
troller ‘thinks’ that all the actuators are set to correct
equilibrium positions but, because of the failure, the out-
put does not approach the set-point. In the controller,
this discrepancy is attributed to an output disturbance;
this disturbance is assumed to persist at the same level
into the future, and the actuator settings are therefore
changed in order to compensate for the estimated dis-
turbance. Now the setting of the failed actuator does
not really change, so a discrepancy in the output vector
remains. But, since a similar error persists in the face
of an apparently ‘larger’ actuator signal, the controller
attributes this error to a larger disturbance than it esti-
mated previously. Consequently a greater change in the
setting of the i’th actuator is demanded. This process is
repeated until the controller ‘thinks’ that the failed ac-
tuator has reached its saturation level. It now moves the
other actuators more vigorously to combat the perceived
very large disturbance. The output approaches the set-
point more closely, and as it does so, the estimated error
is reduced, although not to zero. If the failure is com-
patible with the set-point specification, enough control
action is eventually applied to return the plant to the
correct set-point.

It is noteworthy that this behaviour occurs without the
need to anticipate certain patterns of actuator failure, or
to design schemes to handle them — it comes ‘for free’

with constrained MBPC. (We have assumed asymptotic
stability of the MBPC scheme in the presence of the
failure, in this scenario.) In this scenario the response of
the MBPC controller occurs only after it has ‘deduced’
from feedback information that the gain of the usual
actuator has been reduced. No Fault Detection infor-
mation is assumed to be available. Clearly availability
of external information about the problem would allow
corrective action to be taken sooner, and thus more ef-
fectively. (But the example given later in the paper will
show that in some cases the FDI information makes lit-
tle difference.)

Failures which can occur can be of three types:

(1) Actuator failures — reduced range of actuator, pos-
sibly to zero, or ‘hard-over’ failures (where an ac-
tuator remains at one of its extreme positions).

(2) ‘Internal’ failures — those in which some some part
of the plant fails, with the consequence of chang-
ing significantly the plant dynamics and gains. (An
actuator failure which changed only the dynamics
of the actuator itself, but not its steady-state effec-
tiveness, would be an ‘internal’ failure.)

(3) Sensor failures — some measurements become un-
available, or incorrect, or unusually noisy.

Of course many failures will be combinations of these.
For instance, losing some of the tail structure of an air-
craft due to metal fatigue or battle damage may cause a
control surface (actuator) to disappear, significant changes
in moments of inertia (hence an ‘internal’ failure), and
perhaps loss of a dynamic pressure measurement (sen-
sor). But to keep life tolerably simple, disregard such
combinations for the moment. This is not entirely un-
realistic. One of the most widely-publicised examples
of control reconfiguration in recent years was the Sioux
City incident (Hughes and Dornheim, 1989), in which a
rear engine and most hydraulic systems were lost, with
the pilot flying the aircraft by controlling thrust to the
two surviving engines. Although this was an example of
an initial failure causing further collateral failures, only
actuator failures were involved.

Actuator failures are probably the easiest to deal with,
providing there is some degree of redundancy. As argued
above, constrained MBPC accommodates such failures
to some extent, even if there is no explicit FDI informa-
tion to say that a failure has occurred. The situation is of
course improved if such information is available, and it is
easy to incorporate the information in the MBPC frame-
work, primarily by modifying the explicit constraints on
the corresponding actuator levels, or constraining the
appropriate element of ∆u to be zero if the actuator is
jammed.

‘Internal’ failures are more difficult to handle, unless



their effects are sufficiently small to be dealt with by
the inherent robustness of the normal control system.
Otherwise, FDI information is essential, in order to up-
date the internal model used by MBPC. Conceptually
this is straightforward and we shall argue below that
we have the modelling technology available to do this in
practice. The major difficulty is that of obtaining correct
FDI information.

