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Abstract

Modeling of distributed parameter processes is a challenging problem because of their complex spatio-temporal nature, nonlinearities
and uncertainties. In this study, a spatio-temporal Hammerstein modeling approach is proposed for nonlinear distributed parameter pro-
cesses. Firstly, the static nonlinear and the distributed dynamical linear parts of the Hammerstein model are expanded onto a set of spa-
tial and temporal basis functions. In order to reduce the parametric complexity, the Karhunen–Loève decomposition is used to find the
dominant spatial bases with Laguerre polynomials selected as the temporal bases. Then, using the Galerkin method, the spatio-temporal
modeling will be reduced to a traditional temporal modeling problem. Finally, the unknown parameters can be easily estimated using the
least squares estimation and the singular value decomposition. In the presence of unmodeled dynamics, a multi-channel modeling frame-
work is proposed to further improve the modeling performance. The convergence of the modeling can be guaranteed under certain con-
ditions. The simulations are presented to show the effectiveness of this modeling method and its potential to a wide range of distributed
processes.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Many of industrial processes such as fluid flow, convec-
tion and diffusion reaction process, and thermal process
belong to distributed parameter systems (DPS). They are
a class of infinite-dimensional dynamical systems because
the inputs, outputs, states and parameters vary both tem-
porally and spatially. Traditional lumped models cannot
properly describe this class of spatially distributed systems.
Although partial differential equations (PDEs) can accu-
rately predict the nonlinear and spatially distributed
dynamical behavior, it is difficult to apply due to limited
computation capacity for numerical implementation and
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finite actuators/sensors for practical control. Therefore a
finite-dimensional model is often desirable. Practically,
obtaining a proper finite-dimensional model is a difficult
and challenging problem due to the spatio-temporal cou-
pling and nonlinear uncertainties existing in the processes.

If the process is known, traditional methods such as
finite difference and finite element can be easily applied to
discretization of the process. But they will lead to a high-
order ordinary differential equation (ODE) which is not
suitable for real-time control. Under some conditions, a
low-order ODE model may be possible by using weighted
residual methods [24] including the Galerkin method, the
collocation method and the approximate inertial manifold
method [6], etc. Due to complex boundary conditions and
external disturbances, it is very difficult to obtain a good
model only from physical insights. Therefore, it is neces-
sary to develop a data-driven identification method.
-temporal Hammerstein modeling approach ..., J. Process Contr.
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Fig. 1. Spatio-temporal Hammerstein system.
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For the unknown linear DPS, a linear model can be
derived from the input–output data using the singular
value decomposition (SVD) method [14] for a linear time-
invariant distributed parameter system or the Karhunen–
Loève (KL) expansion combination with the SVD [36]
for a linear time-varying distributed parameter system.
However, a linear model is only able to approximate the
nonlinear system around a given working point.

For the unknown nonlinear DPS, some basis function
expansion based models such as nonlinear autoregressive
with exogenous input model [7] and artificial neural net-
works [25,28,10] can be used to establish the dynamical
relationship between the coefficients of basis functions
and the inputs. However such models may be very complex
which are not suitable for practical control.

In the traditional nonlinear system identification, the
block-oriented nonlinear models have been widely used
because of their simple structures, abilities to approximate
a large class of nonlinear processes and efficient control
schemes. They consist of the interconnection of linear time
invariant (LTI) systems and static nonlinearities. Within
this class, two common model structures are: the Hammer-
stein model, which consists of the cascade connection of a
static nonlinearity followed by a LTI system, and the Wie-
ner model, in which the order of the linear and the nonlin-
ear blocks is reversed. These models have been successfully
used to represent many practical nonlinear processes
[12,13]. To the authors’ knowledge, so far the block-ori-
ented nonlinear models are only studied for lumped param-
eter systems. This study will extend the traditional
Hammerstein modeling into nonlinear distributed parame-
ter systems.

For the traditional Hammerstein modeling, several
methods have been proposed in the literature
[21,29,1,2,4,37,11,17,31,16]. It is notable that an algorithm
based on the least squares estimation and the singular value
decomposition (LSE–SVD) is proposed for Hammerstein–
Wiener systems [1] and extendedly studied for Hammer-
stein systems [16]. The algorithm is derived from the use
of basis functions for the representation of the linear and
the nonlinear parts. In the case of model matching, the con-
sistency of the estimates can be guaranteed under certain
conditions. However, in the presence of unmodeled dynam-
ics, further studies are required.

In this study, in order to model the nonlinear distributed
parameter system, a spatio-temporal Hammerstein model
is proposed for the first time by adding the space variables
into the traditional Hammerstein model, which consists of
the cascade connection of a static nonlinearity followed by
a distributed dynamical linear time-invariant system.

A basic identification algorithm based on LSE–SVD is
designed as follows. Firstly, the nonlinear and the distrib-
uted linear parts are expanded onto spatial and temporal
basis functions with unknown coefficients. In order to
reduce the parametric complexity, the KL decomposition
is used to find the dominant spatial basis functions and
Laguerre polynomials are selected as the temporal basis
Please cite this article in press as: C. Qi et al., A multi-channel spatio
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functions. Then, using the Galerkin method, the spatio-
temporal modeling will turn into a traditional modeling
problem in time domain. Subsequently, least squares tech-
niques can be used to identify a parameter matrix charac-
tering the product of parameters of the linear and the
nonlinear parts. Finally, by using SVD, optimal estimates
of the parameters of each part can be obtained. This basic
identification algorithm can provide consistent estimates
under some assumptions in the case of model matching.

In the presence of unmodeled dynamics, a multi-channel
identification algorithm is proposed to compensate the
residuals of the single-channel model and further reduce
the modeling error. This algorithm is noniterative and
numerically robust since it is based only on the least
squares estimation and the singular value decomposition.
The convergent estimates can be guaranteed under proper
assumptions. The spatio-temporal Hammerstein model can
be easily used for many applications such as model predic-
tive control due to its simple nonlinear structure. The sim-
ulations demonstrate the effectiveness of the proposed
modeling method.

The main contributions can be summarized as follows:

(1) The traditional Hammerstein modeling is extended
into nonlinear distributed parameter systems.

(2) A basic identification algorithm based on LSE–SVD
is developed by using the Galerkin method with the
KL decomposition and the Laguerre polynomials
expansion.

(3) In the presence of unmodeled dynamics, a multi-
channel identification approach is proposed to fur-
ther reduce the modeling error.

(4) The estimates are proved to be convergent under
some conditions.