Sensor faults are potentially the most difficult to deal
with, from the point of view of correcting for them within
MBPC. If a sensor provides the only measurement of a
controlled output variable, then it will not be possible
to continue control without modifying the MBPC cost
function. At the very least the control of that variable
will have to be abandoned. It may be possible to substi-
tute the control of another variable for the unavailable
one, if required, or perhaps to replace the cost func-
tion by one specifying higher-level objectives. But this
is moving into much deeper waters than in the cases
considered earlier. Some higher-level supervisor is now
required to adjust the MBPC formulation — and to de-
cide whether it needs adjustment. It is not clear to what
extent such a supervisor could be generic, in the sense
that it could deal with unanticipated failures. Not all
sensor failures need have such drastic consequences. If
the measurement which is lost does not appear directly
in the cost function, but is used to improve the quality
of some estimated variable (as in a data fusion scheme),
then it is the internal model used by MBPC which must
be updated; in this case the position is similar to that
after an ‘internal’ fault.

It is simplistic to believe that it is enough to change
the internal model, or to change the constraints, in or-
der to represent a fault, and that the MBPC controller
will thereafter issue satisfactory control inputs. In some
cases this will work. But in general the controller will
need to be re-tuned to give satisfactory performance.
‘Tuning’ here means adjusting the horizons and weights
which appear in the cost function, and possibly active
management of constraints — it seems to be necessary
to ‘soften’ certain constraints in order to retain feasibil-
ity, which is necessary to ensure stability in some cases.
We believe that it is not too fanciful to expect general
tuning strategies to be developed, which will be satis-
factory for the majority of cases. (It is important to
remember that in the context of recovery from failures,
emphasis is on ‘satisfactory’ performance, which may be
much worse than the performance one would design for
in normal operation.)

Another important feature of constrained predictive con-
trol is that, in addition to exhibiting integral action, it
has inherent ‘anti wind-up’ behaviour. Providing that
actuator saturation characteristics are modelled reason-

Fig. 2. Example of process for which complex model has
been built. (Courtesy of SAST Ltd)

ably accurately (or over-conservatively) by input con-
straints, then a predictive controller never sends a sig-
nal to an actuator which exceeds its capabilities, even if
it estimates that a constant or increasing disturbance
is present. This feature is of particular practical im-
portance in applications where switching between var-
ious controllers is anticipated, such as reconfiguration.
Without it, special measures would have to be taken to
‘protect’ each new controller against problems such as
integrator wind-up.

3. HIGH-FIDELITY COMPLEX MODELS

‘High-fidelity’ dynamic models are increasingly being
built of complex plant. They have been built and used
in the aircraft and space industries for many years, but
they are now being used also in the process industries.
For example, every oil platform operating in the North
Sea has an extremely complex first-principles dynamic
model of its gas and/or oil processing operations. Fig-
ure 2 shows a typical process for which such a model
has been constructed — in this case, a fluidised cat-
alytic cracking unit (Dolph, 1995). This complex pro-
cess includes a fractionator (F-1), a two-stage compres-
sor (C-1A, C-1B) powered by a steam turbine (CT-1), a
reflux drum (D-1), a naphtha absorber (F-3), a sponge
absorber (F-4), an amine scrubber (F-5), and other com-
ponents.

These models are typically not built for the purpose of
designing controllers in the first instance. They are usu-
ally built for training and safety certification purposes;
but since they exist, why not exploit them also for con-
trol purposes?



For our purposes it is necessary to have models which
are detailed enough to be able to represent failures. This
means that the entities which are liable to failure, such
as valves, sensors, compressors, control surfaces, etc,
must be represented as entities in the model, so that
it is possible either to remove the corresponding entity
or to modify it appropriately. The models referred to
in the previous paragraph typically meet this require-
ment, but they are generally embedded in proprietary
software, without open external interfaces. Fortunately
there is an emerging open methodology for building and
maintaining (ie modifying) models of the kind we need,
currently best represented by the object-oriented mod-
elling languages Omola and Dymola and their associ-
ated tools (Mattsson et al., 1993; Elmqvist, 1978; Mar-
quardt, 1996). There is also a pan-European project cur-
rently in progress to develop an object-oriented mod-
elling language, called Modelica, which will attempt to
support those features which have been found necessary
for object-oriented modelling in various domains, and
to combine the best features of various modelling lan-
guages. 2 (Mattsson and Elmqvist, 1997).

These languages result from the realisation that mod-
elling is quite distinct from simulation (Cellier, 1991).
Simulation languages such as Simulink rely on a pre-
analysis of the internal causality of a model by the model
builder, which is why they typically use block diagram
representations with fixed distinctions between the in-
put and output variables of each block. (Note that this
is not a point about graphical interfaces, but about the
conceptual representation of simulation models. All sim-
ulation languages adhering to the so-called CSSL stan-
dard, such as ACSL or ESL, suffer from the same lim-
itation, whether they are provided with a graphical in-
terface or not.) In general it is impossible, in such lan-
guages, to represent a single real-world entity by a single
entity in the model description. This is due to the fact
that even a small change in the connectivity of real-
world entities — such as removing a single entity — can
lead to a radical change of causalities.

A simple example of this is provided by a resistor. In
Simulink it is impossible to have a single block which will
represent even the humble resistor in all circumstances.
In fact infinitely many blocks are necessary. In addition
to the obvious representations of R and 1/R in case
the resistor is connected to a perfect current or perfect
voltage source, every passive circuit in which the resistor
is a component requires a two-port transfer matrix in
which the ‘R’ appears more than once, and inextricably
mixed up with other circuit components. Contrast this

2 More information on Modelica is available on the World-Wide
Web at URL: http://www.Dynasim.se/Modelica.

with an Omola representation, in which an individual
resistor is associated with a single ‘object’:

R138 ISA Resistor WITH R=10 ohms;

and the generic model of a resistor states the defining
relationships without implying causalities:

Resistor ISA TwoPort WITH
...
V = I * R;
...
END;

Note that the ‘=’ here denotes equality rather than as-
signment, so that no computational sequence is implied.
It is not necessary for I to be known first, and then to
compute V. Indeed, they will in general both be com-
puted ‘simultaneously’, after the ‘V=I*R’ relation has
been combined with all the relations defining the other
components in the circuit and their connections.

Separate Omola statements describe how R138 is con-
nected to other components. Furthermore, hierarchical
model descriptions are supported, so that one can build
reusable modules such as filters or phase-locked loops,
parametrized by component values. In fact, the method-
ology of model-building in such a language is the same
as that of defining classes in object-oriented program-
ming languages, namely top-down stepwise refinement
of behaviour definitions. So, for electric circuit models,
Omola has classes such as Two-port which can then be
given more specialised behaviours:

Bridged-T-Filter ISA Two-port
WITH
...
END;

Similarly, for chemical process models, basic classes such
as Tank can be defined, and then used to define more
specialised classes such as Pressure-Vessel.

It is worth re-emphasising that such reusable modules
are possible only because relations are described, rather
than computation flow. When a complete model is as-
sembled, its hierarchical description is ‘flattened’, so that
a large set of relations is obtained, which can then be
analysed and the appropriate solution sequence deter-
mined. The key fact is that once a model description
is complete, it is possible to obtain a simulation auto-
matically, whereas translation in the reverse direction,
from a simulation to a model, is not possible. Hence it is
also true that, in the event of a failure, it is possible to
update an Omola-type description and then obtain the
resulting simulation model automatically, whereas this
is not possible if one starts with a typical simulation



language description.

Figure 3 shows a simplified version of an ‘auto-cascade’
refrigeration process used for liquefying natural gas (Gosney,
1982). A mixture of two refrigerants (propane and methane)
is compressed by the compressor A and partially con-
densed in the condenserB. The remaining vapour (mostly
methane) is cooled in the heat exchanger C and con-
densed in heat exchanger D. The condensate from B
(mostly propane) is cooled in heat exchanger C and
expanded to low pressure through valve E, causing its
temperature to fall to about −42 ◦C. The condensed
methane is expanded to low pressure through valve F ,
its temperature falling to about−161 ◦C in consequence.
After expansion, the resulting two-phase (vapour/liquid)
methane passes through heat exchanger D again, where
the liquid phase evaporates, obtaining the required en-
thalpy of evaporation from the natural gas and from
the methane vapour coming from C, thus cooling them.
The methane vapour is then mixed with the two-phase
propane coming from valve E and passes through heat
exchanger C, where the liquid propane evaporates, cool-
ing the incoming natural gas, the methane vapour flow-
ing from B, and the propane liquid flowing from B. Fi-
nally the vapour mixture is returned to the compressor
A.