The rest of the paper is organized as follows. In Section
2, the spatio-temporal Hammerstein system is proposed.
The single-channel identification algorithm is derived in
Section 3. The multi-channel modeling approach and anal-
ysis are provided in Section 4. Simulation examples illus-
trating the performance of the proposed modeling
approach are presented in Section 5, and finally, some con-
clusions are provided in Section 6.
2. Spatio-temporal Hammerstein system

A spatio-temporal Hammerstein system is shown in
Fig. 1. The system consists of a static nonlinear element
Nð�Þ : R! R followed by a distributed linear time-invari-
ant system
-temporal Hammerstein modeling approach ..., J. Process Contr.
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yðx; tÞ ¼
Xt

s¼0

Z
X

gðx; f; sÞvðf; t � sÞdf; ð1Þ

with transfer function G(x, f, q) (1 � 1), where x and f are
spatial variables defined on the domain X, and q stands for
the forward shift operator. The input–output relationship
of the system is then given by

yðx; tÞ ¼
Xt

s¼0

Z
X

gðx; f; sÞNðuðf; t � sÞÞdfþ dðx; tÞ; ð2Þ

where uðx; tÞ 2 R and yðx; tÞ 2 R are the input and output
at time t, and dðx; tÞ 2 R includes the unmodelled dynamics
and the stochastic disturbance. For easy understanding, the
integral operator is used for spatial operation and sum
operator for temporal operation. In this study, only the sin-
gle-input–single-output (SISO) system is considered. The
extension of the results to the multi-input–multi-output
(MIMO) system is straightforward.

The problem is to estimate N and G from the input–out-
put data {u(fi, t), y(xj, t)}, (i = 1, . . ., nu, j = 1, . . ., ny, t = 1,
. . ., nt), where fi, xj 2 X, nu and ny are the number of sam-
pled spatial points of the input and output, and nt is the
time length. For simplicity, assume that the spatial points
fi and xj are uniformly distributed over the spatial domain.

3. Basic identification approach

3.1. Basis function expansion

In general, the input u(x, t) has finite degrees of freedom
since only a finite number of actuators are available in
practice. Thus assume that the input u(x, t) can be formu-
lated in terms of a finite number of spatial input basis func-
tions fwiðxÞg

m
i¼1 as follows

uðx; tÞ ¼
Xm

i¼1

wiðxÞaiðtÞ; ð3Þ

where aiðtÞ ¼
R

X uðx; tÞwiðxÞdx is the time coefficient (imple-
mental input signal), wi(x) describes how the control action
ai(t) is distributed in the spatial domain X, and m is the
number of actuators, which can be determined by physical
knowledge.

Ideally, the output y(x,t) and the error d(x,t) can be
expressed by an infinite set of orthonormal spatial output
basis functions fuiðxÞg

1
i¼1 as follows

yðx; tÞ ¼
X1
i¼1

uiðxÞbiðtÞ; ð4Þ

dðx; tÞ ¼
X1
i¼1

uiðxÞdiðtÞ; ð5Þ

where biðtÞ ¼
R

X yðx; tÞuiðxÞdx and diðtÞ ¼
R

X dðx; tÞuiðxÞdx
are the time coefficients, respectively. This is because of
inherently infinite dimensional characteristic of distributed
parameter system. Practically, both y(x, t) and d(x, t) can
be truncated into n dimensions as below
Please cite this article in press as: C. Qi et al., A multi-channel spatio
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ynðx; tÞ ¼
Xn

i¼1

uiðxÞbiðtÞ; ð6Þ

dnðx; tÞ ¼
Xn

i¼1

uiðxÞdiðtÞ: ð7Þ

ui(x) are usually selected as standard orthonormal func-
tions such as Fourier series, Legendre polynomials, Jacobi
polynomials and Chebyshev polynomials [9]. In this study,
the KL decomposition [23] is used to identify the empirical
dominant basis functions from the process data. Among all
linear expansions, the KL expansion is the most efficient in
the sense that for a given approximation error, the number
of KL bases required is minimal. Owing to this, the KL
decomposition can help to reduce the number of estimated
parameters. Details of the KL method are presented in
Appendix 1.

Assume that the intermediate output vðx; tÞ 2 R can be
described as

vðx; tÞ ¼ Nðuðx; tÞÞ ¼
Xm

i¼1

Xv

j¼1

wiðxÞbjhjðaiðtÞÞ; ð8Þ

where hjð�Þ : R! Rðj ¼ 1; . . . ; vÞ are nonlinear basis func-
tions and bj 2 Rðj ¼ 1; . . . ; vÞ are coefficients. Typically,
the nonlinear functions hj(�) can be chosen as polynomials,
radial basis functions, wavelets [27] and so on.

Assuming that the kernel g(x, f, s) in (2) is absolutely
integrable on time domain [0,1) at any spatial point x
and f, which means that the corresponding model is stable,
then it can be represented by means of orthonormal tempo-
ral basis functions. Theoretically, the kernel is supposed to
be expanded onto spatial output bases fuiðxÞg

1
i¼1, spatial

input bases fwiðxÞg
m
i¼1 and temporal bases f/iðtÞg

1
i¼1 as

follows

gðx; f; sÞ ¼
X1
i¼1

Xm

j¼1

X1
k¼1

ai;j;kuiðxÞwjðfÞ/kðsÞ; ð9Þ

where ai;j;k 2 Rði ¼ 1; . . . ;1; j ¼ 1; . . . ;m; k ¼ 1; . . . ;1Þ
are constant coefficients of basis functions ui (x)wj(f)/k(s).
Practically, a finite-dimensional truncation

gn;lðx; f; sÞ ¼
Xn

i¼1

Xm

j¼1

Xl

k¼1

ai;j;kuiðxÞwjðfÞ/kðsÞ; ð10Þ

is often good enough for a realistic approximation, where n
and l are the dimension of output bases and temporal
bases, respectively. /i(t) can be selected as Laguerre func-
tions [32], Kautz functions [33] and generalized orthonor-
mal basis functions [18]. Here, Laguerre functions are
chosen for the development, due to their simplicity and
robustness to the choice of sampling period and model or-
der [32]. Details of Laguerre functions are shown in
Appendix 2.

Substitution of (4), (5), (8) and (9) into (2) with a n-
dimensional truncation of output bases will have
-temporal Hammerstein modeling approach ..., J. Process Contr.
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ynðx; tÞ ¼
Xt

s¼0

Z
X

Xn

i¼1

Xm

j¼1

X1
k¼1

ai;j;kuiðxÞwjðfÞ/kðsÞ
Xm

r¼1

�
Xv

s¼1

wrðfÞbshsðarðt � sÞÞdfþ dnðx; tÞ; ð11Þ

To make the kernel gn,l(x, f, s) explicit, (11) can be rewrit-
ten as

ynðx; tÞ ¼
Xt

s¼0

Z
X

Xn

i¼1

Xm

j¼1

Xl

k¼1

ai;j;kuiðxÞwjðfÞ/kðsÞ
Xm

r¼1

�
Xv

s¼1

wrðfÞbshsðarðt � sÞÞdfþ ~dnðx; tÞ; ð12Þ

where

~dnðx; tÞ ¼
Xn

i¼1

uiðxÞ~diðtÞ;

~diðtÞ ¼
Xt

s¼0

Z
X

Xm

j¼1

X1
k¼lþ1

ai;j;kwjðfÞ/kðsÞ

�
Xm

r¼1

Xv

s¼1

wrðfÞbshsðarðt � sÞÞdfþ diðtÞ:
3.2. Temporal model

Eq. (12) can be further simplified intoXn

i¼1

uiðxÞbiðtÞ ¼
Xn

i¼1

uiðxÞ
Xm

j¼1

Xl

k¼1

ai;j;k

Xm

r¼1

�
Xv

s¼1

bswj;r‘k;s;rðtÞ þ
Xn

i¼1

uiðxÞ~diðtÞ; ð13Þ

where

wj;r ¼
Z

X
wjðfÞwrðfÞdf; ð14Þ

‘k;s;rðtÞ ¼
Xt

s¼0

/kðsÞhsðarðt � sÞÞ; ð15Þ

Using the Galerkin method [6], the projection of (13) onto
the output basis functions uh(x) (h = 1, . . ., n) will lead to
the following n equationsXn

i¼1

Z
X

uhðxÞuiðxÞdxbiðtÞ ¼
Xn

i¼1

Z
X

uhðxÞuiðxÞdx
Xm

j¼1

Xl

k¼1

ai;j;k

�
Xm

r¼1

Xv

s¼1

bswj;r‘k;s;rðtÞ þ
Xn

i¼1

�
Z

X
uhðxÞuiðxÞdx~diðtÞ:

Since fuiðxÞg
n
i¼1 are orthonormal, then we have

bðtÞ ¼
Xm

j¼1

Xl

k¼1

Xv

s¼1

aj;kbsLj;k;sðtÞ þ ~dðtÞ; ð16Þ
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where

bðtÞ ¼ ½b1ðtÞ; � � � ; bnðtÞ�T 2 Rn; ð17Þ
~dðtÞ ¼ ½~d1ðtÞ; � � � ; ~dnðtÞ�T 2 Rn: ð18Þ
aj;k ¼ ½a1;j;k; � � � ; an;j;k�T 2 Rn; ð19Þ

Lj;k;sðtÞ ¼
Xm

r¼1

wj;r‘k;s;rðtÞ 2 R; ð20Þ
3.3. Least square estimation

Eq. (16) can be expressed in a linear regression form

bðtÞ ¼ HT UðtÞ þ ~dðtÞ; ð21Þ

where

H¼ ½a1;1b1; � � � ;a1;1bv; � � � ;am;lb1; � � � ;am;lbv�
T 2Rn�mlv; ð22Þ

UðtÞ ¼ ½L1;1;1ðtÞ; � � � ;L1;1;vðtÞ; � � � ;Lm;l;1ðtÞ; � � � ;Lm;l;vðtÞ�T 2Rmlv:

ð23Þ

In practice, u and y are uniformly sampled over the spatial
domain. In this case, b(t) can be computed from the point-
wise data y(x, t) using spline interpolation in the spatial do-
main. The accurate a(t) = [a1(t), � � �, am(t)]T can be
obtained from u(x, t) using the inversion operation of a
matrix formed by the basis functions provided that nu P m.
Then, U(t) can be constructed from a(t).

Considering nt set of temporal data fUðtÞ; bðtÞgnt
t¼1, it is

well known from [20] that by minimizing a quadratic crite-
rion on the prediction errors

bH ¼ arg minH
1

nt

Xnt

t¼1

kbðtÞ �HT UðtÞk2

( )
; ð24Þ

Hcan be estimated using the least squares method as
follows

bH ¼ 1

nt

Xnt

t¼1

UðtÞUT ðtÞ
 !�1

1

nt

Xnt

t¼1

UðtÞbT ðtÞ
 !

; ð25Þ

provided that the indicated inverse exists.
The next problem is how to estimate the parameters aj,k

(j = 1, . . ., m, k = 1, . . ., l) and bs (s = 1, . . ., v) from the
estimate bH in (25).

3.4. Singular value decomposition

For convenience, we define a ¼ ½aT
1;1; � � � ; aT

m;l�
T 2 Rnml

and b ¼ ½b1; � � � ; bv�
T 2 Rv. It is clear that the parametriza-

tion (8) and (9) is not unique, since any parameter vectors
arand br�1, for some nonzero constant r, provide the same
input/output equation (12). A technique that can be used to
obtain uniqueness is to normalize the parameter vectors a
(or b), for instance assuming that kbk2 = 1. Under this
assumption the parametrization (8) and (9) is unique.

From the definition of the parameter matrix H in (22), it
is easy to see that
-temporal Hammerstein modeling approach ..., J. Process Contr.
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Fig. 2. Multi-channel identification of spatio-temporal Hammerstein
model.
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H ¼ blockvecðHabÞ;
where blockvec(Hab) is the block column matrix obtained
by stacking the block columns of Hab on the top of each
other, and Hab 2 Rv�nml has been defined as

Hab,

b1a
T
1;1 � � � b1a

T
m;l

b2a
T
1;1 � � � b2a

T
m;l

..

. . .
. ..

.

bva
T
1;1 � � � bva

T
m;l

2666664

3777775 ¼ baT : ð26Þ

Thus an estimate bHab of the matrix Hab can be obtained
from the estimate bH in (25). The problem now is how to
estimate the parameter matrices a and b from bHab.

In order to solve this problem, an important fact should
be uncovered first. It is clear that the closest, in the Frobe-
nius norm sense, approximation of bHab is not just a single
pair of â and b̂ but a series of pairs ðb̂c; âcÞ; ðc ¼ 1; . . . ; pÞ
that solve the following optimization problem

ðb̂c; âcÞ ¼ arg min
ac;bc

bHab �
Xp

c¼1

bcðacÞT
�����

�����
2

F

8<:
9=;; ð27Þ

where the Frobenius norm of a matrix A 2 Rm�n is defined
as kAkF ¼ ð

Pm
i¼1

Pn
j¼1A2

ijÞ
1=2.

To illustrate this fact, a lemma [15] should be
introduced.