A

B C DE

F

G

Natural gas LNG

Fig. 3. Natural gas liquefaction process

This simplified process is not,in fact, thermodynamically
feasible, because the range of temperatures is too great
to be attained by only two stages of heat exchange with
practical refrigerants. In practice at least one more re-
frigerant — ethylene — and hence at least one more
stage of heat exchange and expansion is needed. Fur-
thermore, greater efficiency is obtained by using from 6
to 10 such stages, which is typical for an actual process.
Each stage, comprising a heat exchanger and an expan-
sion valve, is a good example of an entity that could be
modelled as a reusable Omola module.

It is not feasible to react to every possible kind of fail-
ure by automatic update of a model, even if FDI in-
formation correctly identifies the failure. Suppose that

one of the heat exchangers ruptures, for example. The
change in its behaviour is quite drastic, as it ceases to
be a heat exchanger and becomes a tank filling with liq-
uid instead, with expansion occurring inside it as well.
Representing this change would require understanding
the physics governing the new behaviour, and formulat-
ing the appropriate relations — not something which
could be automated. On the other hand, suppose that
the pipe connecting heat exchanger C to the expansion
valve E ruptures. This phenomenon is much easier to
represent, by connecting the pipe to an infinite reservoir
at atmospheric pressure. It would be feasible to have a
pre-defined model of a pipe rupture available for use in
such cases, since this is a kind of failure which could be
expected to occur. (Note that this does not imply antic-
ipating specific failures, since the location of a rupture
would not be assumed in advance — the module could
be connected to whatever section of pipe was affected.)
In practice a simpler solution would be available, since
the ruptured section of pipe would almost certainly be
isolated from the rest of the process by valves (not shown
in the figure). This is easily represented as a model up-
date, either by closing the isolation valves, if they exist
as entities in the model, or by reducing the diameter of
that pipe to zero, etc.

Correct management of the interface between the FDI
system and the high-fidelity model, in order to allow
such updates to be performed correctly, is not trivial,
and requires some research. But it is probably one of
the easier achievements required by our scheme.

An important consideration for our application is the
speed of solution of complex high-fidelity models, which
are necessarily nonlinear and therefore do not admit an-
alytical solutions. It appears that some of the propri-
etary models mentioned earlier can be run very quickly
on high-performance workstations without requiring special-
purpose hardware (Lin and Griffiths, 1994). This is achieved
by modularisation of the models, with independent so-
lution of each model and periodic reconciliation between
modules. This approach currently depends on under-
standing of the model, however, and cannot be fully au-
tomated. On the other hand, advances in hardware per-
formance will probably make such special techniques un-
necessary, at least for low-bandwidth applications such
as process control.

4. APPROXIMATION AND IDENTIFICATION

While complex high-fidelity models are needed for rep-
resenting particular failure conditions in detail, they are
not suitable for direct use as internal models in the con-
strained MBPC. It is a commonplace that control typ-



ically requires only simple models, which approximate
the input-output behaviour of the plant to a ‘reason-
able’ extent. Not only are complex models not required,
but they are harmful because they impair the real-time
performance of MBPC schemes. For high solution speeds
MBPC needs a linear model, in order to solve nothing
more complicated than a QP problem. A simple model
is desirable for the same reason.

The obvious way of obtaining a simple linear model is to
linearise the complex nonlinear model about an operat-
ing condition and then simplify it by model reduction.
However the initial linearisation is impractical by either
symbolic differentiation, or by numerical differentiation
as performed in typical simulation software. (Although
symbolic differentiation is possible using computer alge-
bra, even for very complex systems, high-fidelity mod-
els used in the process industries are very far from be-
ing in the f(x, ẋ, u, t) = 0 form, with ‘nice’ functions
f — they often contain elements such as thermody-
namic databases, for instance. Numerical differentiation
is prone to major problems, for example missing dynam-
ics which involve time delays.)