Lemma 1. Let bHab 2 Rv�nml have rank c P 1, and let the

economy-size SVD of bHab be given by

bHab ¼ U cRcV T
c ¼

Xc

i¼1

rilit
T
i ; ð28Þ

where the singular matrix Rc = diag{ri} such that

r1 P � � �P rc > 0;

and where the matrices U c ¼ ½l1; . . . ; lc� 2 Rv�c and

V c ¼ ½t1; . . . ; tc� 2 Rnml�c contain only the first c columns of

the unitary matrices U 2 Rv�v and V 2 Rnml�nml provided

by the full SVD of bHab,bHab ¼ URV T ;

respectively. Then "p 6 c, the following equation holds

ðb̂c; âcÞ ¼ arg min
ac;bc

bHab �
Xp

c¼1

bcðacÞT
�����

�����
2

F

8<:
9=;

¼ ðlc; tcrcÞ; ðc ¼ 1; . . . ; pÞ; ð29Þ

where ðb̂c; âcÞ is defined as the cth channel, and p is the num-
ber of channels. The parameter approximation error is given

by

ep ¼ bHab �
Xp

c¼1

bcðacÞT
�����

�����
2

F

¼
Xc

c¼pþ1

r2
c : ð30Þ

Based on Lemma 1, the estimated parameters â and b̂
can be obtained by
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ðb̂; âÞ ¼ arg min
a;b

fk bHab � bðaÞTk2
F g ¼ ðl1; t1r1Þ: ð31Þ

The consistency in the previous work [1,16] can be ex-
tended to this basic identification approach under certain
conditions (e.g., model matching and zero-mean distur-
bance). However, if such conditions are not satisfied, a
multi-channel identification approach proposed in the fol-
lowing section may provide a better solution.

4. Multi-channel identification approach

Definition 1. The system (2) is named as a single-channel
Hammerstein system. The multi-channel Hammerstein
system is formed by the parallel connection of p single-
channel Hammerstein systems.

For a single-channel Hammerstein model, we can see
from (26) that rank(Hab) = 1, since Hab is the product of
a column vector b and a row vector aT. However, generally
speaking, its estimate bHab from process data cannot be
exactly expressed as the product of a column vector and
a row vector due to unmodeled dynamics and disturbance.
That is rankð bHabÞ > 1. In addition, r2/r1 (see (28)) cannot
always be small enough to make the parameter approxima-
tion error (30) acceptable. Thus, it is very necessary to add
more channels to compensate the modeling residuals.

The proposed multi-channel identification methodology
is shown in Fig. 2.

A sequential identification algorithm is designed as fol-
lows. Firstly, the 1st channel model is estimated using the
basic identification algorithm from the input–output data
fuðx; tÞ; yðx; tÞgnt

t¼1. Secondly, the 1st channel model error
e1ðx; tÞ ¼ yðx; tÞ � ŷ1

nðx; tÞ is regarded as the new output,
and then the 2nd channel model is identified. Similarly,
e2(x, t), � � �, ep�1(x, t) can determine the 3rd, � � �, pth chan-
nel models, and so on.

However the sequential identification algorithm for each
channel may lead to a computational burden problem.
According to Lemma 1, the multi-channel identification
-temporal Hammerstein modeling approach ..., J. Process Contr.
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algorithm can be easily implemented simultaneously as
below

Algorithm 1

Step 1 : Determine the input basis functions fwiðxÞg
m
i¼1,

find the output basis functions fuiðxÞg
n
i¼1 using

the KL method, choose the Laguerre polynomials
f/iðtÞg

l
i¼1, then obtain the corresponding temporal

coefficients faðtÞgnt
t¼1 and fbðtÞgnt

t¼1 of the input
fuðxi; tÞgnu;nt

i¼1;t¼1 and output fyðxj; tÞgny ;nt

j¼1;t¼1

respectively.
Step 2 : Compute the linear regressors U(t) according to

(15) and (23) using faðtÞgnt
t¼1, then compute the

least squares estimate bH as in (25), and construct
the matrix bHab such that bH ¼ blockvecð bHabÞ.

Step 3 : Compute the economy-size SVD of bHab as in
Lemma 1, and the partition of this decomposition
as in (28).

Step 4 : Compute the estimates of the parameter vectors
âc and b̂c as b̂c ¼ lc and âc ¼ tcrcðc ¼ 1; . . . ; pÞ,
respectively.

Remark 1. It is important to note that the algorithm intrin-
sically delivers estimates that satisfy the uniqueness condi-
tion kb̂ck2 ¼ 1, since the matrix lc in the SVD of bHab is a
unitary matrix.
4.1. Multi-channel Hammerstein model

Based on Algorithm 1, a multi-channel spatio-temporal
Hammerstein model consisting of p channels

ŷnðx; tÞ ¼
Xp

c¼1

Xt

s¼0

Z
X

Xn

i¼1

Xm

j¼1

Xl

k¼1

âc
i;j;kuiðxÞwjðfÞ/kðsÞ

�
Xm

r¼1

Xv

s¼1

wrðfÞb̂c
shsðarðt � sÞÞdf; ð32Þ

is constructed to approximate the nonlinear DPS as shown
in Fig. 3. Each channel consists of the cascade connection
of a static nonlinear block represented by basis functions,
followed by a dynamic linear block represented by spa-
tio-temporal Laguerre model as shown in Fig. 4. The trans-
fer functions in Fig. 4 can be derived from (48) in Appendix
2 as follows
( , )u tζ

1ˆ ( , )v tζ

ˆ ( , )ny x t

1st Laguerre  
model 

1ˆ ( )N ⋅

Σ
ˆ ( , )pv tζ

pth Laguerre 
model 

ˆ ( )pN ⋅

1st channel

pth channel

ˆ ( , )p
ny x t

1ˆ ( , )ny x t
1β̂

ˆ pβ

1α̂

ˆ pα

Fig. 3. Multi-channel spatio-temporal Hammerstein model.

Please cite this article in press as: C. Qi et al., A multi-channel spatio
(2008), doi:10.1016/j.jprocont.2008.01.006
j1ðsÞ ¼
ffiffiffiffiffi
2n
p

sþ n
; j2ðsÞ ¼ � � � ¼ jlðsÞ ¼

s� n
sþ n

;

where n is the time-scaling factor.
Note that in Figs. 3 and 4, ŷnðx; tÞ ¼

Pp
c¼1ŷc

nðx; tÞ,
v̂cðf; tÞ ¼

Pm
r¼1

Pv
s¼1wrðfÞb̂c

shsðarðtÞÞ,
D̂c

j;kðxÞ ¼
Pn

i¼1â
c
i;j;kuiðxÞ and

Lc
j;kðtÞ ¼

Pm
r¼1

Pv
s¼1wj;rb̂

c
s‘k;s;rðtÞ.

Remark 2. If the time scale n is chosen suitably, then the
Laguerre series can efficiently model any stable linear plant
[34]. Usually, the parameter n which gives a good perfor-
mance is obtained from trials. Many studies have dealt
with the time scale selection problem using such as offline
optimization [3] and online adaptation [30] methods. For
another parameter l, there are no theoretical methods but
only some empirical ones so far.

Based on Lemma 1, we can give the following theorem
to show the advantage of multi-channel mechanism.

Theorem 1. For a spatio-temporal Hammerstein system (2),

if the estimated matrix bHab has rank c P 1 and the

parameters of the cth channel ðb̂c; âcÞðc ¼ 1; . . . ; p; p 6 cÞ
are obtained by (29), then the parameter approximation error
(30) will satisfy

e1 > e2 > � � � ep > � � � > ec ¼ 0:

Proof. This can be easily drawn from Lemma 1. h

Theorem 1 means that the parameter approximation
error will be reduced by increasing the channel number p.
Moreover, the model complexity can also be controlled
by the number of channels. There is a tradeoff between
the complexity and accuracy. Due to the property of the
SVD, the parameter of the cth channel is the cth principal
component of the whole parameter space. Therefore, only
the first few dominant channels can construct a good
model.

An important issue is the convergence of the estimated
parameters as the number of data points nt tends to infin-
ity. Now, we will give a convergence theorem to support
the proposed algorithm.

For simplicity, let yn(x, t) = H(x, t, H, {u(f, s)}) denote
a multi-channel Hammerstein model with n, l, v <1
-temporal Hammerstein modeling approach ..., J. Process Contr.
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ynðx; tÞ ¼
Xp

c¼1

Xt

s¼0

Z
X

Xn

i¼1

Xm

j¼1

Xl

k¼1

ac
i;j;kuiðxÞwjðfÞ/kðsÞ

�
Xm

r¼1

Xv

s¼1

wrðfÞbc
shsðarðt � sÞÞdf; ð33Þ

where H ¼
Pp

c¼1½ac
1;1b

c
1; . . . ; ac

1;1b
c
v; . . . ; ac

m;lb
c
1; . . . ; ac

m;lb
c
v�

T

2 Rn�mlv, ac
j;kðj ¼ 1; . . . ;m; k ¼ 1; . . . ; lÞ are defined by

(19), and {u(f, s)} = {u(f, s)jf 2 X, s = 1, . . ., t}.
We always assume that there is an optimal model

y�nðx; tÞ ¼ Hðx; t;H�; fuðf; sÞgÞ; ð34Þ

with an optimal parameter matrix H* such that

H� ¼ arg min
H2DH

fEðyðx; tÞ � Hðx; t;H; fuðf; sÞgÞÞ2g; ð35Þ

where Ef ðx; tÞ2 ¼ limnt!1
1
nt

Pnt
t¼1

1
A

R
X Ef ðx; tÞ2dx, A ¼

R
X dx

and E is expectation operator. Let DH be compact. Define
H�ab 2 Rv�nml such that H� ¼ blockvecðH�abÞ.

Under the uniform spatial discretization, 1
A

P1
i¼1biðtÞ2 ¼

1
A

R
X yðx; tÞ2dx can be replaced by 1

ny

Pny

j¼1yðxj; tÞ2. However,

the accurate a(t) can be obtained provided that nu P m.
Therefore, according to the details of the developed identi-
fication algorithm, the minimization problem (24) is indeed
equivalent to the following problem

bH ¼ arg minH2DH

1

nt

1

ny

Xnt

t¼1

Xny

j¼1

ðyðxj; tÞ
(

�Hðxj; t;H; fuðf; sÞgÞÞ2
)
: ð36Þ

It should be mentioned that, (24) can be considered as a
practical implementation of (36) in order to reduce the in-
volved spatial complexity. However, the theoretical analy-
sis should be performed in the spatio-temporal domain.

Assumption 1. Let W(x, t) be the r-algebra generated by
(d(x, t), � � �, d(x, 0)). For each t, s (t P s) and any x, f 2 X,
there exist random variables y0

sðx; tÞðy0
t ðx; tÞ ¼ 0Þ;

u0
sðf; tÞðu0

t ðf; tÞ ¼ 0Þ, that belong to W(x, t), but are
independent of W(x, s), such that

Ejyðx; tÞ � y0
sðx; tÞj

4
< Mkt�s;

Ejuðf; tÞ � u0
sðf; tÞj

4
< Mkt�s;

for some M <1, k < 1.

Assumption 2. Assume that the model yn(x, t) = H(x, t, H,
{u(f, s)}) is differentiable with respect to H for all H 2 DH.
Assume that

jHðx; t;H; fu1ðf; sÞgÞ � Hðx; t;H; fu2ðf; sÞgÞj

6 M
Xt

s¼0

kt�s sup
f2X
ju1ðf; sÞ � u2ðf; sÞj;

and jH(x, t, H, {0(f, s)})j 6M, where H belong to an open
neighborhood of DH, M <1 and k < 1.
Please cite this article in press as: C. Qi et al., A multi-channel spatio
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Assumption 3. Define e(x, t, H) = y(x, t) � H(x, t, H, {u(f,
s)}) and there exists

oeðx; t;HÞ2

oH

�����
����� 6 Meðx; t;HÞ2;H 2 DH; 8x 2 X; 8t:

Remark 3. Assumption 1 means that the system to be iden-
tified is exponentially stable, i.e., the remote past of the
process is ‘‘forgotten” at an exponential rate. Assumption
2 has three meanings. Firstly, the model is differential with
respect to the parameters. Secondly, the model may not
increase faster than the linear one. Thirdly, the model is
also exponentially stable. Regarding Assumption 3, the
derivative of the modeling error with respect to the param-
eters is bounded by the modeling error. Such conditions are
required to make the parameter optimization procedure
feasible, and guarantee the following convergence.

Theorem 2. For a spatio-temporal Hammerstein system (2),

the multi-channel model (32) is estimated using Algorithm

1. If Assumptions 1–3 are satisfied, then
Pp

c¼1b̂
cðâcÞT !

H�ab and ŷnðx; tÞ ! y�nðx; tÞ w. p. 1 as nt ?1, ny ?1, and

p ? c, where c ¼ rankðH�abÞ.

Proof. The proof is given in Appendix 3. h
5. Case study

In order to evaluate the proposed modeling method, two
typical distributed processes are studied.

For an easy comparison, some performance indexes are
set up as follows:

� Spatio-temporal error eðx; tÞ ¼ yðx; tÞ � ŷnðx; tÞ,
� Spatial normalized absolute error, SNAEðtÞ ¼R
jeðx; tÞjdx=

R
dx,

� Temporal normalized absolute error, TNAEðxÞ ¼P
jeðx; tÞj=

P
Dt,

� Root of mean squared error, RMSE ¼R P
eðx; tÞ2dx=

R
dx
P

Dt
� �1=2

.