A more practical and effective way of obtaining a simple
linear model is to perform some simulation experiments
on the complex model, and to ‘identify’ a model for
the data obtained from such experiments. In addition to
overcoming the problems mentioned above, this method
can actually produce more accurate models than the
theoretically linearised model, because the level of per-
turbation can be controlled, which allows some aspects
of nonlinearities to be captured, whereas the theoretical
approach is valid only for infinitesimal perturbations.

A very effective way of performing identification on data
obtained from complex models is to use the so-called
‘subspace methods’ (Larimore, 1983; Verhaegen and Dewilde,
1992; Overschee and Moor, 1996), and closely-related
approximate realization algorithms (which are reviewed
in (Maciejowski, 1996)). These are very effective for mul-
tivariable systems, generally giving very good reproduc-
tion of input-output behaviour with relatively simple
models (as measured by the state dimension). One of
their great advantages is that they can be run automat-
ically, without user intervention and decision making.
(The only essential decision needed is on the state di-
mension, and that can be automated. There are varia-
tions of the subspace methods suitable for use when the
plant is operating under feedback.

Once a subspace or similar method has been used to ob-
tain an initial model from a complex model, parameter
estimation on real plant data can be used to improve
the model, or to ‘track’ gradual changes in the plant.
Balanced parametrizations may be particularly suitable

for this purpose, since they are well-conditioned numer-
ically, and they ensure stability of the estimated model
(Chou and Maciejowski, 1997; Maciejowski, 1996).

A further question to be considered is which linearised
model to use. Recall that the model required by MBPC
is a long-range predictor. Furthermore, this predictor
needs to perform well when operating in a feedback loop.
The issues raised in (Gevers, 1993) are relevant here.

5. FAULT DETECTION AND IDENTIFICATION

Fault detection and identification (FDI) is the key ele-
ment of this whole proposal, and probably the most dif-
ficult one to make successful. We will, however, say less
about it than about the other elements, due to lack of
expertise in this area. There is intense activity on FDI
and progress is being made, but it must be admitted
that neither of these facts guarantees eventual success.
The problem is inherently very difficult, particularly as
the plant will be operating in closed loop, so that the
controller may to some extent be compensating for the
effect of a failure — the classic dilemma of ‘dual control’.

But there are also some reasons for optimism:

(1) The advent of self-validating components (Faulkner,
1993; Henry and Wood, 1992) will make the FDI
task easier, and trivial for some failures. The great-
est scope for self-validation seems to be with sen-
sors.

(2) This proposal is particularly aimed at sudden and
major failures, which are easier to detect and iden-
tify than gradual deterioration of components. For
example, the rupture of a pipe in the gas lique-
faction plant of the example given earlier would be
easily detected, at least by loss of pressure and flow,
even if not by direct observation.

(3) The availability of high-fidelity models (and corre-
sponding measurements) in effect makes more in-
formation available to the FDI task, which allows
the sensitivity/false alarm trade-off to be shifted to
a better level.

6. EXAMPLE

In this section we present an example of reconfigura-
tion performed by an MBPC flight controller, when the
rudder of an aircraft jams, and it is required to change
the aircraft heading (yaw angle). A linearised model of
a civil airliner, derived from the ‘RCAM’ model used in
the recent GARTEUR Flight Control Design Challenge
(Magni et al., 1997), is used for this example. The in-
ternal model used by the MBPC controller is the same



linear model. (So exact modelling is assumed initially.)
There are 3 controlled variables: the yaw angle, the roll
angle, and the sideslip, and 4 actuators: the rudder, the
ailerons, the tailplane, and the engine thrust. A rudder
jam (at the neutral position) is simulated by disconnect-
ing the rudder demand signal (issued by the controller)
from the rudder. A step demand is then made on the
yaw angle. The results are shown in Figures 4 and 5.
Each of the sub-figures in these figures shows 5 cases:

Case 1 Normal operation of the rudder. The rudder
and aileron positions are constrained to be within ±2
units on the graphs, which represents ±20◦ in each
case.