5.1. Catalytic rod

A long thin rod in a reactor shown in Fig. 5 is a typical
transport-reaction process in chemical industry [6]. The
reactor is fed with pure species A and a zero-th order exo-
thermic catalytic reaction of the form A ? B takes place in
the rod. Since the reaction is exothermic, a cooling medium
that is in contact with the rod is used for cooling.

Under the assumptions of constant density and heat
capacity of the rod, constant conductivity of the rod, and
constant temperature at both sides of the rod, and excess
of species A in the furnace, the mathematical model which
describes the spatio-temporal evolution of the rod temper-
ature consists of the following parabolic PDE [6]:
-temporal Hammerstein modeling approach ..., J. Process Contr.
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oyðx; tÞ
ot

¼ o
2yðx; tÞ
ox2

þ bT e�
c

1þy � e�c
� �

þ buðwðxÞ
T aðtÞ

� yðx; tÞÞ; ð37Þ

subject to the Dirichlet boundary and initial conditions:

yð0; tÞ ¼ 0; yðp; tÞ ¼ 0; ð38Þ
yðx; 0Þ ¼ 0; ð39Þ

where y(x, t), w(x), bT, bu, c and a denote the temperature
in the reactor, the actuator distribution, the heat of reac-
tion, the heat transfer coefficient, the activation energy,
and the manipulated input (temperature of the cooling
medium).

The process parameters are often set as

bT ¼ 50; bu ¼ 2; c ¼ 4:

There are available four control actuators a(t) = [a1(t), � � �,
a4 (t)]T with the spatial distribution function w(x) = [w1 (x),
� � �, w4(x)]T, where ai(t) = 1.1 + 5sin(t/10 + i/10) (i = 1, . . .,
4) and wi(x) = H(x � (i � 1)p/4) � H(x � ip/4) (i = 1, . . .,
4) (H(�) being the standard Heaviside function). Due to
the infinite-dimensional feature, sufficient sensors should
be used to measure the representative spatial features of
the distributed parameter system, which depends on the re-
quired modeling accuracy. In this case, nineteen sensors are
used. The random process noise is bounded by 0.001 with
zero-mean. The sampling period Dt is 0.01 and the simula-
tion time is 5.

The process output y(x, t) is shown in Fig. 6, while the
obtained KL basis functions are shown in Fig. 7 with
n = 5. The temporal bases /i(t), (i = 1, . . ., 10) are chosen
as Laguerre series with time-scaling factor n = 2.05. The
nonlinear bases are polynomials as hi(a) = ai (i = 1, . . ., 4).

The prediction output ŷnðx; tÞ of the 3-channel Hammer-

stein model is shown in Fig. 8, with the prediction error e(x,
t) presented in Fig. 9. It is obvious that the 3-channel Ham-
merstein model can satisfactorily model the original pro-
cess. As shown in Figs. 10 and 11, the prediction error
SNAE(t) and TNAE(x) will be smaller when using more
channels. It is verified that the multi-channel Hammerstein

modeling approach can improve the performance of the sin-

gle-channel model.
Finally, the influence of the sensor number on the mod-

eling error RMSE is studied. As seen from Fig. 12, the 3-
channel Hammerstein modeling performance will be better
as the number of sensors increases since the more spatial
Please cite this article in press as: C. Qi et al., A multi-channel spatio
(2008), doi:10.1016/j.jprocont.2008.01.006
information is available. However, little improvement is
seen if more than 19 sensors are used.
-temporal Hammerstein modeling approach ..., J. Process Contr.
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5.2. Catalytic packed-bed reactor

Consider the temperature distribution in a long, thin
non-isothermal catalytic packed-bed reactor as shown in
Fig. 13 [5]. A reaction of the form C ? D takes place on
the catalyst. The reaction is endothermic and a jacket is
used to heat the reactor.

A dimensionless model that describes this nonlinear
tubular chemical reactor is provided as follows

ep
oyg

ot
¼ �

oyg

ox
þ acðy � ygÞ � agðyg � wðxÞaðtÞÞ;

oy
ot
¼ o2y

ox2
þ b0e

cy
1þy � bcðy � ygÞ � bpðy � wðxÞaðtÞÞ;

ð40Þ

subject to the boundary conditions

x ¼ 0; yg ¼ 0;
oy
ox
¼ 0;

x ¼ 1;
oy
ox
¼ 0;

ð41Þ

where yg, y and a denote the dimensionless temperature of
the gas, the catalyst and jacket, respectively. It is assumed
that only catalyst temperature measurements are available.

The values of the process parameters are given below

ep ¼ 0:01; c ¼ 21:14; bc ¼ 1:0; bp ¼ 15:62; b0 ¼ �0:003; ac

¼ 0:5 and ag ¼ 0:5:
catalyst y

yggas

a

Fig. 13. Catalytic packed-bed reactor.
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A heater is used with the spatial distribution w(x) = sin(p
x), 0 6 x 6 1. In the numerical calculation, we set the input
a(t) = 1.1 + 1.5sin(t/20). In the simulations, sixteen sensors
are used in order to capture the sufficient spatial informa-
tion. The random process noise is bounded by 0.0005 with
zero-mean. The sampling period Dt is 0.0001 and the sim-
ulation time is 0.1.

The process output y(x, t) is shown in Fig. 14, while the
obtained KL basis functions are shown in Fig. 15 with
n = 3. The temporal bases /i(t), (i = 1, . . ., 10) are chosen
as Laguerre series with time-scaling factor n = 20.5. The
nonlinear bases are polynomials as hi(a) = ai (i = 1, . . ., 4).

The prediction output ŷnðx; tÞ of the 3-channel Hammer-

stein model is shown in Fig. 16, with the prediction error
e(x, t) presented in Fig. 17. It is obvious that the3-channel

Hammerstein model can approximate the original spatio-
temporal dynamics very well. As shown in Figs. 18 and
19, as the channel number increases, the prediction error
SNAE(t) and TNAE(x) will decrease, which is consistent
with the theoretical analysis. As illustrated in Fig. 20, the
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Fig. 14. Process output.
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3-channel Hammerstein modeling error RMSE will become
smaller when using more sensors, and but more than 16
sensors will have less effect on the modeling performance.
-temporal Hammerstein modeling approach ..., J. Process Contr.
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6. Conclusion

A spatio-temporal Hammerstein modeling approach is
proposed for nonlinear distributed parameter systems.
The Hammerstein model consists of the static nonlinear
and the distributed dynamical linear parts. Using the
Galerkin method with the expansion onto KL spatial bases
and Laguerre temporal bases, the spatio-temporal model-
ing is reduced to a traditional temporal modeling problem.
The unknown parameters can be easily estimated using the
least squares estimation and the singular value decomposi-
tion. In the presence of unmodeled dynamics, a multi-chan-
nel modeling approach is proposed to reduce the single-
channel modeling error. This modeling method provides
convergent estimates under some conditions. The simula-
tions of two examples are presented to show the effective-
ness of this modeling method and its potential to
industrial applications.
Please cite this article in press as: C. Qi et al., A multi-channel spatio
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Appendix 1. Karhunen–Loève method

The basic idea of the KL expansion is to find those
modes which represent the dominant character of the sys-
tem from process data.

Suppose we have nt observations y(x, t) at time t = 1,
. . ., nt (called snapshots). The problem is compute the most
characteristic structure u(x) among these snapshots y(x, t)
that can be formulated as the one of maximizing the fol-
lowing objective function [6]

maximize
hðuðxÞ; yðx; tÞÞ2i
ðuðxÞ;uðxÞÞ

subject to ðuðxÞ;uðxÞÞ ¼ 1;uðxÞ 2 L2ðXÞ:
ð42Þ

where the ensemble average and the inner product are
defined as hf ðx; tÞi ¼ 1

nt

Pnt
t¼1f ðx; tÞ, ðu1ðxÞ;u2ðxÞÞ ¼R

X u1ðxÞu2ðxÞdx, respectively. The constraint (u, u) = 1 is
imposed to ensure that the function u(x) is unique. The
Lagrangian functional corresponding to this constrained
optimization problem is

J ¼ hðuðxÞ; yðx; tÞÞ2i � kððu;uÞ � 1Þ;

and necessary condition for extremes is that the functional
derivative vanishes for all variation u + dw 2 L2(X), where
d is a real number:

dJðuþ dwÞ
dd

ðd ¼ 0Þ ¼ 0; ðu;uÞ ¼ 1:

Using the definitions of inner product and ensemble aver-
age, computing dJ(u + dw)/dd (d = 0), and using that
w(x) is an arbitrary function, the following necessary con-
ditions for optimality can be obtained:Z

X
hyðx; tÞ; yðf; tÞiuiðfÞdf ¼ kiuiðxÞ; ðu;uÞ ¼ 1: ð43Þ

where ui(x) is the ith eigenfunction, ki is the corresponding
eigenvalue.

A computationally efficient way to obtain the solution
of the above integral equation is provided by the method
of snapshots [26,22] where the requisite eigenfuction ui(x)
is expressed as a linear combination of the snapshots as
follows

uiðxÞ ¼
Xnt

t¼1

ctiyðx; tÞ; ð44Þ
-temporal Hammerstein modeling approach ..., J. Process Contr.
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Substituting (44) into (43) gives the following eigenvalue
problem:Z

X

1

nt

Xnt

t¼1

yðx; tÞyðf; tÞ
Xnt

s¼1

csiyðf; sÞdf

¼ ki

Xnt

t¼1

ctiyðx; tÞ; ð45Þ

Defining

Y ts ¼
1

nt

Z
X

yðf; tÞyðf; sÞdf;

The eigenvalue problem of (45) can be equivalently written
as

Y ci ¼ kici; ð46Þ
where ci is the ith eigenvector with elements cti which can
be used in (44) to construct the eigenfunctions ui(x). Be-
cause the matrix Y is symmetric and positive semifefinite,
thus its eigenvalues ki are real and non-negative. Further-
more, the computed eigenfunctions are orthogonal. The
empirical eigenfunctions are found in an ordered manner.
That is, the first EEF captures the dominant behavior,
the second EEF the next dominant and so on. Since these
EEFs are usually small in number, the model derived is of
low-dimension.

Appendix 2. Laguerre function

Laguerre function is defined as a functional series [35]

/iðtÞ,
ffiffiffiffiffi
2n

p ent

ði� 1Þ! �
di�1

dti�1
½ti�1 � e�2nt�; i

¼ 1; 2; . . . ;1; n > 0; ð47Þ

where n is the time-scaling factor and t 2 [0,1) is time var-
iable. The Laplace transform of the ith Laguerre function is
given by (48)

/iðsÞ ¼
ffiffiffiffiffi
2n

p ðs� nÞi�1

ðsþ nÞi
; i ¼ 1; 2; . . . ;1; n > 0: ð48Þ

Laguerre functions (47) and (48) form a complete ortho-
normal basis in the function space L2(R+) and H2(C+),
respectively.

Appendix 3. The proof of Theorem 2

In order to obtain the convergence with probability 1,
the following lemma, which is the direct extension of the
previous work [8,19], is needed in the proof of Theorem 2.

Lemma 2. Let n(x, t) be a random variable with zero-mean

value and with
jEðnðx; tÞnðx; sÞÞj 6 M
ta þ sb

1þ jt � sjb
; x 2 X;M

<1; 0 6 2a < b < 1: ð49Þ
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Then

1

nt

Xnt

t¼1

nðx; tÞ ! 0; w: p:1 as nt !1: ð50Þ

where w. p. 1 means with probability 1.

We now turn to the proof of Theorem 2. The conver-
gence of the estimation bHbH ! H�; w: p:1 as nt !1; ny !1; ð51Þ
implies thatbHab ! H�ab; w: p:1 as nt !1; ny !1: ð52Þ

By Lemma 1, we haveXp

c¼1

b̂cðâcÞT ! bHab; asp ! c;

where c ¼ rankð bHabÞ. ThereforeXp

c¼1

b̂cðâcÞT ! H�ab; w: p:1 as nt !1; ny

!1; p ! c: ð53Þ

Since H(x, t, H, {u(f, s)}) is continuous with respect to H,
the convergence of parameters as in (53) naturally leads to
the convergence of the model to its optimum

ŷnðx; tÞ ! y�nðx; tÞ; w: p:1 as nt !1; ny !1; p ! c:

ð54Þ
Define

Qny nt
ðHÞ ¼ 1

ny

Xny

j¼1

1

nt

Xnt

t¼1

eðxj; t;HÞ2
( )

:

As define in (35), H* minimizes

Eðyðx; tÞ � Hðx; t;H; fuðf; sÞgÞÞ2

¼ limny!1flimnt!1EQny nt
ðHÞg;

and the estimate bH minimizes Qny nt
as defined in (36).