Case 2 Jammed rudder. No FDI information supplied
to the controller, so that the controller is not aware
of the failure. The constraints on the rudder position
demand are removed, in order to see the effects of
actuator constraints (known to the controller) in this
scenario. (The rudder demand has been reduced by
a factor of 300 in the figure for this case.) Of all the
cases, this gives the slowest yaw angle response.

Case 3 Jammed rudder. No FDI information supplied
to the controller, but the usual ±20◦ constraints are
restored on the rudder position. The yaw response is
significantly faster in this case, because the controller
stops relying on the rudder sooner, and makes more
use of the ailerons, as can be seen from the larger roll
angle.

Case 4 Jammed rudder. FDI information supplied —
the constraint on the rudder demand has now been
tightened to ±0◦, so that the controller knows that it
cannot move the rudder. In fact this makes so little
difference that the plots for Cases 3 and 4 cannot be
distinguished from each other. The reason for this is
that in each case the controller moves the rudder de-
mand to its constraint almost immediately, and then
uses the ailerons and other actuators. Since the ac-
tual rudder position is the same in both cases, the
two behaviours are virtually identical.

Case 5 Jammed rudder. FDI information supplied, as
in Case 4. But now the weight on roll errors in the cost
function has been reduced by a factor of 3, approx-
imately. This leads to a much faster response of the
yaw angle. It can be seen that a much larger roll angle
develops during the first 10 seconds of the manoeuvre
when this weight has been reduced, and the lift then
has a larger component in the horizontal plane, which
changes the aircraft’s heading.

The manoeuvre simulated here is rather artificial. A
more practical requirement than changing only the yaw
angle would be to change the aircraft heading, with-
out much concern for what combination of body an-
gles was most appropriate to achieve it. Elsewhere we
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Fig. 4. Yaw angle step demand with failed rudder: Con-
trolled outputs
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Fig. 5. Yaw angle step demand with failed rudder: Ac-
tuator demands. (Key as for previous figure.)

have argued (Huzmezan and Maciejowski, 1997a) that a
promising role for MBPC in flight control is at the flight
management level, without considering reconfiguration.
This example shows that such a higher level role is also
appropriate for reconfiguration, since an MBPC-based
flight manager would issue appropriate yaw, roll and
sideslip set-points. In this case, however, the rudder jam
would no longer be just an ‘actuator fault’, but what we
earlier called an ‘internal fault’. However, a complicated
model update would not be needed if the actuator posi-
tion were a state variable of the model, since the failure
could then be represented as a state constraint.



7. CONCLUSION

The objective of our proposal is to find systematic ways
of reconfiguring control systems in the event of major
failure or damage. Benefits of doing this would be to
enable safe operation or shut-down of industrial com-
plexes following component failure, safe return to base
of an aircraft following battle damage, etc.

Of course there are many problems with getting the
scheme we have outlined to work. The main research
problems include:

(1) Getting reliable FDI.
(2) Developing strategies for tuning the MBPC crite-

rion on-line, and for constraint management, which
will allow provably good reconfiguration schemes to
be developed.

(3) Ensuring the approximation/identification algorithms
work in closed-loop and produce models suitable for
control.

(4) Getting the whole scheme to run quickly enough.
(Not a problem for process applications, but defi-
nitely the bottleneck for aerospace.)

(5) Automatic updating of the high-fidelity models.
(6) Developing an appropriate conceptual ‘system ar-

chitecture’ for integrating the 4 technologies suc-
cessfully.

We believe that there is a good chance of making the
whole scheme work. The fact that MBPC controllers are
used routinely in some industrial sectors, that complex
models are built and run, that we have excellent meth-
ods for simplifying models, and that FDI is a major
industrial and academic research area, together support
this hypothesis. The approach may seem rather ‘brute
force’, but it offers a unifying approach to reconfigura-
tion problems, and offers much scope for good theoreti-
cal research which is needed in order to make it work.
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