In order to prove (51), we should prove the convergence
as follows

supH2DH
jQny nt

ðHÞ � EQny nt
ðHÞj ! 0; w: p:1 as nt

!1; ny !1: ð55Þ

One feasible solution is to achieve the following conver-
gence at any fixed spatial variable x before working at
the spatio-temporal space.

supH2DH

1

nt

Xnt

t¼1

jeðx; t;HÞ2 � Eeðx; t;HÞ2j

! 0; w: p:1 as nt !1: ð56Þ

To achieve the convergence of (56), we have to obtain the
convergence first at the pre-defined small open sphere, and
then extend it to the global domain DH using Heine-Borel’s
theorem.
-temporal Hammerstein modeling approach ..., J. Process Contr.
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3.1. Convergence of modeling error e to its optimum over B

Define the supremum between the model error and its
optimum as a random variable

gðx; tÞ ¼ gðx; t;H0; qÞ ¼ supH2B½eðx; t;HÞ
2 � Eeðx; t;HÞ2�:
Let D be the open neighborhood of DH and choose
H0 2 DH. We can define a small open sphere centered at
H0 as

BðH0; qÞ ¼ fHjjH�H0j < qg:
Let B = B(H0, q) \ D, then

supH2B

1

nt

Xnt

t¼1

½eðx; t;HÞ2 � Eeðx; t;HÞ2�

6
1

nt

Xnt

t¼1

gðx; tÞ: ð57Þ
Define n(x, t) = g(x, t) � Eg(x, t). If we can prove

� n(x, t) satisfies Lemma 1 and
� the mean of g(x, t) is infinitesimal,

then g(x, t) is also infinitesimal.
Firstly, we consider

jEðnðx; tÞnðx; sÞÞj ¼ Cov½gðx; tÞ; gðx; sÞ�:
Define g0
sðx; tÞ ¼ supH2B½e0

sðx; t;HÞ
2 � Eeðx; t;HÞ2�, with

e0
sðx; t;HÞ ¼ y0

sðx; tÞ � Hðx; t;H; fu0
sðf; jÞgÞ; t > s;
where fu0
sðf; jÞg denotes the input set ðu0

sðf; tÞ; . . . ;
u0

sðf; sþ 1Þ; 0; . . . ; 0Þ for all f 2 X, y0
sðx; tÞ and u0

sðf; jÞ are
the variables introduced in Assumption 1. For conve-
nience, let u0

sðf; jÞ ¼ 0 and y0
sðx; jÞ ¼ 0 for j < s. Obviously

g0
sðx; tÞ is independent of g(x, s) from Assumption 1.

Hence

Cov½gðx; tÞ; gðx; sÞ� ¼ Cov½gðx; tÞ � g0
sðx; tÞ; gðx; sÞ�:
Then using Schwarz’s inequality, we have

jEðnðx; tÞnðx; sÞÞj 6 ½Egðx; sÞ2Eðgðx; tÞ � g0
sðx; tÞÞ

2�1=2
: ð58Þ
Since

jgðx; tÞ � g0
sðx; tÞj 6 supH2Bjeðx; t;HÞ

2 � e0
sðx; t;HÞ

2j
6 supH2Bfjeðx; t;HÞj þ je0

sðx; t;HÞjg
� supH2Bjeðx; t;HÞ � e0

sðx; t;HÞj;
using Assumption 2, we can further have
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jgðx; tÞ � g0
sðx; tÞj 6 M

Xt

j¼0

kt�j jyðx; jÞj þ jy0
sðx; jÞj

�"

þsupf2Xjuðf; jÞj þ supf2Xju0
sðf; jÞj

�#

�
Xt

j¼0

kt�j jyðx; jÞ � y0
sðx; jÞj

�"

þsupf2Xjuðf; jÞ � u0
sðf; jÞj

�#
:

Using Assumption 1 and Schwarz’s inequality, we can fi-
nally derive

Ejgðx; tÞ � g0
sðx; tÞj

2
6 Mkt�s: ð59Þ

Following the similar derivation above and using Assump-
tions 2 and 1, we can also derive

Egðx; sÞ2 6 M : ð60Þ

Placing (59) and (60) into (58), we can easily derive that
n(x, t) satisfies Lemma 2, that is

1

nt

Xnt

t¼1

nðx; tÞ ¼ 1

nt

Xnt

t¼1

ðgðx; tÞ � Egðx; tÞÞ

! 0; w: p:1 as nt !1: ð61Þ

Secondly, we derive the mean value of g

Egðx; tÞ ¼ EsupH2B½eðx; t;HÞ
2 � Eeðx; t;HÞ2�:

Since the right-hand side is continuous with respect to H,
Eg(x, t) should be small if B is small. Furthermore, by
Assumption 3,

oeðx; t;HÞ2

oH

�����
����� 6 M jeðx; t;HÞj2

6 M
Xt

j¼0

kt�j jyðx; jÞj þ supf2Xjuðf; jÞj
� �" #2

;

where we again have used the uniform bounds in Assump-
tion 2. Consequently, by Assumption 1,

EsupH2B
oeðx; t;HÞ2

oH

�����
�����
2

6 M :

Now

Egðx; tÞ ¼ EsupH2B½eðx; t;HÞ
2 � Eeðx; t;HÞ2�

6 EsupH2B½eðx; t;HÞ
2 � eðx; t;H0Þ2�

þ supH2BE½eðx; t;H0Þ2 � eðx; t;HÞ2�

6 EsupH2B

oeðx; t;HÞ2

oH

�����
�����þ supH2BE

oeðx; t;HÞ2

oH

�����
�����

" #
� supH2BjH�H0j 6 M0q: ð62Þ

Finally, from (62), (57) becomes
-temporal Hammerstein modeling approach ..., J. Process Contr.



14 C. Qi et al. / Journal of Process Control xxx (2008) xxx–xxx

ARTICLE IN PRESS
supH2B
1

nt

Xnt

t¼1

½eðx; t;HÞ2 � Eeðx; t;HÞ2�

6
1

nt

Xnt

t¼1

ðgðx; tÞ � Egðx; tÞÞ þM0q: ð63Þ

It is clear to see from (61) that the first term of the right-
hand side is arbitrarily small for sufficiently large nt. Since
q can also be arbitrarily small, therefore

supH2B

1

nt

Xnt

t¼1

jeðx; t;HÞ2 � Eeðx; t;HÞ2j

! 0; w:p:1 as nt !1: ð64Þ
3.2. Convergence extension to global DH

Since DH is compact, by applying Heine–Borel’s theo-
rem, from (64) the following result is easily concluded

supH2DH

1

nt

Xnt

t¼1

jeðx; t;HÞ2 � Eeðx; t;HÞ2j

! 0; w: p:1 as nt !1: ð65Þ
3.3. Extension to spatio-temporal domain

Obviously

supH2DH
jQny nt

ðHÞ

� EQny nt
ðHÞ 6 1

ny

Xny

j¼1

supH2DH

1

nt

Xnt

t¼1

�����
�����eðxj; t;HÞ2

� Eeðxj; t;HÞ2j;

therefore

supH2DH
jQny nt

ðHÞ � EQny nt
ðHÞj ! 0; w: p:1 as nt

!1; ny !1: ð66Þ
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